短葶飞蓬云南三个种群的核型与等位酶分析。

冯定霞1,陈 勃1,党承林2,王崇云2

(1 西南林学院, 云南 昆明 650224; 2 云南大学生态学与地植物学研究所, 云南 昆明 650091)

摘要:通过核型和等位酶分析,对短葶飞蓬(Erigeron breviscapus)种群遗传结构进行了较全面的研究。研究材料来自丽江、昆明、邱北。核型分析表明,这3个种群都为二倍体种群(2n=2x=18),以丽江种群为例,短葶飞蓬核型为2n=2x=18=6m+10sm(2SAT)+2st。10种酶的等位酶分析表明,短葶飞蓬的遗传变异存在于种群内。种群间遗传一致度高(I=0.9172),遗传距离小(D=0.0876)。遗传距离与空间距离大致成正相关。

关键词:短葶飞蓬;核型;等位酶;种群遗传结构

中图分类号: 0 943 文献标识码: A 文章编号: 0253 - 2700(2002)06 - 0754 - 05

Karyotype and Allozyme Analyses of Three Populations of *Erigeron breviscapus* from Yunnan

FENG Ding-Xia 1 , CHEN Bo 1 , DANG Cheng-Lin 2 , WANG Cong-Yun 2 (1 South-West Forestry College , Kunming 650024 , China ; 2 Institute of Ecology and Geobotany , Yunnan University , Kunming 650091 , China)

Abstract: In this paper , the population genetic structure of *Erigeron breviscapus* in three population of Yunnan was studied by the karyotype analysis and allozyme analysis. Lijiang , Kunming and Qiubei populations were sampled. Karyotype analysis indicated that all the three populations are diplontic (2n = 2x = 18). The karyotype formula of Lijiang population is 2n = 2x = 18 = 6m + 10sm (2SAT) + 2st. Ten allozyme analyses show that , the genetic variation exists within the populations. The genetic identities in the three populations are very high (I = 0.9172), and the genetic distances are very small (D = 0.0876). The genetic distances are positively related to the spatial distances.

Key words: Erigeron breviscapus; Karyotype; Allozyme; Population genetic structure

短葶飞蓬 Erigeron breviscapus (Vant.) Hand.-Mazz , 俗称灯盏花或灯盏细辛 , 为菊科 (Compositae) 紫菀族 (Trib. Astereae Cass.)飞蓬属 (Erigeron) 植物 , 产于湖南、广西、贵州、四川、云南、西藏等省区 , 常见于海拔 1 200~3 500 m 的中山和亚高山开阔山坡、草地、林缘 (林镕和陈艺林 , 1985)。其黄酮类提取物 , 主要是灯盏花素 (灯盏甲素和灯盏乙素), 对治疗闭塞性脑血管疾病所致瘫痪及脑出血后遗瘫痪有特效 (黎光南 , 1990)。工厂化生产 20 多年来 , 野生短葶飞蓬被大量采挖 , 野生资源不足将成为制约云南灯盏花

作者简介:冯定霞(1975-)女,硕士,助教,研究方向:植物种群生物学。

^{*} 收稿日期: 2002 - 03 - 28, 2002 - 07 - 16 接受发表

药业发展的瓶颈。加强短葶飞蓬生物学特性研究,对人工栽培提高黄酮产率,保护短葶飞 蓬野生资源具有理论和现实意义。本文从细胞遗传学和等位酶水平对短葶飞蓬种群遗传结 构进行了较全面的研究。

1 材料与方法

本文实验材料包括从滇西北到滇东南的 3 个种群:丽江玉龙雪山种群、昆明西山种群、邱北新甸种群。实验材料来源见表 1, 凭证标本保存于云南大学生态学与地植物学研究所。

表1 实验材料来源

Table 1 Origin of materials

种群	采集地	经度	纬度	海拔/m	生境	凭证标本
population	localities	longtitude	latitude	altitude	habitat	voucher
Lijiang	Yulongxueshan	100°15′	27°	2700	grassland	FDX014
Kunming	Xishan	102°38′	24°58′	2100	grass slope , Pinus yunnanensis woods	FDX057
Qiubei	Xindian	104°10′	24° 5′	1700	grass slope , Pinus yunnanensis woods	FDX109P

本文应用植物染色体常规压片法(李懋学,1982)。取生长旺盛的栽培植株根尖,放入 0.05% 秋水仙碱溶液中,室温下预处理 $3\,h$,Carnoy 溶液固定 $3\,h$, $1\,mol/L$ HCl 室温下水解 $8\,min$,卡宝品红染色和镜检。将具有良好中期分裂相的玻片标本制成永久封片,供核型和倍性分析。染色体类型划分、命名和排列按李懋学和陈瑞阳(1985)制定的标准。核型不对称性依据 Stebbins(1971)的分类标准进行判断,核型不对称程度用"核型不对称系数"度量(虞泓,1996),即 As.K% = (长臂总长/染色体总长) × 100,As.K% 值越高,核型越不对称。每个种群检查 $20\sim30$ 个植株。以丽江种群为代表,作核型分析。等位酶实验应用水平切片淀粉凝胶电泳方法(王中仁,1996)。实验酶系统与缓冲液系统见表 2 和表 3。

淀粉凝胶浓度为 12% , 所用淀粉为 Sigma 公司产品 S – 4501。提取液选用 Tris – 马来酸提取缓冲液表2 电泳缓冲液系统

Table 2 Buffer system used in electrophoresis

No.	gel buffer	electrode buffer
1	0.02 mol/L L-histdine mono HCL , pH7.0	0.4 mol/L Citric acid , trisodium , salt , pH7.0
R	$0.009 \mathrm{mol/L}$ Tris , $0.005 \mathrm{mol/L}$ L-histdine mono HCL , pH8.0	0.04mol/L Tris , 0.105mol/L Citric acid , pH8.0

Buffer system 1: 王中仁 (1996); Buffer system R: 虞泓 (1999)。

表 3 酶系统与缓冲液系统

Table 3 The enzyme system and buffer system

酶系统 Enzyme system	酶缩写 Abbreviation	缓冲液系统 Buffer system
天冬氨酸转氨酶 Aspartase aminotransferase	AAT	1、R
莽草酸脱氢酶 Shikimate dehydrogenase	SKD	R
苹果酸酶 Malic enzyme	ME	1、 R
苹果酸脱氢酶 Malate dehydrogenase	MDH	1、 R
异柠檬酸脱氢酶 Isocitrate dehydrogenase	IDH	1、R
6 - 磷酸葡萄糖酸脱氢酶 Phosphogluconate dehydrogenase	PGD	1、R
磷酸葡萄糖变位酶 Phosphoglucomutase	PGM	1
磷酸葡萄糖异构酶 Phosphoglucoisomerase	PGI	R
6 – 磷酸葡萄糖脱氢酶 Glucose-6-phosphate dehydrogenase	G_6PDH	1
3 - 磷酸甘油醛脱氢酶 Glyceraldehydee-3-phosphate dehydrogenase	G_3PDH	1

(王中仁,1996),提取缓冲液现配现用。材料研磨好后,用新华 ||| 号滤纸制成的 $2 \text{ mm} \times 2 \text{ mm}$ 的沁子直接吸取研磨液上样。每次上样时,以一个已知酶谱的个体为对照标记,同时上一个溴酚蓝沁子作电泳时间指示。电泳在 4% 冰箱中进行,采用 60 mA 稳流电泳 $7 \sim 8 \text{ h}$,待溴酚蓝移至凝胶顶端,停止电泳,割胶染色。AAT 液染,其余 9 种酶胶染。染色液配方采用 Soltis 等(1983)和王中仁(1996)配方。酶带显色后,及时记录、照相。酶谱记录采用基因构成记录法。每个基因位点如果有多个等位基因,最近阳极的标为 8 ,次近阳极的标为 8 ,以此类推。每个种群取样 $20 \sim 30$ 个植株。

2 结果与分析

2.1 短葶飞蓬核型

以丽江种群为代表,短葶飞蓬核型公式 2n=2x = 18=6m+10sm (2SAT) + 2st。染色体长度范围 $0.51\sim0.92~\mu m$, 为极小染色体,染色体组实际长度 约 $6.98~\mu m$, 染色体长度比为 1.79 , 核型不对称性属于 3A 型 , As . K 值为 66.01%。第一对染色体为随体染色体,随体大小异形(表 4、图 1 和图 2)。3 个种群都为二倍体种群,未见多倍体或非整倍性现象。

2.2 短葶飞蓬种群的等位酶分析

检测的 10 种酶中, MDH、ME、 G_6 PD、 G_3 PD、PGD和 IDH 只有 1 个位点, 为单态; AAT 有 2 个位点, 都为单态; PGI 有 1 个位点 2 个等位基因; SKD 有 1 个位点 2 个等位基因; PGM 有 1 个位点 3 个等位基因(图 3, 表 5)。

图 1 丽江短葶飞蓬有丝分裂中期染色体和核型

Fig. 1 The somatic chromosomes and karyotype in miotic metaphase in the *Erigeron breviscapus* population from Lijiang

表 4 丽江短葶飞蓬染色体参数

Table 4 The parameters of chromosomes in the Erigeron breviscapus population from Lijiang

序号	相对长度/%	臂比	类型
No.	RL	AR	PC
1	13.20	1.76	sm*
2	13.09	4.81	st
3	12.63	2.06	sm
4	12.63	2.83	sm
5	12.05	1.59	m
6	10.58	2.15	sm
7	9.44	2.03	sm
8	8.99	1.47	m
9	7.39	1.15	m

No. : Chromosome number; RL: relative length;
AR: arm ratio; PC: position of centromere;

* Sat-chromosome

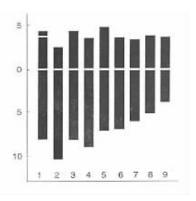


图 2 丽江短葶飞蓬核型模式图

Fig. 2 Idiograms of *Erigeron breviscapus* population from Lijiang

根据实验结果,分析种群遗传结构及种群间遗传变异(表 6 , 表 7)。 3 个种群的多态位点百分数 P 相等(P=27.27),平均每个位点的等位基因数 A 也相等(A=1.36)。平均每个位点的等位基因数的有效数目 Ae、平均每个位点的预期杂和度 He 和平均每个位点

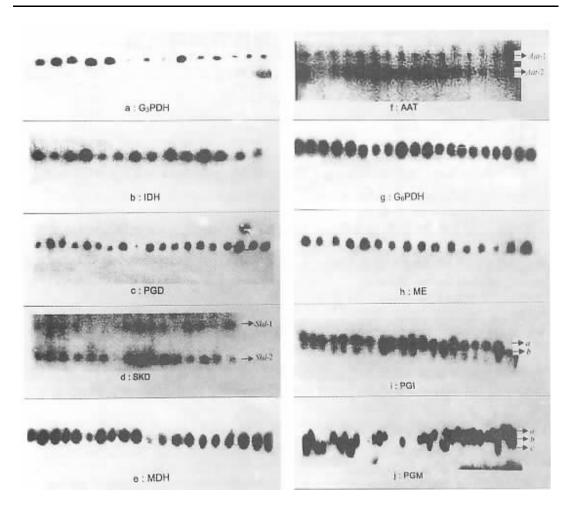


图 3 短葶飞蓬的 10 种酶的酶谱

 $\label{eq:Fig. 3} Fig. \ 3 \quad Electrophoresis bands of ten allozyme of \textit{Erigeron breviscapus}$ (<code>a: G_3PDH; b: IDH; c: PGD; d: SKD; e: MDH; f: AAT; g: G_6PDH; h: ME; i: PGI; j: PGM)</code>

的实际杂和度 Но 都以丽江种群最高。

按照 Nei 的基因多样度概念,对每个多态位点来说,一个种的所有种群的总遗传多样度 H_T 包括各种群内的遗传多样度 H_S 和各种群间的遗传多样度 D_{ST} 之和: $H_T = H_S + D_{ST}$ 。对任何一个位点来说:存在于种群间的遗传多样性的比率 $G_{ST} = D_{ST}/H_T = (H_T - H_S)/H_T$ (王中仁,1996)。

短葶飞蓬种群间基因分化系数 $G_{ST} = 0.2798$,即短葶飞蓬总的遗传变异中有 27.89%存在于种群间,有 72.02%存在于种群内,遗传变异主要存在于各种群内部。

3 个短葶飞蓬种群间的遗传一致度很高,平均值为 0.9172,遗传距离小,平均值为 0.0876。其中昆明种群和邱北种群的遗传一致度最高,达 0.9700;昆明种群和丽江种群的遗传一致度居中,为 0.9198;邱北种群与丽江种群的遗传一致度最小,为 0.8617。遗传距

表 5 检测到的酶位点数和等位基因频率

Table 5 Enzyme locus number and the allels 'frequency

酶位点 locus		等位基因频率 frequency/%	
时 IT IT IOCUS	Qiubei	Lijiang	Kunming
Mdh	a = 100	a = 100	a = 100
Me	a = 100	a = 100	a = 100
G_6pd	a = 100	a = 100	a = 100
G_3pd	a = 100	a = 100	a = 100
Pgd	a = 100	a = 100	a = 100
Idh	a = 100	a = 100	a = 100
<i>Aat-</i> 1	a = 100	a = 100	a = 100
Aat-2	a = 100	a = 100	a = 100
Pgi	a = 36.67, $b = 63.33$	a = 95 , $b = 5$	a = 5 , $b = 95$
Skd	a = 40.625 , $b = 59.375$	a = 17.5 , $b = 82.5$	a = 72.5 , $b = 27.5$
Pgm	a = 21.88 , $b = 59.38$, $c = 15.63$	a = 30.56 , $b = 19.44$, $c = 50$	a = 22.5 , $b = 47.5$, $c = 30$

表 6 短葶飞蓬各种群的遗传多样性指标

Table 6 Genetic diversity index of *Erigeron*breviscapus in the three populations

	Lijiang	Kunming	Qiubei	Mean
P/%	27.27	27.27	27.27	27.27
A	1.36	1.36	1.36	1.36
Ae	1.29	1.19	1.23	1.24
He	0.138	0.100	0.102	0.113
Но	0.121	0.091	0.064	0.092

离与空间距离大致呈一定相关性(表8)。

综合核型与等位酶分析结果,从滇西北的丽江种群,到滇中的昆明种群以及滇东南的邱北种群,短葶飞蓬种群间都没有倍性分化,都为二倍体种群。从丽江到昆明,到邱北,3个短葶飞蓬种群间的遗传一致度高,遗传距离小。这可能与短葶飞蓬种子小,有冠毛,在风力作用下易传播,种群间基因流大有关。短葶飞

表 7 短葶飞蓬 3 个种群在 3 个多态位点的 遗传多样度

Table 7 Genetic diversity of *Erigeron breviscapus* in three populations at three polymorphic loci

Locus	H_T	H_S	D_{ST}	G_{ST}
Pgi - 1	0.4961	0.2182	0.2779	0.5602
Skd - 1	0.4917	0.3900	0.1017	0.2068
Pgm - 1	0.6586	0.6109	0.0477	0.0724
mean	0.5488	0.4064	0.1424	0.2798

表 8 短葶飞蓬 3 个种群的遗传一致度和遗传距离

Table 8 Genetic similarity and distance of three *Erigeron*breviscapus populations

Population	Lijiang	Kunming	Qiubei
Lijiang		0.0836	0.1488
Kunming	0.9198		0.0305
Qiubei	0.8617	0.9700	

注:斜线右上侧为遗传距离 D,斜线左下侧为遗传一致度 I.

蓬的遗传变异主要存在于种群内。这与 Hamrick 和 Godt(1989) 对 1968 年到 1988 年 20 年 里报道的 165 属 449 种裸子植物和被子植物群体的统计结果相符:繁育系统对群体内和群体间遗传多样性的分配起显著影响,自交为主的种类,遗传变异主要发生在种群间;异交为主的种类,遗传变异主要发生在群体内。短葶飞蓬以异交为主, $G_{ST}=0.2798$,遗传变异也主要表现为种群内个体间遗传多态性。与此相似,异交也造成了同一生境下短葶飞蓬个体间黄酮含量的差异很大(苏文华等,2001)。因此,在短葶飞蓬人工栽培和育种中,通过选育高含量植株,综合运用杂交、组培等手段,是能大大提高短葶飞蓬黄酮产率的。

致谢 云南大学黄瑞复教授给予无私帮助;陆树刚教授指导标本鉴定工作。