用 XRD 法研究 MCM-22 分子筛的逐级放大合成

史建公^{1,3},卢冠忠¹,曹 钢²,于晓东²

1. 华东理工大学工业催化研究所,上海 200237

2. 北京燕化公司化学品事业部,北京 102500

3. 北京燕化兴业技术开发公司,北京 102500

摘 要 在 100,250 和 1 000 mL 高压釜静态成功合成 MCM-22 分子筛的基础上,在 2,5 和 200 L 高压釜 中进行了 MCM-22 分子筛的动态合成试验,对合成的样品用 XRD 等技术进行了表征。结果表明,在静态和 动态条件下合成的样品,全部为纯相 MCM-22 分子筛,且结晶度较高,从 100 mL 到 200 L 的放大试验是成 功的。

关键词 MCM-22; 分子筛; 水热合成; 放大实验; XRD 测试 中图分类号: TQ203; TQ241 文献标识码: A 文章编号: 1000-0593(2007)05-1032-04

引 言

1990年美国 Mobil 公司公开了 MCM-22 分子筛合成专 利^[1, 2],其拓扑结构属于 MWW 型的层状结构^[3],它包含两 套互不相通的孔道系统,即层内为二维正弦交叉的十元环椭 圆形孔道系统(孔道自由直径 0.41 nm×0.51 nm),层间为 十二元环超笼(孔道自由直径 0.71 nm×0.71 nm×1.82 nm)。该类分子筛不仅由于具有独特的孔道结构,作为酸性 分子筛,用于烷基化和烷基转移反应无需进行氢交换就可直 接使用^[1, 4],正是由于其优异的酸催化性能,在发明之后很 快在乙苯和异丙苯的工业化生产中投入使用^[5, 6]。由于 MCM-22 分子筛的成功应用,与该分子筛具有相似结构特征 的 MWW 型纳米孔分子筛近年来成为分子筛领域研究的热 点^[7-11]。

MCM-22 分子筛通常可以有静态合成和动态合成,但都 是实验室规模的研究结果,作为一个工业化的分子筛催化 剂,掌握规模化合成的规律对于推进其工业应用具有重要的 意义。本文运用 XRD 等方法研究不同规模合成的 MCM-22 分子筛的结构性能,以了解合成规模的放大对 MCM-22 分子 筛静态合成和动态合成样品性能的影响,为 MCM-22 分子筛 的工业化制备积累基础的数据。

1 实 验

1.1 试剂

硅胶(工业级,青岛海洋化工有限公司产品),铝酸钠

收稿日期: 2006-02-14,修订日期: 2006-06-29

基金项目:国家"973"项目(2004C671950000)资助

作者简介: 史建公, 1964年生, 华东理工大学催化研究所高级工程师

(工业级,山东铝厂生产),氢氧化钠(北京益利精细化学品 有限公司,含量 97%),HMI(六亚甲基亚胺)(工业级,江苏 射阳化工厂产品)。

1.2 MCM-22 分子筛的合成

分子筛采用静态和动态水热法合成。合成母液的组成为 $n(SiO_2)/n(Al_2O_3)=30, n(H_2O)/n(SiO_2)=45, n(HMI)/$ $n(SiO_2)=0.35, n(Na^+)/n(SiO_2)=0.18。静态法合成:将$ 碱源溶于去离子水中,而后加入铝酸钠并使之充分溶解,然后加入模板剂 HMI 和硅胶,在室温下充分搅拌一定时间后,置入高压反应釜中,于 120 和 150 ℃下分别晶化 10 d,晶化在烘箱中进行。动态法合成:晶化在不锈钢高压釜中进行,高压釜外套为循环的恒温导热介质,在 120 和 150 ℃下分别晶化一定时间,但与静态法晶化相比时间大大缩短。晶化完成后,分离出固体并用去离子水洗涤至洗涤液为中性,并在120 ℃烘干,即得分子筛前体(as-made)^[12];分子筛前体在150,450 和 550 ℃下分别焙烧 1,5 和 5 h 后,得焙烧后的分子筛(Calcined)。

1.3 MCM-22 分子筛的结构表征

采用日本岛津 XD-W1 型 X-ray 衍射仪对样品进行物相 分析^[13], Cu Ka 为射线源(λ =0.154 18 nm),石墨单色器, 测试条件为 40 kV×30 mA,扫描范围 5°~40°,扫描速率 2° • min⁻¹。选择静态条件下用 100 mL 内衬聚四氟乙烯的高压 釜合成的样品作为参比,视结晶度为 100%。将 2 θ =25.9°~ 26.1°的最强衍射峰强度与参比样品相应衍射峰强度相比即 得分子筛的相对结晶度。

样品相对结晶度(%)=样品峰强度(hkl)/标样峰强度(hkl)×100%

MCM-22 分子筛属于六方晶系,对于六方晶系($a=b\neq c$, $\alpha=\beta=90^{\circ}$, $\gamma=120^{\circ}$),其晶胞参数 *a* 及 *c* 与晶面间距 *d* 之间满足下列关系^[14]。

 $1/d^{2} = [4/3(h^{2} + hk + k^{2})/a^{2} + (l^{2}/c^{2})]$ 其中 h, k 和 l 为相应晶面的晶面指数。

以美国产 ASAP2000M 型 N_2 吸附仪于 77.4 K 温度下 测定样品的比表面和孔结构。

2 结果和讨论

2.1 MCM-22 的静态合成

在100 mL的内衬聚四氟乙烯的高压釜内成功合成了 MCM-22分子筛后,又在250和1000 mL的不锈钢反应釜 中进行 MCM-22分子筛合成的静态放大实验,合成样品的 XRD 谱图见图 1,各样品的结晶度和晶胞参数列于表 1。结 果表明,虽然合成高压釜的容积从100 mL 扩大到了 1000 mL(放大了10倍),而且高压釜的材质由内衬聚四氟乙烯改 变为不锈钢釜直接合成,但合成的三个 MCM-22 分子筛样品的晶胞参数保持不变,各样品的结晶度也变化不大,这表明,在静态条件下,合成釜从 100 mL 放大 1000 mL 的合成是成功的。

Fig. 1 XRD spectra of MCM-22 (as-synthesized) synthesized at the static method with the autoclave of 100 mL (1), 250 mL (2) and 1 000 mL (3)

Volume of reactor • cm⁻³: 1: 1×10^{-2} ; 2: 2.5×10^{-2} ; 3: 1×10^{3}

Table 1	Influence of the	volume of crystallizer	autoclave on the	crystallization of MCM-22

Sample(as mode)	Cavatelligen/ml	Decenter column / 3	Connet allinites /0/	Lattice parameter/nm		
Sample(as made)	Crystallizer/ IIIL	Reacter volum/ cm°	Crystannity/ /0	а	b	
1	100(Lined PTFE)	1×10^{2}	100	1.433 98	2.703 36	
2	250(Stainless steel)	2. 5×10^{2}	94.74	1.442 59	2.736 51	
3	1 000(Stainless steel)	1×10^{3}	92.33	1.433 98	2.812 43	
a			** ** / OL O	1		

Composition of matrix solution: $SiO_2/Al_2O_3=30$, $H_2O/SiO_2=45$, $HMI/SiO_2=0.35$ and $NaOH/SiO_2=0.18$. Static synthesis condition: at 120 °C for 10 days and 150 °C for 10 days. Calcination condition: at 150°C for 1h, 450°C for 5h.

Table 2	influence of the volume	of crystallizer autoclave	on the crystalization o	a wiewi-22 at the rotat	ing condition

Sample (valained)	Autoslava matarial	Crustelliner(Steinless steel)/I	Carratellinity/0/	Lattice parameter/nm	
Sample(calcined)	Autoclave material	Crystallizer (Stalliess steel)/L	Crystannity/ /0	а	b
4	Stainless steel	2	88.72	1.433 98	2.559 96
5	Stainless steel	5	119.72	1.433 98	2.536 02
6	Stainless steel	200	106.79	1.433 98	2.559 96

Composition of matrix solution: $SiO_2/Al_2O_3=30$, $H_2O/SiO_2=45$, $HMI/SiO_2=0.35$ and $NaOH/SiO_2=0.18$. Synthesis condition: at 120 °C for 1day and 150 °C for 5 days. Calcination condition: at 150 °C for 1h, 450 °C for 5 h and 550 °C for 5h.

2.2 MCM-22 动态合成

在静态条件下合成 MCM-22 分子筛取得成功的基础上, 选择 2,5 和 200 L 的不锈钢高压釜中进行了 MCM-22 分子 筛的动态合成,合成的三个 MCM-22 分子筛的 XRD 谱图见 图 2,各样品的结晶度和晶胞参数列于表 2。结果表明,虽然 合成釜的容积从 2 L 扩大到 200 L (放大了 100 倍),但经不 同容积合成釜合成的 MCM-22 分子筛的晶胞参数几乎不变, 各样品的结晶度在放大条件下均有较大提高。这些结果表 明,在动态条件下,用 200 L 的合成釜合成 MCM-22 分子筛 是成功的。

表 3 列出了 5 号样品焙烧前后的物性数据。结果表明, 5 号样品焙烧后的 BET 比表面几乎为焙烧前的 6 倍、孔容为 焙烧前的 2.4 倍,平均孔径也明显增大。这些结果表明, 经

Fig. 2 XRD spectra of MCM-22 (calcined) synthesized at the rotating method with the autoclave of 2 L(4), 5 L(5) and 200 L (6)

Volume of reactor • cm³: 4: 2×10^3 ; 5: 5×10^3 ; 6: 2×10^5

Table 3Physical properties of sample 5						
<u> </u>	Surface area/($cm^2 \cdot g^{-1}$)		Pore diameter of	Total pore Volume		
Sample	BET	Langmuir	BJH adsorption/nm	$/\mathrm{cm}^3$ • g^{-1}		
5 As made	86.44	_	0.783	0.174		
5 Calcined	480.71	654.38	0.863	0.413		

过焙烧,处于分子筛原粉孔道中的有机膜板剂六亚甲基亚胺 已经分解。 文献值进行了比较。结果表明,经不同容量合成釜中合成的 MCM-22 样品的 XRD 衍射数据与文献值吻合较好,表明合 成的样品具有纯相 MCM-22 分子筛结构。

表4列出了3个动态合成样品的 XRD 衍射数据,并与

	$MCM-22^{[1,7]}$		Sample	Sample 4		Sample 5		Sample 6	
khl	$d \times 10^{-1}$ (nm)	I/I_0	$d \times 10^{-1}$ (nm)	I/I_0	$d \times 10^{-1}$	I/I_0	$d \times 10^{-1}$ (nm)	I/I_0	
002	2.36 ± 0.4	m-∪s*	12.418 6	53	12.549 2	57	12.418 6	47	
101	11.03 ± 0.2	m-s	11.094 1	33	11.1977	35	11.094 1	26	
102	8.83±0.14	m-vs	8.872 3	33	8.8996	54	8.910 3	30	
004	6.86±0.14	w-m			6.897 9	13			
200	6.16±0.12	m-vs	6.171 1	40	6.238 9	50	6.1711	37	
201	6.00 ± 0.10	w-m							
202	5.54 \pm 0.10	w-m			5.604 1	21	5.549 6	15	
203	4.92 ± 0.09	W	5.535 0	16					
105	4.64 ± 0.08	W							
212	4.41±0.08	W	4.390 5	18	4.405 5	19	4.381 4	17	
300	4.10±0.07	W-S			4.066 0	32			
301	4.06 ± 0.07	W-S	4.061 1	34	4.061 1	36			
302	3.91 ± 0.07	m-vs			3.930 0	45	3.918 2	52	
214	3.75 \pm 0.06	w-m	3.812 5	52	3.749 1	30	3.758 4	27	
220	3.56 \pm 0.06	w-m	3.556 9	25			3.562 9	23	
310	3.42±0.06	US	3.425 3	100	3.423 0	100	3.425 3	100	
312	3.30 ± 0.05	w-m	3.308 1	28	3.316 5	34	3.308 4	29	
117	3.20 ± 0.05	w-m			3.206 9	24			
216	3.14 \pm 0.05	w-m	3.147 6	19	3.113 6	16	3.124 7	17	
314	2.99 ± 0.05	w							
320	2.82 \pm 0.05	W							
404	2.78 \pm 0.05	W							
323	2.68 ± 0.05	w			2.6797	20			
218	2.59 \pm 0.05	W			2.370 8	11			
							2.684 6	12	

Table 4 Date of XRD spectra of MCM-22 samples

* w-weak; m-medium; vs-very strong

3 结 论

在静态条件下成功合成 MCM-22 分子筛的基础上,进行 了 MCM-22 分子筛的动态逐级合成放大实验,合成的样品经 XRD测试表明, 经 200 L 合成釜合成的 MCM-22 样品具有 与小试合成条件合成的样品具有相似的结构性能,在动态条 件下于 200 L 的不锈钢高压釜中能成功合成出结晶度较高的 MCM-22 分子筛,为 MCM-22 分子筛的工业化生产提供基础 数据。

第5期

参考文献

- [1] Rubin M K, Chu P. Composition of Synthetic Porous Crystalline Material, Its Synthesis and Use(Patent). US 4954325. 1990.
- [2] HUO Yong-qian, LI Jun, WANG Wei, et al(霍涌前,李 珺,王 伟,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(3): 281.
- [3] Leonowicz M E, Lawton J A, Lawton S L, et al. Sience, 1994, 264: 1910.
- [4] SHI Jian-gong, LU Guan-zhong, CAO Gang, et al(史建公, 卢冠忠, 曹 钢, 等). Chemical Industry & Engineering Progress(化工进展), 2004, 23(9): 917.
- [5] Green J R, Smith C M, Venkat C R. Sukubai(触媒), 1998, 40(5): 280.
- [6] SHI Jian-gong, GAO Hui, CAO Gang, et al(史建公,高 辉,曹 钢,等). Petroleum & Petrochemical Today(当代石油石化), 2003, 11(9): 20.
- [7] Lawton Stephen L, Fung Anthony S, Kennedy Gordon J, et al. J. Phys. Chem., 1996, 100: 3788.
- [8] Isao Mochida, Seiichiro Eguchi, Motohiro Hironaka, et al. Zeolite., 1997: 18, 142.
- [9] Guray I, Warzywoda J, Bac N, et al. Microporous and Mesoporous Materials, 1999, 31: 241.
- [10] LIU Bai-jun, HOU Hui-juan(刘百军, 侯辉娟). Petrochemical Technology(石油化工), 2004, 33(6): 527.
- [11] LIU Zhi-cheng, SHEN Shao-dian, TIAN Bo-zhi, et al(刘志城, 沈绍典, 田博之, 等). Chinese Science Bulletin(科学通报), 2004, 49 (4): 325.
- [12] CAO Gang, SHI Jian-gong, LU Guan-zhong, et al(曹 钢, 史建公, 卢冠忠, 等). A Synthetic Method of Zeolites(分子筛合成方法). (Patent) CN 03142805. 3, 2003.
- [13] CAO Jian-jin(曹建劲). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(2): 251.
- [14] ZHU Xiao-ling, SHI Jian-gong(朱晓苓, 史建公) Chinese J. Catalysis(催化学报), 1992, 13(6): 41.

Enlargement Test of Synthesis of MCM-22 Zeolite by Means of XRD

SHI Jian-gong^{1, 3}, LU Guan-zhong¹, CAO Gang², YU Xiao-dong²

- 1. Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
- 2. Chemicals Division, Beijing Yanshan Petrochemical Corp., SINOPEC, Beijing 102500, China
- 3. Xingye Tech. Devel. Corp., Beijing Yanshan Petrochemical Corp., SINOPEC, Beijing 102500, China

Abstract On the basis of MCM-22 zeolite synthesis at the static condition in 100 mL lined PTFE autoclave, 250 and 1 000 mL stainless steel autoclave respectively, the synthesis of MCM-22 zeolite was studied at the rotating condition in 2, 5 and 200 L autoclave respectively. The samples as-synthesized and calcined were characterized by means of XRD and so on. The results show that all the synthesized samples are the pure MCM-22 zeolites, and their crystallinities were high, and MCM-22 zeolite can be synthesized successfully at the rotating condition in 200 L stainless steel autoclave.

Keywords MCM-22; Zeolite; Hydrothermal synthesis; Enlargement test; Lattice parameter; XRD

(Received Feb. 14, 2006; accepted Jun. 29, 2006)