# 第三章 液态金属的流动与传热

3.1 液态金属的充型

3.2 液态金属凝固过程中的流动

3.3 材料的流变行为

3.4 材料加工中的热量传输



$$q = -\lambda \frac{dT}{dx}$$

热传导系数(or导热系数or传热系数) ,量纲为 [W/m·k] 常用金属的导热系数: Ag 420, Cu 393, Au 295, Al 238, Mg 157, Fe 81

#### 不同材料的导热系数与温度的关系



# Fourier导热微分方程

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T = \alpha \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

导温系数(or热扩散系数) = /c ,是反映物体内 部温度传播快慢程度的物性参数,反映物体热惰性 的大小。导温系数大,表明温度传播快,热惰性 小,易均匀化。

# Fourier方程的推导

- 包围体积V的封闭曲面S
- dt时间内通过面积S导出的热量为 $Q_1$
- dt时间内体积V因降低温度dT 而散失的热量为 $Q_2$   $dQ_1 =$
- 无内部热源
  能量守恒: Q<sub>1</sub> = Q<sub>2</sub>

$$dQ_{1} = -\lambda dS dt \frac{\partial T}{\partial \vec{n}} = -\lambda \nabla T dS dt$$
  

$$\Rightarrow Q_{1} = -\int_{t_{1}}^{t_{2}} \left[ \iint_{S} \lambda \nabla T dS \right] dt$$
  

$$dQ_{2} = -c dT \rho dV = -c \rho \frac{\partial T}{\partial t} dV dt$$
  

$$\Rightarrow Q_{2} = -\int_{t_{1}}^{t_{2}} \left[ \iiint_{V} c \rho \frac{\partial T}{\partial t} dV \right] dt$$

# Fourier方程的推导

$$grad(T) = \nabla T = \frac{\partial T}{\partial x}\vec{i} + \frac{\partial T}{\partial y}\vec{j} + \frac{\partial T}{\partial z}\vec{k}$$
$$div(T) = \frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z}$$
$$\Rightarrow div(\nabla T) = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \nabla^2 T$$

$$\iiint_V \lambda div (\nabla T) dV = \iint_S \lambda \nabla T dS$$

$$c\rho\frac{\partial T}{\partial t} = \lambda div(\nabla T)$$

$$\frac{\partial T}{\partial t} = \frac{\lambda}{c\rho} \nabla^2 T = \alpha \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

# 考虑潜热的不稳定导热微分方程

$$\rho L \frac{\partial f_s}{\partial t}$$

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) + \rho L \frac{\partial f_s}{\partial t}$$

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) + \frac{\partial}{\partial y} (\lambda \frac{\partial T}{\partial y}) + \rho L \frac{\partial f_s}{\partial t}$$

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) + \frac{\partial}{\partial y} (\lambda \frac{\partial T}{\partial y}) + \frac{\partial}{\partial z} (\lambda \frac{\partial T}{\partial z}) + \rho L \frac{\partial f_s}{\partial t}$$

# 铸件与铸型的热交换分析



$$\boldsymbol{q}_1 = \frac{\lambda_c}{\boldsymbol{x}_1} (\boldsymbol{T}_k - \boldsymbol{T}_{i1}) = \frac{\lambda_c}{\boldsymbol{x}_1} \Delta \boldsymbol{T}_1$$

$$\boldsymbol{q}_2 = \boldsymbol{\alpha}_i (\boldsymbol{T}_{i1} - \boldsymbol{T}_{i2}) = \boldsymbol{\alpha}_i \Delta \boldsymbol{T}_2$$

$$\boldsymbol{q}_3 = \frac{\lambda_m}{\boldsymbol{x}_2} (\boldsymbol{T}_{i2} - \boldsymbol{T}_m) = \frac{\lambda_m}{\boldsymbol{x}_2} \Delta \boldsymbol{T}_3$$

### 铸件与铸型的热交换分析

#### 假设内部无热源,则 $q_1 = q_2 = q_3$

 $\frac{\boldsymbol{x}_1}{\lambda_c} : \frac{1}{\alpha_i} : \frac{\boldsymbol{x}_2}{\lambda_m} = \Delta \boldsymbol{T}_1 : \Delta \boldsymbol{T}_2 : \Delta \boldsymbol{T}_3$ 





### 四种典型的铸件与铸型的热交换

$$\diamondsuit k_1 = \frac{1}{a_i} : \frac{x_1}{\lambda_c} = \frac{\Delta T_2}{\Delta T_1} , \ k_2 = \frac{1}{a_i} : \frac{x_2}{\lambda_m} = \frac{\Delta T_2}{\Delta T_3}$$

k<sub>1</sub><<1, k<sub>2</sub><<1时: T<sub>2</sub> 0, T<sub>i1</sub> T<sub>i2</sub>理想接触, 压铸、金属型铸造;

k<sub>1</sub>>>1, k<sub>2</sub>>>1时:界面热阻是传热控制环节, 厚涂料金属型铸造;

k<sub>1</sub>>>1,k<sub>2</sub><<1时:热阻主要在铸型中, 砂型铸造;

k<sub>1</sub><<1, k<sub>2</sub>>>1时:热阻主要在铸件凝固区中, 快速凝固。

#### 一维Fourier热传导方程的解析解

$$\frac{\partial T}{\partial t} = \alpha \left( \frac{\partial^2 T}{\partial x^2} \right)$$

$$T = C + D \cdot erf\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

定义误差函数 
$$erf(u) = \frac{2}{\sqrt{\pi}} \int_0^u \exp(-u^2) du$$

其中 
$$erf\left(\frac{x}{2\sqrt{\alpha t}}\right) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp\left(-u^{2}\right) du = \frac{2}{\sqrt{\pi}} \left(z - \frac{z^{3}}{3 \cdot 1!} + \frac{z^{5}}{5 \cdot 2!} - \frac{z^{7}}{7 \cdot 3!} + \cdots\right)$$
  
并且有:  $erf(0) = 0$ ,  $erf(\infty) = 1$ ,  $erf(-u) = -erf(u)$ 奇函数,  
 $\frac{d\left[erf(u)\right]}{du} = \frac{2}{\sqrt{\pi}} \exp\left(-u^{2}\right), \ \frac{d\left[erf(u)\right]}{dx} = \frac{1}{\sqrt{\pi \alpha t}} \exp\left(-u^{2}\right)$ 

# 高斯误差积分值

#### 表 4-1 高斯误差积分值

| A REAL PROPERTY AND A REAL |                                         |                           |                                         |                           |                                         | Contraction of the local division of the loc | States of the local data and the state of th |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|---------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{x}{2\sqrt{a\tau}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $G\left(\frac{x}{2\sqrt{a\tau}}\right)$ | $\frac{x}{2\sqrt{a\tau}}$ | $G\left(\frac{x}{2\sqrt{a\tau}}\right)$ | $\frac{x}{2\sqrt{a\tau}}$ | $G\left(\frac{x}{2\sqrt{a\tau}}\right)$ | $\frac{x}{2\sqrt{a\tau}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $G\left(\frac{x}{2\sqrt{a\tau}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.056                                   | 0.55                      | 0.563                                   | 1.05                      | 0.862                                   | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.113                                   | 0.60                      | 0.604                                   | 1.10                      | 0.880                                   | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.168                                   | 0.65                      | 0.642                                   | 1.15                      | 0.896                                   | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.223                                   | 0.70                      | 0.678                                   | 1.20                      | 0.910                                   | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. 984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.276                                   | 0.75                      | 0.711                                   | 1.25                      | 0. 923                                  | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.329                                   | 0.80                      | 0.742                                   | 1.30                      | 0.934                                   | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.379                                   | 0.85                      | 0.771                                   | 1.35                      | 0.944                                   | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.419                                   | 0.90                      | 0.797                                   | 1.40                      | 0.952                                   | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. 476                                  | 0.95                      | 0.821                                   | 1.45                      | 0.960                                   | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. 521                                  | 1.00                      | 0.843                                   | 1.50                      | 0.966                                   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### 铸件在非金属型中的凝固传热

考虑液体内部温差 铸件温度场*T*<sub>M</sub>:

边界条件:
$$\begin{cases} x = 0 \text{时}, T_M = T_i \\ x = -\infty \text{时}, T_M = T_1 \end{cases}$$

$$T = C + D \cdot erf\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

得:
$$C = T_i$$
,  $D = T_i - T_1$ 

$$T_{M} = T_{i} + \left(T_{i} - T_{1}\right) \cdot erf\left(\frac{x}{2\sqrt{\alpha_{M}t}}\right)$$



铸型温度场
$$T_{\rm m}$$
:



边界条件: 
$$\begin{cases} x = 0 \text{时}, T_m = T_i \\ x = +\infty \text{ ft}, T_m = T_2 \end{cases}$$

$$T = C + D \cdot erf\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

得: 
$$C = T_i$$
,  $D = T_2 - T_i$ 

$$T_m = T_i + (T_2 - T_i) \cdot erf(\frac{x}{2\sqrt{\alpha_m t}})$$





凝固放热: 
$$J_1 = -\lambda_1 \left( \frac{\partial T_M}{\partial x} \right)_{x=0^-}$$
  
铸型吸热:  $J_2 = -\lambda_2 \left( \frac{\partial T_m}{\partial x} \right)_{x=0^+}$   
由 $J_1 = J_2$ 得:  
 $-\lambda_1 (T_i - T_1) \frac{1}{\sqrt{\pi \alpha_1 t}} \exp\left( -\frac{x^2}{4\alpha_1 t} \right) \Big|_{x=0^-}$   
 $= -\lambda_2 (T_2 - T_i) \frac{1}{\sqrt{\pi \alpha_2 t}} \exp\left( -\frac{x^2}{4\alpha_2 t} \right) \Big|_{x=0^+}$ 

$$\Rightarrow T_i = \frac{\sqrt{\alpha_2}\lambda_1 T_1 + \sqrt{\alpha_1}\lambda_2 T_2}{\sqrt{\alpha_2}\lambda_1 + \sqrt{\alpha_1}\lambda_2} = \frac{\frac{\lambda_1}{\sqrt{\alpha_1}}T_1 + \frac{\lambda_2}{\sqrt{\alpha_2}}T_2}{\frac{\lambda_1}{\sqrt{\alpha_1}} + \frac{\lambda_2}{\sqrt{\alpha_2}}} = \frac{b_1 T_1 + b_2 T_2}{b_1 + b_2}$$

其中: $b_1 = \frac{\lambda_1}{\sqrt{\alpha_1}} = \sqrt{\rho_1 c_1 \lambda_1}$ ,  $b_2 = \frac{\lambda_2}{\sqrt{\alpha_2}} = \sqrt{\rho_2 c_2 \lambda_2}$ ,蓄热系数,越大传热越 快。

# 凝固层厚度与凝固时间的计算

- Chuorinov法则(平方根定律) 假设:
  - 金属/铸型界面为无限大平面,铸件与铸型的壁厚无限大;
  - 金属浇入铸型后,与液态金属接触的铸型立即达到浇注温度且保持不变;
  - 凝固是在恒温下进行的(视为纯金属或共晶合金);
  - 除结晶潜热外,凝固过程中无其它热源;
  - 金属、铸型的热物性参数为常数;
  - 忽略对流的影响。

假设:

金属/铸型界面温度为 $T_i$ ,铸件浇注温度为 $T_p$ ,铸件凝固温度为 $T_s$ ,铸型初始温度为 $T_0$ ,则: $T_p=T_i=T_s$ 

# 平方根定律

铸型温度场
$$T_m = T_1 + (T_2 - T_1) \cdot erf(\frac{x}{2\sqrt{\alpha_m t}})$$
,  $x \ge 0$ 

$$\Rightarrow \frac{\partial T_m}{\partial x} = (T_0 - T_f) \frac{1}{\sqrt{\pi \alpha_m t}} \exp\left(-\frac{x^2}{4\alpha_m t}\right), \quad \text{即为x处的温度梯度}$$

则x处单位面积通过的热流量(t时刻): $q_m = \lambda_m \frac{\partial T_m}{\partial x}$ , 单位[ $W/m^2$ ] 在x = 0即铸件/铸型界面处的热流量:  $q_f = q_m \Big|_{x=0} = \lambda_m (T_0 - T_f) \frac{1}{\sqrt{\pi \alpha_m t}}$ 

$$0 \sim t$$
内流过界面的热流量: $Q_f = \int_0^t q_f dt = 2\lambda_m (T_f - T_0) \sqrt{\frac{t}{\pi \alpha_m}}$ ,单位[ $J/m^2$ ]

则铸型吸收的热量:  $Q_m = Q_f = \frac{2b_m}{\sqrt{\pi}} (T_f - T_0) \sqrt{t}$ 

# 平方根定律

假设铸件在 t时刻的凝固层厚度为  $\xi$ , 则铸件单位面积放出的 热量:  $Q_c = \rho_c L\xi$ 

由能量守恒: 
$$Q_m = Q_c$$
  

$$\Rightarrow \frac{2b_m}{\sqrt{\pi}} (T_i - T_0) \sqrt{t} = \xi \cdot \rho_c L$$

$$\Rightarrow \xi = \frac{2b_m (T_i - T_0)}{\sqrt{\pi} \rho_c L} \cdot \sqrt{t}$$

$$\Rightarrow \xi = K \cdot \sqrt{t} , 其中 : K - 凝固系数$$
此即*Chvorinov* 准则 , 也叫平方根定律 。

# 平方根定律

• 而实际上,凝固温度区间[ $T_s$ ,  $T_L$ ],凝固 温度 $T_N = (T_s + T_L)/2$ ,浇注温度 $T_p > T_N$ ,有 过热度。因此铸件单位面积放热  $Q_c = \cdot {}_c [L + c_c (T_p - T_N)]$ 。

$$\begin{split} \xi &= \frac{2b_m (T_i - T_0)}{\sqrt{\pi} \rho_c [L + c_c (T_p - T_N)]} \cdot \sqrt{t} \\ &\Rightarrow \xi &= K \cdot \sqrt{t} , \text{其中} : K - 凝固系数 , \\ Chvorinov 准则 , 平方根定律。 \end{split}$$



- 对于任意形状铸件: 体积V, 表面积S,
- 若包围铸件的铸型很厚,则:

铸件放出总热量:
$$\sum Q_m = Q_m \cdot S$$
  
铸型吸收总热量: $\sum Q_c = Q_c \cdot V$   
则由 $\sum Q_m = \sum Q_c$ 得:  
 $\frac{V}{S} = \frac{2b_m (T_f - T_0)}{\sqrt{\pi \rho_c} [L + c_c (T_p - T_N)]} \cdot \sqrt{t_f} = K \cdot \sqrt{t_f}$   
 $\Rightarrow t_f = \frac{\left(\frac{V/S}{S}\right)^2}{K^2} = \frac{R^2}{K^2}, K - 凝固系数,$   
其中:  $R - 当量厚度 / 模数 / 折算厚度$ 

\*铸件凝固时间 与铸件形状无 关,与当量厚 度平方成正 比。 \* 凝固金属和铸 型材料影响凝 固时间和凝固 速率。

# 焊接过程的传热特点

- 1. 加热过程的局部性;
- 2. 加热的瞬时性;
- 3. 焊接热源是移动的;
- 4. 焊接传热是复合传热过程。

# 集中热源作用下的非稳态导热

#### 1、集中点热源

$$\frac{\partial T}{\partial t} = a(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2})$$

$$T = \frac{Q}{c\rho(4\pi at)^{3/2}} \exp(-\frac{R^2}{4at})$$

传热方程

$$c\rho(4\pi at)^{3/2}$$
  $cxp($ 

Τ

$$\Gamma = \frac{2Q}{c\rho(4\pi at)^{3/2}} \exp(-\frac{R^2}{4at})$$

0

# 集中热源作用下的非稳态导热

#### 2、集中线热源

传热方程

$$\frac{\partial T}{\partial t} = a(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2})$$



$$T = \frac{Q}{4\pi\lambda ht} \exp(-\frac{r^2}{4at})$$

### 表面散热和累积原理

#### 表面散热

$$\frac{\partial T}{\partial t} = a(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}) - bT$$

$$b = \frac{2\alpha}{c\rho h} (1/s)$$

$$T = \frac{Q}{4\pi\lambda ht} \exp(-\frac{r^2}{4at} - bt)$$



$$T = \sum_{i=1}^{n} T(r_i, t_i)$$

### 连续集中热源作用下的温度场

$$T(A,t) = \int_0^t dT_A$$

$$T = \int_0^t \frac{2q}{c\rho \left[4\pi a \left(t - t'\right)\right]^{3/2}} \exp\left[-\frac{R'^2}{4a \left(t - t'\right)}\right] dt'$$

$$T(x, y, z, t) = \frac{2q}{c\rho(4\pi a)^{3/2}} \exp(-\frac{\upsilon x}{2a}) \int_0^t \frac{dt''}{t'^{3/2}} \exp(-\frac{\upsilon^2 t''}{4a} - \frac{R^2}{4at''})$$

$$T = \frac{q}{2\pi\lambda R} \exp(-\frac{\upsilon x}{2a} - \frac{R\upsilon}{2a})$$

# 点状连续移动热源的传热模型



### 线状连续移动热源的传热计算公式

$$T_{sp} = \frac{q}{2\pi\lambda h} \exp(-\frac{\upsilon x}{2a}) K_0 [r \sqrt{\frac{\upsilon^2}{4a^2} + \frac{b}{a}}]$$

$$K_{0}(u) = \sqrt{\frac{\pi}{2u}} \exp(-u) \left[1 - \frac{1}{8u} + \frac{1 \times 3^{2}}{2!(8u)^{2}} - \frac{1 \times 3^{2} \times 5^{2}}{3!(8u)^{3}} + \cdots\right]$$

#### 点状移动热源厚板焊接温度场



### 工艺参数对焊接温度场的影响







#### 焊接熔池中液体的流动示意图



#### 焊接熔池中传热主要是液体的对流换热