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Abstract. In ISC 2002, J. Zheng [8] proposed a new public key cryp-
tosystem whose security is based upon the algebraic problem of reducing
a high degree matrix to its canonical form by similarity transformations.
In this paper, we show that factoring a polynomial over a finite field can
be used to break down Zheng’s public key cryptosystem. The complexity
of our attack is polynomial time. In other word, the underlying problem
of Zheng’s public key cryptosystem is not a “hard” problem.
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1 Introduction

Since the public key cryptography had been introduced by Diffie and Hellman
in 1976 [3], many cryptosystems have been put forth but only few of them have
survived. In such a public-key system it must be computationally infeasible to
deduce the decryption key from the public key, even when general information
about the system and how it operates is known. Finding a new cryptosystem
that overcomes deficiencies of existing ones is a challenging task of paramount
importance.

Recently, a new public key cryptosystem for constrained hardware was pro-
posed by J. Zheng in [8]. The public cryptosystem was claimed to be “self-
sufficient” with a good speed, and expect to be the most efficient cryptosystems
ever proposed. The underlying “hard” problem is reducing a high degree ma-
trix to its canonical form by similarity transformations over a finite field. This
problem is equivalent to solving a univariate polynomial with the same degree
as the matrix. In this paper, we will show that this problem can be solved within
polynomial time, i.e., Zheng’s public key cryptosystem is insecure.
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2 Zheng’s Public Key Cryptosystem

First of all, we briefly describe Zheng’s public key cryptosystem. x ∈R X denotes
the element x is randomly chosen from X .

System parameter: p, r,and b2 are system parameters, where p is a prime
number, r is an integer chosen to be r > 4, and b2 a r-dimension vector defined
over GF (p).

Secret key: Randomly chose λ1, λ2, . . . , λr, from GF (p), and chose a invert-
ible matrix H = (h1, h2, . . . , hr), where hi, 1 ≤ i ≤ r is randomly chosen from
GF (p).

Public key: The public key are A, a r × r matrix, and b1, a r-dimension
vector, all defined on GF (p), where

A = H











λ1

λ2

. . .

λr











H−1( mod p).

That means that λ1, λ2, . . . , λr be distinct eigenvalues of A, and h1, h2, . . . , hr

be the corresponding eigenvectors. b1 is located in a subspaces spanned by some
eigenvectors of A, it can be determined by

b1 = (α1h1 + α1h1 + · · · + αmhm)( mod p),

1 < m < r.

Encryption: Let (z1, z2, . . . , zr) ∈ GF (p)r be the plaintext, here zi is a
r-dimension vector. Choose ki ∈R GF (p), and

Y = (k1A
r−1 + k2A

r−2 + · · · + krI)( mod p).

Let d = Y 2b1+Y b2 (here b2 is selected as a system parameter), and the ciphertext
is given by (C, d), where

C = Y (z1, z2, . . . , zr).

Decryption: Let

(δ1, δ2, . . . , δr) = H−1d( mod p),

(α1, α2, . . . , αr) = H−1b1( mod p),

(β1, β2, . . . , βr) = H−1b2( mod p).

Note that Y has the same eigenvector set as A, so we can suppose that

Y = H
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H−1( mod p). (1)
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Then µi, i = 1, 2, . . . , r, can be solved from the following equations,

δi = (αiµ
2
i + βiµi)( mod p), i = 1, 2, . . . ,m,

δi = (βiµi)( mod p), i = m + 1,m + 2, . . . , r.

When the eigenvalues of Y is determined, the plaintext (z1, z2, . . . , zr) can be
recovered by

zi = Y −1ci = H











µ−1
1

µ−1
2

. . .

µ−1
r











H−1ci,

i = 1, 2, . . . , r, and ci is the ith column of C.

3 Attack and Analysis

As for a public key cryptosystem, it is very important that private key cannot
be easily derived from public key. Here “easily” means no polynomial-time al-
gorithm exists for this problem. However, in this section, we will show that the
private keys (λ1, λ2, . . . , λr) and H can be easily obtained from the public key
A.

Given a r × r matrix A, to find its r eigenvalues is equivalent to find the r

solutions of the following equation

f(λ) = det(λI − A)( mod p) = 0, (2)

where det(·) means the determinant of a matrix.
The left side of Equation (2) is a univariate polynomial of degree r defined

over GF (p). It is the characteristic polynomial of matrix A. So it is split com-
pletely over GF (p). This means finding the solutions of f(λ) = det(λI − A)(
mod p) = 0 is equivalent to factor the univariate polynomial of degree r over
GF (p).

In fact, the problem of factoring a polynomial of degree r over a finite field
GF (p) can be solved with O(r1.815 log p) arithmetic operations in GF (p) accord-
ing to [6]. As early as 1970, Berlecamp already proposed a random polynomial-
time algorithm for such a problem. If multiplying two r×r matrices needs O(rw)
arithmetic operations, then Berlecamp’s algorithm needs O(rw + r1+o(a) log p)
arithmetic operations [1]. It should be noted that the result of Coppersmith and
Winograd’s paper [2] in 1990 shows that 2 < w ≤ 3.

Let f(x) ∈ GF (p)[x] has degree r. Factoring f(x) goes with three steps
according to [6]:

Step 1:Square-free factorization The input is a polynomial f(x) ∈ GF (p)[x].
The output is f1(x), f2(x), . . . , fn(x) such that f(x) = f1(x)·f2(x)2 . . . fn(x)n.

(Here fi(x) are all square-free, i.e., there is no polynomial g(x) with degree
≥ 1 such that g(x)2 divides f(x))
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Step 2: Distinct-degree factorization The input is f(x) ∈ GF (p)[x]of de-
gree r. The output is f [1], f [2], . . . , f [n] ∈ GF (q)[x], where f [d], 1 ≤ d ≤ n, is
the product of the monic irreducible factors of f(x) of degree d.

Step 3: Equal-degree factorization The input is a polynomial f(x) ∈ GF (q)[x]
of degree r and an integer d such that f(x) is the product of distinct monic
irreducible polynomials, each of degree d. The output is the set of irreducible
factors of f(x).

Step 1 uses O(r1+o(1) + r log p) (with Yun’s algorithm, see [7]), Step 2 uses
O(r1.844 log p)(see [6]), and Step 3 uses O(r1.688 + r1+o(1) log p) operations over
GF (p)(see [5]).

As for the case of solving Equation (2), we know that A has r distinct eigen-
values. Therefore, the polynomial f(λ) of degree r determined by det(λI − A)(
mod p) = 0 has r distinct solutions over GF (p). In other words, f(x) is already
a completely split and square-free polynomial over GF (p). Consequently, here
we only need to solve the equal-degree factorization problem. In [5], von zur Ga-
then and Shoup have given an algorithm to solve this problem with complexity
of O(r1.688 + r1+o(1) log p).

Above factoring algorithm is probabilistic polynomial time. Thanks to [4], for
a completely split and square-free polynomial over GF (p), under the extended
Riemann hypothesis (ERH), it can be factored deterministically in polynomial
time.

4 Implementation of Attack

With the analysis in the previous section, we attack Zheng’s public key cryp-
tosystem as follows:

S1 Input a r × r matrix A and prime numbers p.
S2 Compute f(λ) = det(λI − A)( mod p).
S3 Factoring f(λ) over GF (p).
S4 Get (λ1, λ2, . . . , λr).
S5 Solve (h1, h2, . . . , hr) from (λiI − A)hi = 0.
S7 Output H = (h1, h2, . . . , hr) and (λ1, λ2, . . . , λr).

We implemented this attack with Maple 7 on PIII 650 MHz, and illustrate
the average time of breaking down the cryptosystem in Table 1.

r \ |p| 1024(bits) 2048(bits) 3000(bits) 5000(bits)

5 34s 4m 9m 43m

7 1m 7.5m 17m 1.3h

10 1.6m 13m 38m 2.8h

20 3.8m 24m 1h 6h

Table 1. Timing on PIII 650



5

5 Conclusion

In this letter, we break down a new public key cryptosystem proposed recently
in [8] with the known method of factoring polynomial over a Field GF (p). With
our attack the private key (λ1, λ2, . . . , λr) can be derived from public key A with
polynomial time.
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