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ABSTRACT

The relationships between vertical and horizontal length scales in a rotating stratified fluid on the beta
plane are discussed in an attempt to unify the results of previous papers. The model is steady, linear and
Boussinesq, but allows for different coefficients for the horizontal and vertical eddy mixing processes. The
boundary layers in previous papers together with a new physical scale are analyzed with respect to their
physical balances, length scale, and existence in a parameter space. The results are summarized in a three-
part schematic graph, which shows the relations between dimensionless horizontal and vertical scales, and
in a table, which contains the relevant physical balances for each relation. Three internal dimensionless
parameters are considered, namely S a measure of the importance of stratification relative to rotation, 5 a
measure of the magnitudes of vertical to horizontal mixing processes, and BE# a ratio of the length scales
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over which lateral friction and the beta effect are important.

1. Introduction

Many theoretical papers on the subject of rotating
stratified fluids have appeared in the literature in recent
years. For the most part, each author has tried to model
a certain feature of oceanic circulation with the aid of
boundary layer analysis. Some of these papers focused
on the western boundary currents (such as the Gulf
Stream and Kuroshio), the main oceanic thermocline
and coastal upwelling, while others dealt with rotating
fluid flows in the laboratory. Unfortunately, it is often
difficult to understand how these many papers fit into
an overall theory, appearing as separate entities rather
than as special cases of a more general subject.

The goal of this paper is to unify much of the existing
knowledge in terms of the grossest features of the fluid
flow—the length scales associated with the motion and
density fields. Whereas previous papers have considered
a restricted region of parameter space and determined
particular boundary layer scales and dynamics, we
analyze an extensive region of parameter space and see
where the various boundary layer dynamics are
relevant. In particular, we follow the method of
Blumsack (1972) and investigate the system by means
of a length scale analysis, seeking the relationships
between the horizontal and vertical scales of motion.
The importance of such an analysis was demonstrated
by Blumsack, who showed that boundary layer thick-
ness can be a function of depth in a rotating stratified
fluid.

We consider an idealized problem, the steady
linearized motions of a rotating stratified Boussinesq
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fluid on the beta plane. We do not specify boundary
conditions since we are interested only in the possible
internal scales of the solution as functions of the internal
parameters of the problem. The stratification parameter
measures the importance of the density stratification
relative to the rotation, the aspect ratio is the ratio of
vertical to horizontal “viscous” scales, and the third
parameter measures the relative change in the Coriolis
parameter over a horizontal “viscous” scale.

The results of this paper are summarized in a table,
which shows the important dynamical balances for each
length scale, and in a three-part figure, which depicts the
relationship between dimensionless horizontal and
vertical scales for three distinct parametric conditions.

2. Formulation

Consider the state of a Boussinesq fluid, which is a
slight departure from a state of uniform rotation and
density stratification, on a beta plane. Assume that the
perturbation state is steady in time and the nonlinear
advection terms are negligible. The linearized differ-
ential equations for the perturbation state, written in
dimensional form, are

Sk X @u= —VipstDi’as, 2.9)

= —3ps/ 025 +FagTo+ D2y, (2.2)
(oN?/ag)wy=DyTx, (2.3)

Vi Gt 04/ 924, =0, (2.4)

where D,? is the diffusive operator,

D*2 =4 HV*2+A Vaz/é‘zﬁ.
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The dependent variables are the modified pressure py,
temperature perturbation T, horizontal velocity qu,
and vertical velocity wy. We denote the vertical
coordinate and unit vector by 2, and k, and the hori-
zontal position and gradient operator by x4 and V.
The parameters in the problem include the horizontal
and vertical coefficients for the mixing of momentum
Ay and Ay, the acceleration of gravity g, coefficient of
thermal expansion «, Brunt-Viisild frequency N of the
imposed stratification, single Prandtl number &, and
variable Coriolis parameter f,.

We express the problem in dimensionless form to
arrive at a more compact formulation and to place
(2.1)-(2.4) in a form similar to that of other papers.
Suppose L is some (arbitrary) horizontal length, U a
horizontal speed, and fo a typical value for the Coriolis
parameter; we then write

Ve=L"WV, q.=Uq, fe=fof. (2.5

It is convenient to scale the vertical coordinate with 8L,
ie.,

Xy =LX,

6= (Av/An)}, z=(0L)z, we=(U)w. (2.6)
Finally, we scale the pressure and temperature:
px=(fUL)p, Tu=(foU/ag)T. (2.7

Substitution of (2.5)-(2.7) into (2.1)-(2.4) results in
the following system of dimensionless equations:

kX q=—Vp+EDq, (2.8)
0=—08p/3s+T+ERDw,  (2.9)
Sw=EDT, (2.10)
V-q+9w/dz=0, (2.11)

where D? is the three-dimensional Laplacian operator,
S the stratification parameter, and E the Ekman
number, i.e.,

D*=V24-0%/022, S=oN%/f2 E=Au/fol2 (2.12)

The notation is similar to that of Barcilon and Pedlosky
(1967) and others.

The vertical component of the vorticity plays a
crucial role in rotating fluid phenomena. We use (2.8)
and (2.11) to arrive at the following vorticity equation :

f(0w/dz) =q-Vf—ED?*(k-curlq). (2.13)

A new parameter, which measures the variability of f,
now appears. We introduce B8 and its dimensional
counterpart By,

B=|Vfl, Be=1Vaful.

We shall use (2.13) in place of (2.11) during much of
the discussion that follows, particularly in situations
where a geostrophic balance occurs.

There are three internal dimensionless parameters.

(2.14)

Two of them, S and §, appear explicitly in (2.8)-(2.11).

The Ekman number E and the parameter 8 each depend
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on the length scale L. However, the combination
BE = (Ay/f0)}(Bs/ fo) is independent of L and serves
as our third dimensionless parameter. We now make a
few mild assumptions concerning the magnitudes of the
parameters .S, 8 and BE? in order to focus attention on
the results of other papers:

S<O(1), §<0(1), BERKO(D), f=0(1).

By taking SE¥K1, we guarantee that the distance over
which f changes by its own magnitude is much larger
than the horizontal viscous scale (4 #/fs)*. Notice that
we make no assumptions regarding E since we wish to
leave the scaling length L arbitrary. The dimensional
results will, of course, be independent of L.

We now begin our quest of the generalized length
scale relationships. We separate our analysis into three
parts for convenience, considering first cases where the
dimensionless vertical length scale % is smaller than the
horizontal length scale /, then situations for which /<#,
and finally cases where / and /% have comparable magni-
tudes. We consider only internal scales, omitting the
barotropic  (s-independent) scales discussed by
Beardsley (1968). As a result, the E¥ scale of Stewartson
(1957), the bottom friction scale, and the barotropic
scale of Munk (1950) will not appear in our analysis.

Each length scale relationship is based on retaining
certain terms in the equations governing our system
while neglecting other terms. After obtaining the rela-
tion between % and [ in this way, we must check back
to verify that the neglected terms are indeed smaller
than those retained. It will usually be the case that
such checks restrict the validity of the relation in
question to a limited region of parameter space.

Although we include no specific boundary conditions,
we do make one assumption concerning the orientation
of the horizontal flow. In order to estimate the size of
q-Vfin (2.13), we assume that the angle between q and
VS is not close to 90° and write q-Vf~g|q|. In the
context of previous work, we do not analyze boundary
layers near coasts that are parallel to latitudes circle.

(2.15)

3. Case1: h <1

Suppose that the vertical scale of motion % is much
smaller than the horizontal scale /. Then we can replace
the Laplacian operator D? by 9%/8z2. An Ekman layer
scale can exist under certain conditions. Suppose
q=0(1); then the Ekman scale kg=E? is consistent
whenever p< . The continuity equation (2.11) gives
the estimate w=~E? the heat equation (2.10) tells us
that T=SE? and the vertical momentum equation
(2.9) implies p~E max(S,6?). Since both .S and § are
at most order unity, the pressure gradient in (2.8) is
negligible when />E. However, the more restrictive
constraint is #<l. Therefore, when I>E?} there exists
an Ekman scale /g.

The other scale possible when 2</ is the thermocline
scale discussed by Stommel and Veronis (1957) and by
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Pedlosky (1969). Suppose again that q=O0(1). The
horizontal momentum balance (2.8) is geostrophic,
so p=1. The vertical momentum balance (2.9) is hydro-
static, implying T'~k~1. We find the vertical velocity
by balancing vortex stretching with the advection of
planetary vorticity, w=g#k. Since the vertical velocity
and temperature fields must be consistent with the heat
equation (2.10), we have an expression for the thermo-
cline scale %7, i.e.,

hp= (El/8S)*. (3.1)

The validity of this relationship depends onh being
less than / and the viscous terms in (2.8), (2.9) and
(2.13) being negligible. We can express these conditions
as follows:

h<l, h>EL I>EHBEHS, I>hS:  (3.2)

Since the three parameters SE}, § and S cannot exceed
order unity, the latter two conditions are true whenever
the first two inequalities are satisfied. Therefore, the
thermocline relation (3.1) is valid when

I>EHSBEY L, (3.3)

One can show via trial and error that no other rela-
tionship between # and /, for which #</, can exist. The
scales g and %7 are represented in all three graphs
in Fig. 1.

4. Case2:1 < h

Now suppose that the vertical scale of motion (in
our dimensionless variables) is much larger than the
horizontal scale. We let # denote the horizontal coordi-
nate in the direction of maximum change and # be the
velocity component along the % axis. The other hori-
zontal coordinate s is defined such that (#,s,2) form a
right-handed system; the velocity component along
the s axis is labeled ». We neglect curvature, treating
(n,s) as local Cartesian coordinates, since we seek only
length scale information and not detailed solutions.
Egs. (2.8)-(2.11) and (2.13) then become

— fo=—patEuu, (4.1)
fu=—ps+Ev,,, (4.2)
0=—p.+T+E¢wa,, (4.3)
Sw=ETp,, (4.4)
0+ w, =0, (4.3)
Jw:=q-V[—Evy, (4.6)

where we have used v, for the vorticity in (4.6).

We take / to be the scale of variation in the direction
#n and £ the vertical scale; variations along s are much
smaller than along n. We enumerate the many possible
relationships, indicate the relevant dynamical balances,
and discuss the existence of each relationship in
parameter space.
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We begin our list with the three relationships that do
not contain % explicitly.

a. Carrier-Munk scale: Iy = (E/B)?

The determining balance is between the “beta’” and
viscous terms in the vorticity equation (4.6), which is
identical to the dynamics of the layer considered by
Munk (1950) and Beardsley (1968) for a barotropic
fluid. Existence of this scale is confirmed by first setting
v 1. We note that Iy=E?!(BE}) % is larger than E}; Eq.
(4.1) reduces to a geostrophic balance, p=I. After using
(4.4) to ind T= (SE"1%)w, we employ (4.3) to estimate
the wvertical velocity, w=k™! min(ES—, PE1572).
Therefore, the vortex stretching term is negligible when
£>E: min[ (BEH 154, §-1(8EH) ). Note that there is
no upper limit on % for the validity of the Carrier-Munk
scale.

b, Upwelling scale: ly=E?

The controlling dynamics entail the neglect of the
pressure gradient terms in (4.1) and (4.2). This ageo-
strophic layer was used first by Pedlosky (1968) in a
homogeneous fluid and later by Pedlosky (1969) and
Blumsack (1972) in a fluid with density stratification.
The criteria for the existence of this scale are found by
letting #,0~1, deducing w=~#4E~* from continuity,
T~ShE~* from the heat equation, and p=~A?E~}
Xmax(S,6%) from the vertical momentum equation.
Neglect of the pressure gradient term in (4.1) is allow-
able only when A<E!min(S—%5). In addition, we
require 2> E? so that <.

c. Buoyancy scale: Iz =E(52/S)}

Veronis (1967) found this scale by neglecting the
vertical pressure gradient term in (4.3). The validity
of this nonrotating scale is derived by taking w=1
and T=SPE-! From continuity, #=Ilh~' and from
(4.1), (4.2) the pressure is estimated to be
p~Eh™ max(1,625-1). The vertical scale 2 must satisfy
the following: 4>E!max(3—35—4625-1). As for the
Carrier-Munk scale, there is no upper limit on %, only
a lower limit.

The ordering of these three scales, namely Iy, Iy and
Ig, provides the key for understanding the regions of
validity for the remaining scales. We note first that
BE!< 1 implies Iy <lyr. Therefore, there are only three
distinct orderings for ly, Iy, and 5. Fig. 1a depicts the
results when [y </ly<lp, which is appropriate when
S<(BE#H*. Fig. 1b applies when Iy<Ilg<ly, or
(BE}5°< S< 8. Finally, Fig. 1c shows the length scale
relationships when Ix<ly<ly, or 8<S<1. We note
here that geostrophy in (4.1) requires />1y, a hydro-
static balance is (4.3) is possible only when !>z, and
the neglect of the viscous term in the vorticity equation
is consistent with 1> 1y
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¥16. 1. Schematic graphs depicting the relationships between
the vertical and horizontal length scales for the three regions in
parameter space.

We now present the remaining scales for which <4.
Each of the following horizontal scales depends ex-
plicitly on / as well as on the dimensionless parameters
S, 8,8 and E.

d. Stewarison scale: lg= (Edh)*

The relevant balances for this scale, which was first
analyzed by Stewartson (1957), omit the viscous term
in (4.1), the buoyancy term in (4.3), and the beta in
(4.6). Thus, we must have I> 1y, I<lg, and I <ly. Since
we have taken [y <ly, the only important restriction is
that ly<Iz. As a result, the Stewartson scale does not
- appear in Fig. 1c. The condition l3<Iz can be expressed
as S3#<E%?, which reduces to the criterion S<E? of
Barcilon and Pedlosky (1967) when we set 6=1, h=1.

e. Hydrostatic-Lineykin scale: 1y = hS*

Lineykin (1955), Barcilon and Pedlosky (1967),
Blumsack and Barcilon (1971), and Blumsack (1972)
discuss the dynamics and role of this scale. By omitting
the viscous terms in (4.1) and (4.3) and the beta term
in (4.6), we require {> 1y, I>1p, and [<ly. These condi-
tions are not possible simultaneously when 1, <Is,
which explains the absence of Iy in Fig. la.
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f. Viscous-hydrosiatic scale: ly =Ek1S™*

Blumsack and Barcilon (1971) introduced this scale
which neglects the Coriolis acceleration in (4.1), the
viscous term in (4.3), and the middle term of the con-
tinuity equation (4.5). The requirements !<Ily and
I>1p are simultaneously possible only when lp<ly<ly;
the scale Iy appears only in Fig. 1c.

g. Stokes’ scale: lg=06h

Also introduced by Blumsack and Barcilon (1971),
the dynamics of this scale include the neglect of the
Coriolis acceleration in (4.1), the buoyancy term in
(4.3), and the middle term of (4.5). Therefore, I<ly
and /<Iy, which place no restriction on the ordering
of Iar, ly, and [p. The Stokes’ scale appears in all three
parts of Fig. 1.

h. Western scale: l,=E(BHS)™!

The balances are similar to the thermocline scale
since we omit the viscous terms in (4.1), (4.3) and (4.6).
Here, however, horizontal diffusion of heat compensates
for the advection of the basic stratification. This scale
is consistent when I>1ly, 1>y, and 1> 1z ; there are no
restrictions on the ordering of Iy, Iy, and I5, and the
western scale appears in all three graphs of Fig. 1. The
name ‘“western” is used because the boundary layer
associated with /,, is used to satisfy a boundary condi-
tion at a western boundary, similar to Stommel’s (1948)
bottom friction layer. ‘ '

i. Eastern scale: lg= (EB3%h?)

The determining dynamics omit the viscous terms
in (4.1) and (4.6) and the buoyancy term in (4.3).
Hence, we require [>1y, 1>y, I<lp, and the eastern
scale can appear only in Fig. la. The associated bound-
ary layer can adjust two boundary conditions at an
east coast and only one at a west coast, just the reverse
of the Carrier-Munk layer.

5. Case3:1l = h

We complete the length scale analysis by considering
dynamics for which ! and % are comparable in magni-
tude. The easiest way to deduce the criteria for such
scales is to consider limiting cases of the dynamics
discussed in Sections 3 and 4.

Consider the Ekman dynamics as / decreases through
E%. Horizontal mixing becomes as important as vertical
mixing. When /< E?#, the Ekman scale no longer applies.
Instead, horizontal mixing balances vertical mixing,
resulting in I~ A.

Next, consider the thermocline relationship as !/
decreases and the western scale as % decreases. When
h=(E/BS)}, the vertical and horizontal scales for each
of these become identical. For smaller values of 4,
vertical and horizontal diffusion of heat provide the
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Tapre 1. Summary of length scales.

Thickness Dynamical balances
Non-di- Horizontal Vertical Vertical
Name Symbol mensional Dimensional momentum momentum vorticity
Ekman hg E} (Av/fol kX q=Eq.. — —
Thermocline Iir (El/BS)* (Avfoly/oB:N2)} U= py p.=T w, =y
Carrier-Munk Iar (E/8)3 (A11/B84) — — Br=FEuv,,,
Upwelling Iy DY (An/fot kX q=Eq., o —
Buoyancy lp (E252/S) o i{Ang/N) — O=T4Ed%w.n —
Stewartson ls (B8l (Al fo) v=pn po=Ed%e,, w,+Et,n,=0
Hydrostatic
Lineykin Ui St e (N / folis V=1, p.=T 0, +Evpun=0
Viscous-
hydrostatic Iy Ei15—3 A/l N) pn=Ettnn p.= -
Stokes Ix ok Jig pn=Eun, o= Ed%w,., —
Western Ly E(@rS) JRA u /o N2 Byt v=1p, p.=T w,=0v
Eastern Iy (BE&%%): (ArhBs/ f2)} v=p, po=Ebdtw,, w, =¥

important dynamical balance, overwhelming any in-
duced vertical advection of the imposed stratification.
Therefore, there is a scale I=#% when k< (E/8S)% This
is consistent with the result of Blumsack (1972), who
noted that the potential vorticity was associated with
equal horizontal and vertical scales when 8=0.

In summary then, when E}<A<E}(SBE})~?, there is
one independent scale satisfying /=%, and there are a
total of three such scales when 2 <E?,

6. Conclusions

We have seen how to unify much of the work on the
steady linear theory of rotating stratified fluids by
means of length scale relationships. Fig. 1 and the
accompanying Table 1 contain the important results of
this paper. We note that, in Fig. 1, there are four degrees
of freedom for each value of 4 and each type of boundary
(eastern or western), allowing us to satisfy four
boundary conditions.

Fig. 1 incorporates all possible scales for which a
vertical scale exists; the barotropic layers, which have
been investigated by Beardsley (1968), are omitted.

We conclude now with an example of how to use
Fig. 1 and the table to calculate dimensional length
scales. Suppose we take fo=10"* sec™!, B,=10"1 cm™
sec™, Ag=10% cm? sec™!, 4,=10% ¢m? sec”!, N=10"3
sec”! and c=1. We calculate first the three internal
dimensionless parameters: §=10"% S=10"2 and
BE!=10"% The three reference horizontal scales are
lyv=1km, l4p=0.3 km, and Z,» =20 km; the Ekman
scale is ,g=10 m.

For this example, Fig. 1c applies since S>82. The
upwelling scale is valid where % is less than EiS—
which is ten times an Ekman depth. Thus, .z =1 km
when 10 m <%, <100 m. The Stokes’ scale is valid until
Ig=Ig, which occurs at A=E3(625)~t or 30 times an
Ekman depth; we have a Stokes’ scale when £, <300 m.

Then we note from Fig. 1c¢ that the scale [, is relevant
when 100 m</,<300 m and the buoyancy scale
le=0.3 km when 72,> 300 m.

The hydrostatic-Lineykin scale ceases to be valid
when Iy =1Iy, or h=ES~#(BE?)— which is 200 times an
Ekman depth. The scale Iy exists for vertical scales
between 100 m and 2000 m. Note that the Carrier-Munk
scale is valid for vertical scales larger than 2000 m.

The thermocline scale has its minimum vertical scale
when I=E!(SGE?)™}, or about 100 times an upwelling
scale. The scale &7 is valid for horizontal scales larger
than 100 km and has a minimum vertical scale of 100
times an Ekman depth, i.e., 1000 m. Then we use Fig. 1c
to deduce the validity of the western scale when
1000 m< /<2000 m, and the existence of equal
dimensionless scales, [, =100 %, when /, <1000 m.
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