端部嵌固桩的稳定性分析

杨维好 任彦龙

(中国矿业大学建筑工程学院 徐州 221008)

摘要 对3种不同的桩顶支承情况下的端部嵌固桩,用能量法对其在顶部集中荷载和桩侧摩阻力作用下的竖向稳定 性进行了研究,推导了求解失稳问题的计算公式,用数值方法求得了桩的临界长细比的数值, 通过对数值解的分 析,最后得到桩的临界长宽比简单的近似计算公式。

关键词 端部嵌固桩,稳定性分析,能量法

分类号 TU 473 1 文献标识码 A

在较复杂的荷载作用下,如何采用简便的公式

验算桩的稳定性是一个值得研究的问题[1]。在顶部

集中荷载和桩侧摩阻力作用下, 端部嵌固桩的稳定

性分析模型见图1。考虑桩侧摩阻力沿深度线性变化

的情况,将桩侧摩阻力化为线性荷载 p(以向下为正)

式中: p 为桩地面以下的部分受到的线载 $\Lambda \cdot m^{-1}$;

bh)

(1)

 $p = s + tx \quad (0 \quad x)$

力学模型及求解公式

1

为

文章编号 1000-6915(2000)03-0380-03

由W ink ler 地基假设, 按"m"法确定土层的抗力 系数^[2], 则土层的水平抗力 q 为

$q = \beta b_1 (bh - x) y$ (0 x bh) (2) 式中: h 为桩的总长度 /m; b₁ 为计算宽度 /m; β 为土 层水平抗力系数的比例系数 /N • m⁻⁴; b 为桩的埋入 系数, 无量纲; y 为桩的挠度 /m。

用能量法^[3]求解。对于自由、弹性嵌固(无转角, 但可有水平位移)和铰接这3种顶部支承情况,端部 嵌固桩的挠曲函数可表示为

$$y = C_n f_n(x) \tag{3}$$

式中: C_n 为待定系数; 顶部自由时, $f_n(x) = 1 - \cos\left[\frac{(2n-1)\pi x}{2}\right]$; 顶部弹性嵌固时, $f_n(x) = 1 - \cos\left[\frac{n\pi x}{h}\right]$; 顶部铰接时, $f_n(x) = \cos\left[\frac{(2n+1)\pi}{2}\right]$. $\frac{x}{h} - \cos\left[\frac{(2n-1)\pi x}{2}\right]$ 。

系统的总势能 Π 为桩的弯曲应变能、土的弹性 变形能以及荷载势能之和:

$$\Pi = \frac{EL}{2} \int_{0}^{h} (y)^{2} dx + \frac{1}{2} \int_{0}^{bh} qy dx - \int_{0}^{bh} p \omega(x) dx - P_{0} \omega(h)$$
(4)

式中: E 为桩的弹性模量 /Pa, I 为惯性矩 /m⁴, P_0 为 桩上端受到的集中荷载 /N, $\omega(x)$ 为在 x 截面处桩的 轴向下移量 /m。

$$\omega(x) = \frac{1}{2} \int_{0}^{x} (y)^{2} dx$$
(5)

根据最小势能原理有

1998年11月9日收到初稿,1999年3月20日收到修改稿。

作者 杨维好 简介: 男,34岁,博士,1986年毕业于中国矿业大学建筑系矿建专业,现任教授,主要从事岩土工程方面的研究工作。

$$\frac{d1}{\partial C_i} = 0 \qquad (i = 1, 2, 3, ...,) \qquad (6)$$

$$\begin{aligned} \Leftrightarrow \quad \lambda = h \sqrt{\frac{A}{I}}, \quad \epsilon_{I} = \frac{P_{0}}{EA}, \quad \epsilon_{2} = \frac{s(bh)}{EA}, \quad \epsilon_{3} = \frac{t(bh)^{2}}{2EA}, \\ \zeta = \sqrt{\frac{\beta}{EI}} h_{o} \end{aligned}$$

式中: G, G, G 分别为 P 、 桩侧(埋入部分) 矩形分 布线载和上三角形分布线载在桩底端产生的应变; λ 为桩长宽比; ζ为无量纲深度。

将式(6)无量纲化并化简有

$$\begin{aligned}
 C_{n}a_{in} &= 0 & (i = 1, 2, ...,) \quad (7) \\
 \vec{x}_{n-1} &= T_{in} + \zeta R_{in} - \lambda^{2} (\epsilon M_{in} + \epsilon H_{in} + 2\epsilon_{3}F_{in}), \\
 F_{in} &= \frac{1}{hb^{2}} \int_{0}^{bh} x \left[\int_{0}^{x} f_{i}(x) f_{n}(x) dx \right] dx, \\
 H_{in} &= \frac{1}{b} \int_{0}^{bh} \left[\int_{0}^{x} f_{i}(x) f_{n}(x) dx \right] dx, \\
 M_{in} &= h \int_{0}^{h} f_{i}(x) f_{n}(x) dx, \\
 R_{in} &= \frac{b}{h} \int_{0}^{bh} \left[1 - \frac{x}{bh} \right] f_{i}(x) f_{n}(x) dx, \\
 T_{in} &= h^{3} \int_{0}^{h} f_{i}(x) f_{n}(x) dx_{o}
 \end{aligned}$$

式(3) 若取为k项和,则由式(7) 可得关于 C_n 的 k元齐次线性方程组。要使该方程组具有非零解,必 须有方程组的系数矩阵行列式等于零。当已知 ϵ , ϵ , ϵ , ζ 和b时,根据此编制程序可求得 λ 的最小正 根,即为临界长宽比 λ_n 。如实际桩的长宽比 λ 大于 λ_r ,则桩将会竖向失稳。

2 数值解分析

经计算与分析, 3 种情况下的 λ_r 与 ϵ, ϵ, ϵ, *b* 和 ζ的关系可由下式表示:

 $\frac{1}{\lambda_{rr}^{2}} = \frac{6}{a_{1}\pi^{2}} \left[1 - b + \frac{b}{g_{1}} \right]^{2} + \frac{6b^{2}}{a_{2}\pi^{2}g_{2}^{2}} + \frac{6b^{2}}{a_{3}\pi^{2}g_{3}^{2}} (8)$ 式中: a_{1}, a_{2}, a_{3} 为系数, 见表1; g_{1}, g_{2}, g_{3} 为b**C**的函 数(图 2~ 4),反映了桩侧土抗力对 λ_{r} 的影响。 不考虑桩侧土的弹性抗力时(**C**= 0),或桩的埋入深 度为0时(b= 0),均有 $g_{1} = g_{2} = g_{3} = 1$,此时式(8) 即为对应情况下的理论解^[4]。b**C** 8时, g_{1}, g_{2}, g_{3} 的部分计算结果见表2; b**C** 8时, $g_{1}, g_{2}, g_{3} = b$ **C**的 关系可用下式表示,其误差小于5%。

$$g_m = c_{1m} b \zeta + c_{0m}$$
 (m = 1, 2, 3) (9)
式中: c_{1m} 和 c_{0m} 为回归系数, 见表 1。

算例:外径D = 0.3m,h = 20m的圆形混凝土 桩竖直穿过bh = 10m的土层,下端与基岩嵌固。桩 的上端受 $P_0 = 636200$ N 作用,入土部分受p = -42 400 + 8 480x 的摩阻力作用。取 $b_1 = D$, $E = 3 \times 10^{10}$ Pa。设 $\beta = 2 \times 10^6$ N /m⁴。试计算在本文研究的 3 种桩顶支承情况下桩的稳定性。

图2 桩顶自由条件下 g_1, g_2, g_3 与 b ζ 的关系 Fig 2 Curves of g_1, g_2, g_3 vs b ζ for top-free pile

图3 桩顶弹性嵌固条件下 g_1, g_2, g_3 与 $b\zeta$ 的关系 Fig 3 Curves of g_1, g_2, g_3 vs $b\zeta$ for top-fixed pile

图4 桩顶铰接条件下 g_1, g_2, g_3 与 b ζ 的关系 Fig 4 Curves of g_1, g_2, g_3 vs b ζ for top-hinged pile

易算得: b = 0.5, $\zeta = 11.0$, $\epsilon = 300 \mu \epsilon$, $\epsilon = 200 \mu \epsilon$, $\lambda = 266.7$ 。根据表 2 插值可求 得: 桩顶自由时, $g_1 = 2.996$, $g_2 = 4.5295$, $g_3 = 4.2585$; 桩顶弹性嵌固时, $g_1 = 2.608$, $g_2 = 3.3945$, $g_3 = 3.2555$; 桩顶铰接时, $g_1 = 2.0465$, $g_2 = 2.1285$, $g_3 = 2.1095$ 。将由表 1 查得的 a_m 值和上述 计算结果代入式(8) 有, 桩顶自由时 $\lambda_r = 134.5 < \lambda$ 桩顶弹性嵌固时 $\lambda_r = 258.9 < \lambda$; 桩顶铰接时, $\lambda_r = 343.8 > \lambda$, 可见只有桩顶铰接时, 桩才不会失稳,

Table 1Values of a_m , c_{Im} and c_{0m}											
bζ	桩顶自由			桩顶弹性嵌固			桩顶铰接				
	m = 1	m = 2	m = 3	m = 1	m = 2	m = 3	m = 1	m = 2	m = 3		
a_m	0. 2500	0 7941	0 5189	1. 0000	1. 9207	1. 3664	2 0457	5. 3194	3 9280		
$C \ln n$	0. 5446	1. 2655	1. 5709	0. 4733	0 8027	0 8863	0. 3703	0 4819	0 5166		
C0n	0.0000	- 2 3524	- 5.6626	0.0000	- 1. 3407	- 2 0032	0,0000	- 0, 7980	- 1. 0822		

表1 am, cim和 cim的值

表2 g1, g2, g3的部分计算结果 Table 2 Some values of g1, g2, g3

bζ	桩顶自由			桩顶弹性嵌固			桩顶铰接		
	<i>g</i> 1	g 2	<i>g</i> 3	<i>g</i> ₁	<i>g</i> 2	<i>g</i> 3	<i>g</i> 1	<i>g</i> 2	<i>g</i> 3
0.0	1. 000	1. 000	1. 000	1. 000	1. 000	1. 000	1. 000	1. 000	1. 000
1. 4	1. 035	1. 040	1. 039	1. 019	1. 021	1. 020	1. 005	1. 005	1. 005
1.8	1. 114	1. 135	1. 131	1. 064	1. 070	1. 069	1.016	1. 017	1. 017
2 2	1. 266	1. 330	1. 318	1. 160	1. 181	1. 176	1. 042	1. 045	1. 045
2 6	1. 477	1. 640	1. 608	1. 320	1. 378	1. 364	1. 094	1. 100	1. 100
3.0	1. 702	2 026	1. 956	1.518	1. 666	1. 627	1. 180	1. 194	1. 193
4.0	2 203	2 913	2 776	1. 943	2 351	2 248	1. 526	1. 630	1. 621
5. 0	2 724	3. 931	3 712	2 372	2 988	2 867	1. 868	1. 929	1. 905
6 0	3 268	5. 128	4.805	2 844	3 801	3. 644	2 225	2 328	2 314
7.0	3 812	6 388	5.974	3. 313	4. 474	4.390	2 594	2 732	2 726
8 0	4.357	7. 753	7. 239	3.786	5. 240	5. 228	2 962	3.150	3. 167

3 结 论

经推导与数值计算,得到了端部嵌固桩在顶部 集中荷载和桩侧摩阻力作用下竖向稳定性问题的数 值解,得到了桩的临界长宽比与3种荷载(桩顶集中 荷载,沿深度均匀分布和三角形分布的荷载)、土 体水平抗力系数的比例系数、桩的埋入深度间的关 系。所给出的近似计算公式有较高的精度,可满足 工程设计要求,用该式可方便地进行稳定性验算。

参考文献

- 1 陆培炎 桩基设计方法[J] 岩石力学与工程学报, 1994, 13(4): 375~388
- 2 桩基工程手册编委会 桩基工程手册[M]. 北京: 中国建筑工业 出版社, 1995
- 3 费志中 弹性稳定[M] 北京: 煤炭工业出版社, 1989
- 4 罗克 R J,杨 W C. 应力应变公式[M] 北京:中国建筑工业出版社, 1985

AXIAL BUCKLING ANALYSIS FOR BOTTOM - FIXED PLE

Yang Weihao, Ren Yan bng

(China University of M ining and Technology, Xuzhou 221008 China)

Abstract On the basis of energy method, the study is carried out on axial stability of bottom-fixed piles which have three different top abutments and are acted on by the lateral frictional resistance and top bad A series of formulas are developed to solve the stability problem, and critical slenderness ratio of the pile (λ_{cr}) is solved by numerical method. A ccording to the results of data process, simple approximate formulas are obtained to calculate λ_{cr}

Key words bottom fixed pile, buck ling analysis, energy method