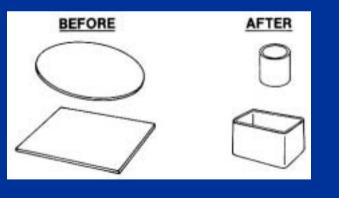
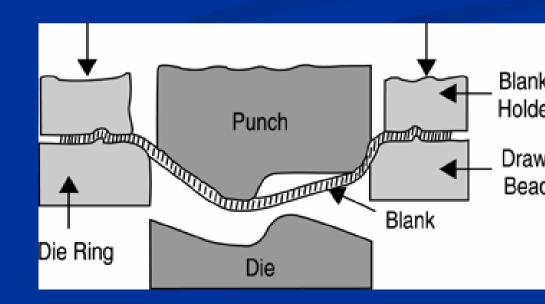
《材料加工》课程工艺部分


金属塑性加工 Metal Forming Processes (5)


清华大学机械工程系

- 5.1 拉深零件分类(按变形特点)
- 5.2 拉深件不同部位的变形分析
- 5.3 拉深系数、拉深比
- **5.4 拉深件的缺陷**
- 5.5 拉深方法

拉深工艺 (Deep drawing)

拉深也称拉延,是利用模具使冲裁后得到的平面毛坯 变成为开口的空心零件的冲压工艺方法

5.1 拉深零件分类(按变形特点)

▶直壁类拉深件

- ▶轴对称零件
 - ■圆筒形件、带法兰边圆筒形件、阶梯形件
- ▶非轴对称件
 - ■盒形件、带法兰边的盒形件、其他形状的零件
 - ■曲面法兰边的零件

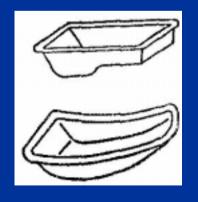
▶曲面类拉深件

- ▶轴对称零件
 - ■球面类零件、锥形件、其他曲面零件
- ▶非轴对称零件
 - ■平面法兰边零件、曲面法兰边零件

直壁类拉深件

圆筒形件、带法兰边圆筒形件、阶梯形件

盒形件、带法兰边的盒形件、其他形状 的零件



平面法兰边零件、曲面法兰边零件

曲面类拉深件

球面类零件、锥形件、其他曲面零件

平面法兰边零件、曲面法兰边零件

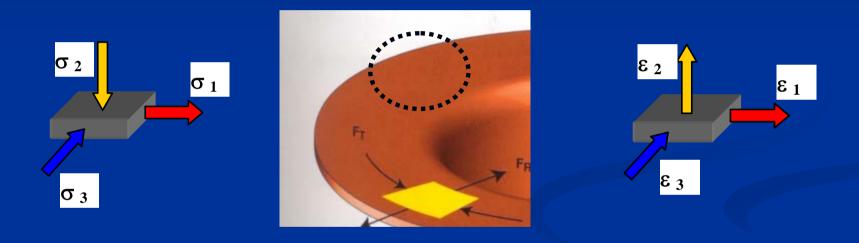
航空及国防工业中的拉深件

工业产品及日用品中的拉深件

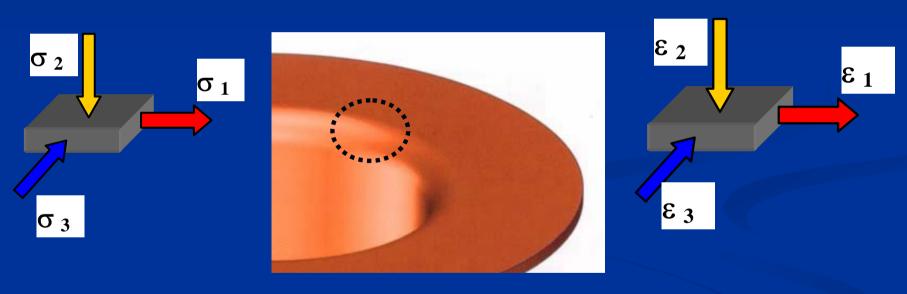
汽车工业中的拉深件

5.2 拉深件不同部位的变形分析

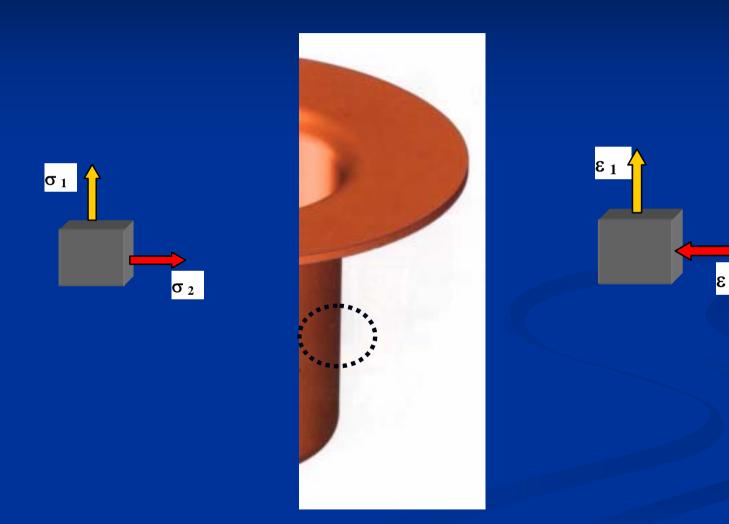
平面凸缘区 (法兰)

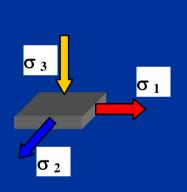

底部圆角部分 (凸模圆角)

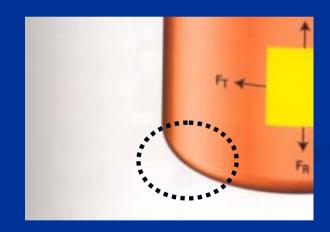
凸缘圆角 (凹模圆角)

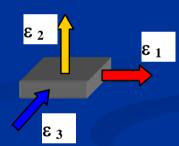

筒壁部分

筒底部分


平面凸缘区应力应变


凸缘圆角应力应变




筒壁部分应力应变

底部圆角部分应力应变

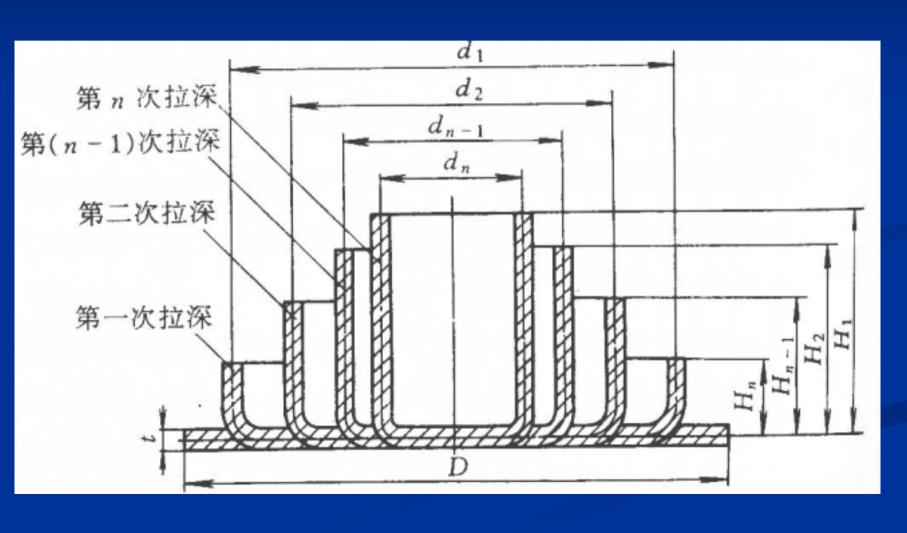
简底部分应力应变

5.3 拉深系数、拉深比

1 拉深后零件的直径d与拉深前毛坯直径 D_0 之 称为拉深系数 m_0 $m=d/D_0$

2 拉深系数反映了拉深时毛坯的变形程度 (切向压缩变形)。

3 拉深系数的倒数称为拉深程度或拉深比K=1/m


5.3 拉深系数、拉深比

4 在多道次拉深时,后续的拉深系数为: $m_{n} = d_{n}/d_{n-1}$

5 在拉深时,筒壁不被拉破的最小拉深系数称 为极限拉深系数

6 极限拉深系数示确定拉深间拉深道次的主要 参数

圆筒件多道次拉深成形

变形力及拉深载荷分析

圆筒拉深件侧壁受力

$$P = \pi d_p t p$$

$$p = (1.1\sigma_{sm} \ln \frac{R'}{r} + \frac{2\mu Q}{\pi d_p t})(1 + 1.6\mu) + \frac{\sigma_b}{2\frac{R_d}{t} + 1}$$

p 径向拉应力

 σ_{sm} 屈服应力

μ 摩擦系数

Q 压边力

 σ_b 强度极限

d_n 凸模直径

t 板料厚度

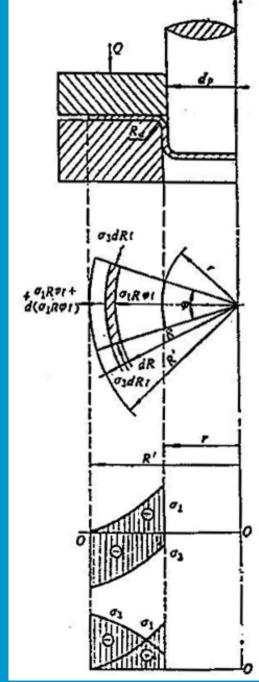
R_d 凹膜圆角半径

r 圆筒半径

R' 法兰外缘半径(瞬间)

拉深载荷的影响因素

$$p = (1.1\sigma_{sm} \ln \frac{R'}{r} + \frac{2\mu Q}{\pi d_p t})(1 + 1.6\mu) + \frac{\sigma_b}{2\frac{R_d}{t} + 1}$$


拉深系数

材料的机械性能

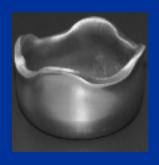
零件的尺寸

凹膜的圆角直径

润滑

经验公式

第一次拉深力的经验值 $P = \pi d_1 t \sigma_b K_1$


第二次拉深力的经验值 $P = \pi d_2 t \sigma_b K_2$

5.4 拉深件的缺陷

1.破裂

2. 起皱

3. 回弹

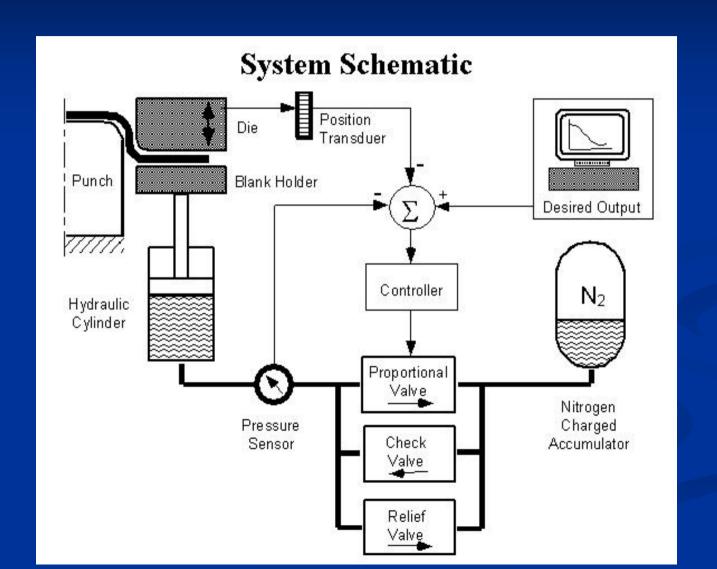
1 拉裂的防止办法

筒的侧壁被拉破,往往发生在靠近筒件底部的凸模 圆角处,产生的原因是拉深系数选得太小、拉深变形程 度太大,板料厚度变小。

解决的措施是:

- 1) 减小拉深变形程度,采用多次拉深的办法。
- 2) 在有些工艺中,每道工步之间还需要对工件(毛坯)进行退火处理
- 3) 调整毛坯尺寸和形状
- 4) 改变模具(软模)

2 起皱的预防

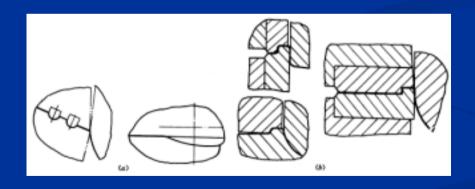

- 拉深过程中影响毛坯是否起皱的主要因素有 :
- 1)毛坯的相对厚度 t/D₀
- 相对厚度较小, 拉深变形区抗失稳能力越差, 也越容易起皱。
- 2)拉深系数 m=d/D₀ 越小,拉深变形程度越大,拉深变形区内金属的硬化程度 也越高,所以切向压应力的数值也相应增大。另一方面,拉深系数越小,拉深变 形区的宽度越大,所以其抗失稳的能力变小。上述两个因素综合作用的结果,都 使毛坯变形区的起皱趋向增大。
- 3) 凹模工作部分的几何形状.与普通的平端面凹模相比,用锥形凹模拉深时,起皱的趋势小一些,另外板料的机械性能,凹模的润滑等等对起皱也有影响。

最常用的防止拉深变形区的起皱的方法是

- 1) 在拉深模上设置压边圈。
- 2)设计拉延筋
- 3)调整毛坯尺寸和形状

动态控制压边力

拉延筋



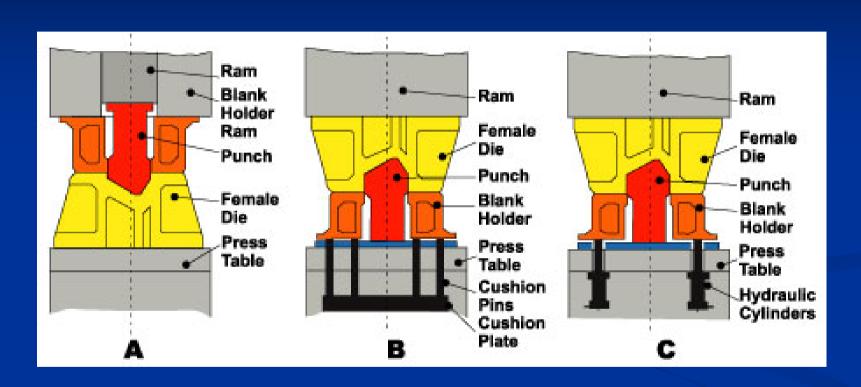
拉延筋的主要作用

- 设拉延筋的主要作用有如下几点。
 - (1)增加局部区域的进料阻力,使整个拉延件进料速度达到平衡状态。
 - (2) 加大拉延成型的内应力数值,提高覆盖件的刚性。
 - (3)加大径向拉应力,减少切向压应力;延缓或防止起皱。

设置拉延筋的主要原则

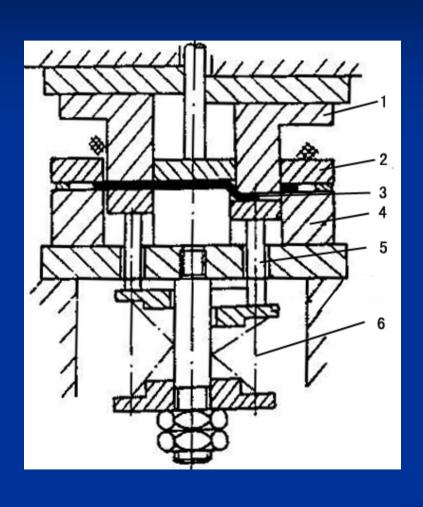
(1)拉延件有圆角和直线部分,在直线部分敷设拉延 筋,使进料速度达到平衡。

(2)拉延件有直线部分,在深度浅的直线部分敷设拉延

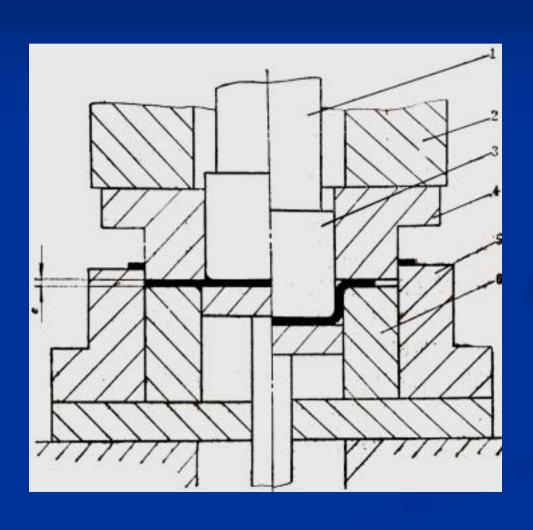

筋、深度深的直线部分不设拉延筋。

(3) 浅拉延件,圆角和直线部分均敷设拉延筋,但圆角 部分只敷设一条筋,直线部分敷设1~3条筋。当有多条拉 延筋时,注意使外圈拉延筋"松"些,内圈拉延筋"紧些", 改变拉延筋高度可达到此目的。

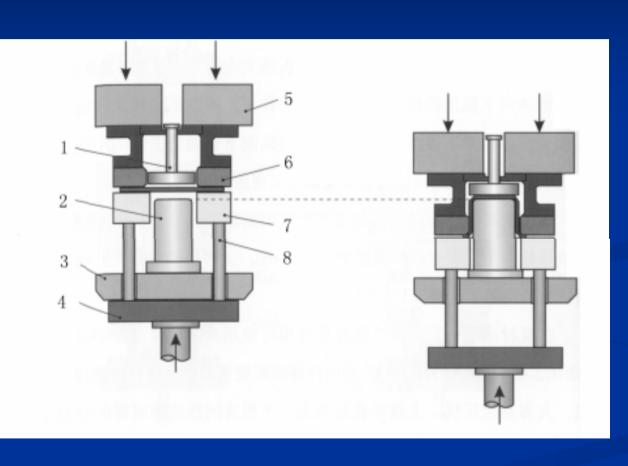
(4)拉延件轮廓呈凸凹曲线形状,在凸曲线部分设较宽


拉延筋,凹曲线部分不设拉延筋。 (5)拉延筋或拉延槛尽量靠近凹模圆角,可增加材料利 用率和减少模具外廓尺寸,但要考虑不要影响修边模的强 度

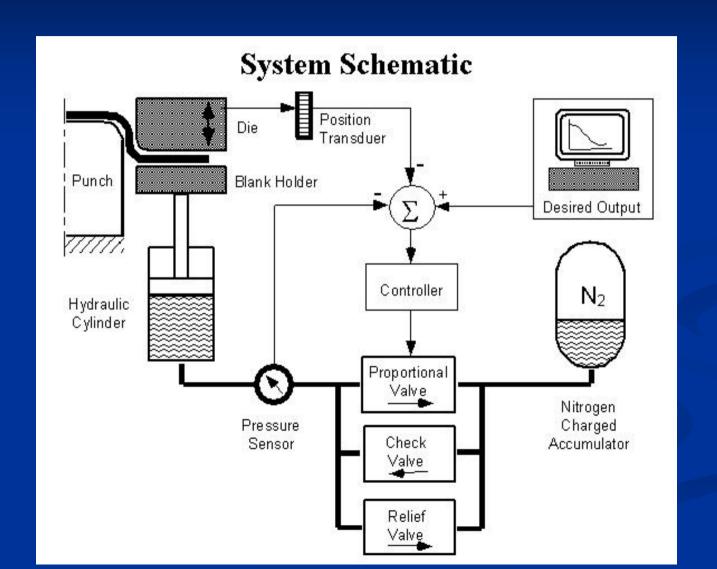
5.5 拉深方法(压边)


- (A) a double-acting press with two rams
- (B) a in single-acting press with a cushion system in the press table.
- (C) Hydraulic cylinders sometimes are installed in the four corner points of the press table.

单动冲床用拉深模弹性压边


- 1—冲裁凸模兼拉深凹模
- 2—卸料板
- 3—拉深凸模
- 4—冲裁凹模
- 5—顶杆
- 6—弹簧

双动冲床用拉深模刚性压边


- 1—内滑块
- 2—外滑块
- 3—拉深凸模
- 4—落料凸模兼压边圈
- 5—落料凹模
- 6—拉深凹模

双动拉深

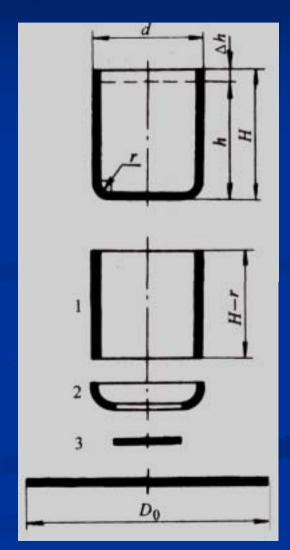
- 1—顶料器
- 2—拉深凸模
- 3—压力机工作台
- 4—拉深垫 (弹簧、橡胶或气垫)
- 5—滑块
- 6—拉深凹模
- 7—压边圈
- 8—顶杆

动态控制压边力

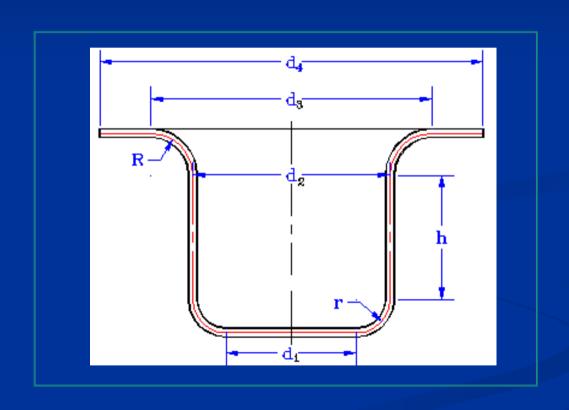
拉深件毛坯尺寸的确定

基本原则:

- 1. 不考虑厚度的变化;
- 2. 体积不变
- 3. 以板料的中心线为准 (为了计算方便,常以边缘尺寸计算)

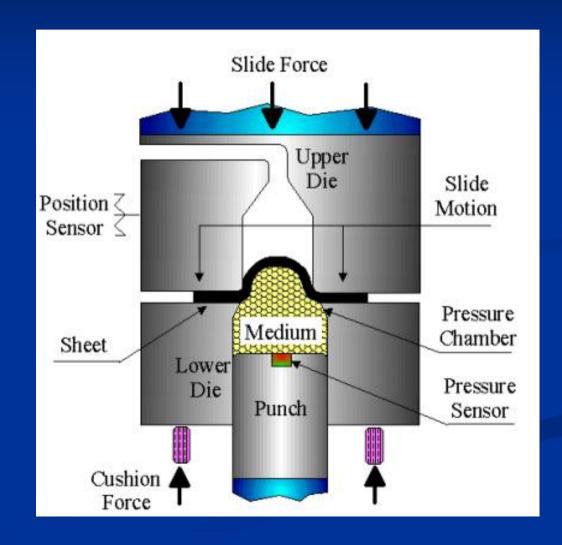

回转体件毛坯尺寸的确定

$$A_1 = \pi d(h - r)$$


$$A_2 = \frac{\pi}{4} [2\pi r (d - 2r) + 8r^2]$$

$$A_3 = \frac{\pi}{4} (d - 2r)^2$$

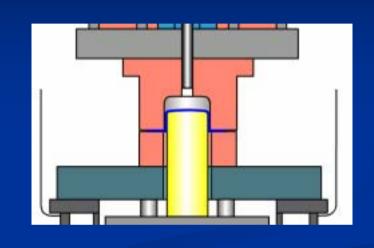
$$D = \sqrt{(d-2r)^2 + 2\pi r(d-2r) + 8r^2 + 4d(h-r)}$$

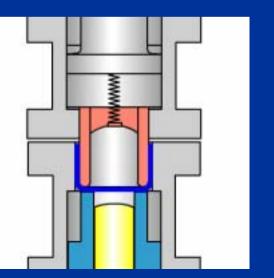


带法兰回转体的毛坯尺寸确定

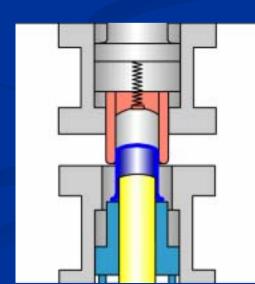
软模拉深

- 凸模采用气体、聚氨酯、粘塑性介质以及橡胶等高分子材料;
 同时采用刚性凹模
- 2. 凹模采用高压液体, 或橡胶,同时采用刚 性凸模,例如充液拉 深




反向拉深


凸模对毛坯的作用方向与正拉深 相反


主要是针对一些特殊形状的零件

在一套模具上,通过一次正拉深和一次反拉深,提高成形极限

本部分重点

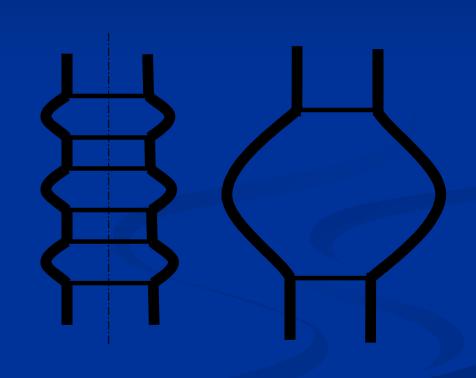
- ■拉深工艺的受力变形分析(圆筒件)
- ■拉深系数、拉深比(极限)的概念
- ■拉深缺陷的起因及预防
- ■拉深载荷的影响因素

胀形工艺 (Bulging drawing)

- 5.6 胀形工艺的特点及分类
- 5.7 管材胀形

5.6 胀形工艺的特点及分类

■利用模具强迫板料厚度减薄和表面积增大,以获取零件几何形状的冲压加工方法叫做胀形(Bulging)


胀形部分的金属主要以双向拉伸为主,变形部分金属减薄。

胀形工艺的分类

- 根据零件形状分类:
 - 平板毛坯的局部成形
 - ■圆柱形空心毛坯的胀形
 - □ 管类毛坯的胀形(波纹管)
 - ■平板毛坯的拉形
- 根据模具分类:
 - 刚模胀形
 - ■橡皮胀形
 - 液压胀形

5.7 管材胀形

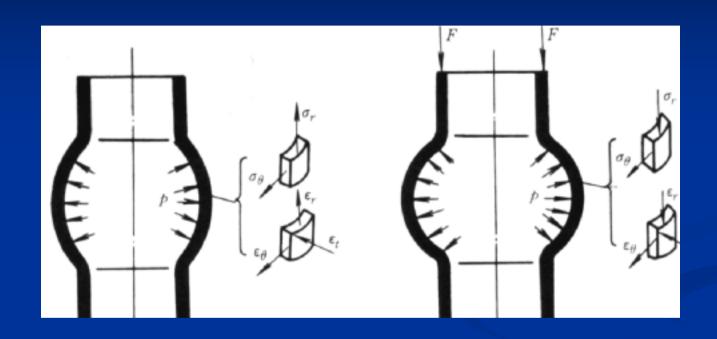
管材胀形是依靠材料的 拉伸,在压力的作用下 使直径较小的管坯沿径 向向外扩张的成形工 序。根据要求,即可以 对管坯进行局部扩张, 也可以对整个管坯进行 扩张

管材胀形的方法

刚模胀形:刚性分块式凸模胀形

软模胀形:利用弹性体或液体、气体代替刚性凸模的作用对 管坯进行胀形

弹性体:聚氨酯、天然橡胶、聚氯乙烯(PVC)

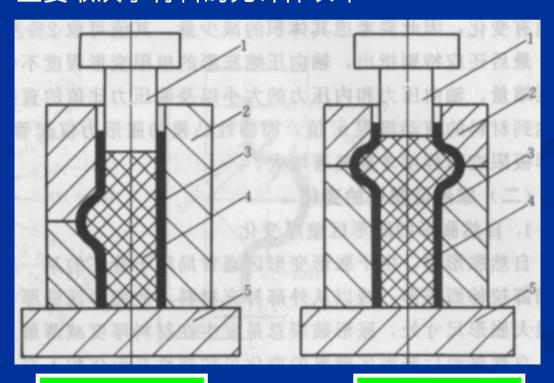

液体:油、乳化液和水

自由胀形:零件的成形主要靠管坯壁厚的变薄和轴向的压缩(缩短)来完成

轴向压缩胀形:在自由胀形的同时,有对管坯轴向进行压缩,移补给胀形变形区材料的不足

复合胀形:在上述两种方法的基础上发展,如:内压—轴 压—径向反压复合胀形,轴压—缩口——胀形复合成形

管材胀形的受力

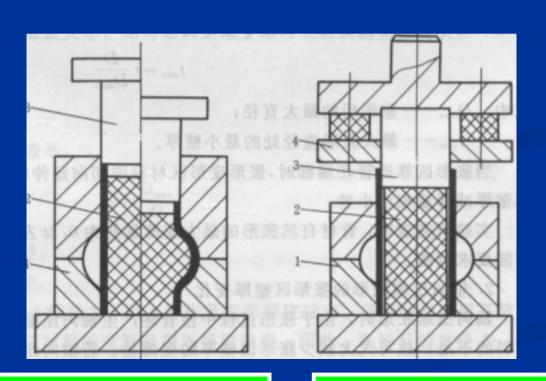


普通的胀管工艺,变形区的受力特点是承受双向拉应力的平面应力状态。

右侧图是轴向有近给的胀形,变形区的受力特点是胀形区母线方向的拉应力变为压应力,成为拉—压的平面应力状态。这种成形方式主要应用在利用液体胀形的内高压成形中。

轴向无收缩的自由胀形

胀形部位完全靠管坯壁后的局部变薄而成形,由于管坯轴向无收缩或收缩量极小,其变形性质为局部成形,故胀形极限变形程度主要取决于材料的允许伸长率

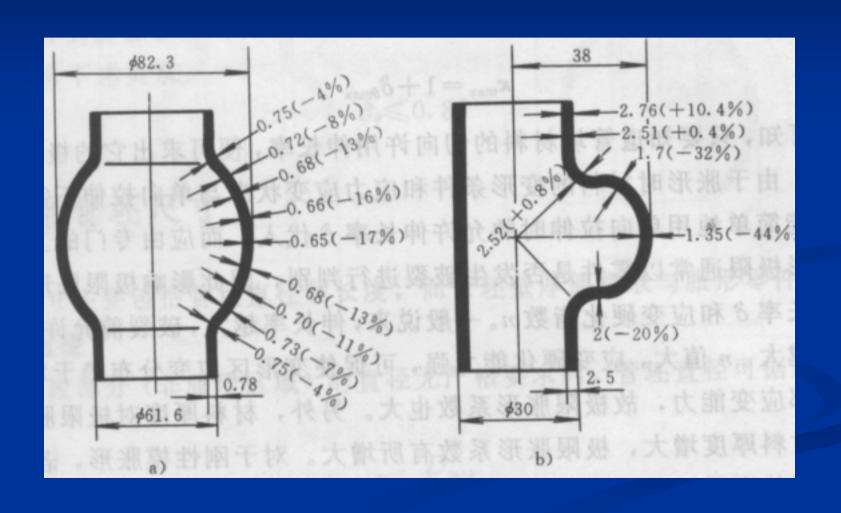

- 1—压头
- 2—组合凹模
- 3—零件
- 4---橡胶
- 5—凹模座

轴向无收缩

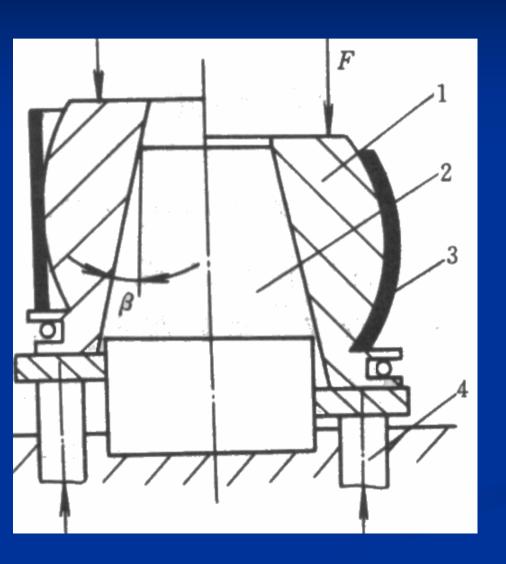
轴向有收缩

轴向有压缩的胀形

管坯在内压力和轴向压力共同作用下胀形,施加<mark>轴向压力</mark>的结果,不仅使管坯在胀形过程中产生轴向压缩变形,以补偿变形区材料的不足,而且使胀形区的应力应变状态得到了改善。

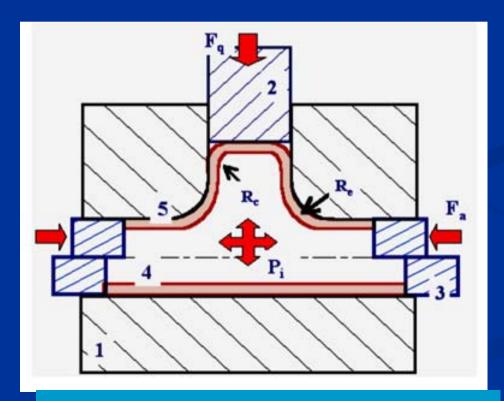


- 1—组合凹模
- 2—聚氨酯橡胶
- 3—压头
- 4—压板


由向压力与内压力同时作用

轴向压力与内压力分别作用

变形区璧厚的变化


刚性模胀形

- 1—分块凸模
- 2—芯轴
- 3—管坯
- 4—顶杆

液压成形(Hydroforming)

a typical part that is being formed by hydroforming technique. The tube is pressurized while axially fed towards the expansion zone

Active forces in a hydroforming process

P_i: Internal pressure

F_a: Axial force

F_a: Counter force

R: Corner radius

R_a: Entry radius

- (1) Dies
- (2) Counter cylinder
- (3) Axial cylinders
- (4) Initial tube
- (5) Final tube

工程应用

- 1. Pre-bent tube
- 2. Crushed tube
- 3. Hydroformed part

Several factors play an important role in material selection for tube hydroforming. These factors include <u>final properties of the part</u>, <u>forming process and deformation capabilities</u>, <u>availability and cost</u>. In many cases the material selection may include a trade off between various competing parameters.

工程实例—轿车排气管

Conventional Stamping/Welding

Hydroforming

工程实例—轿车车体

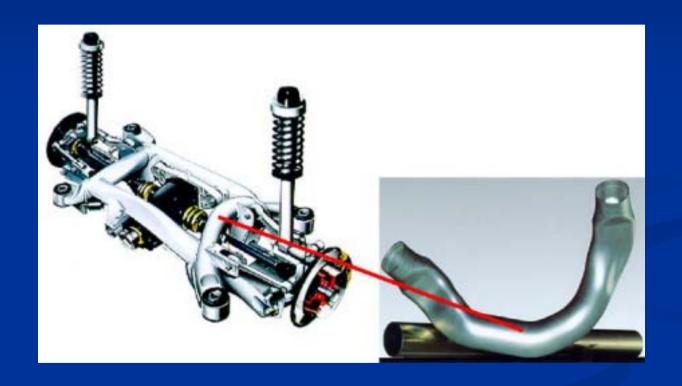
Results compared to conventional steel body structure:

- 50% less weight
- 45% less parts (less tools, less assembly)
- 45% less welding seams
- tighter tolerances

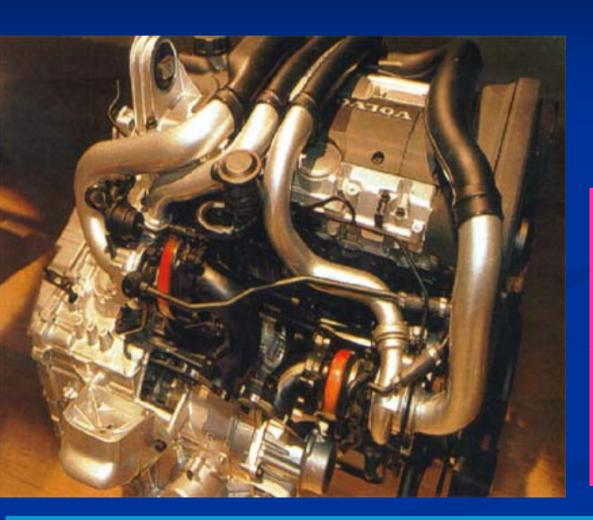
Volvo Hydroformed Structure concept in aluminum, (Schuler Hydroforming 1998)

高级轿车的鸟笼(cage)式车架

Car frame, (AUDI, 1998



轻型卡车的底盘液压胀形件


Tower Light Truck Chassis with Hydroformed Components, (Schuler Hydroforming, 1998)

轿车后桥的铝合金液压胀形

Aluminum rear axle part 500 series, (BMW, 1997)

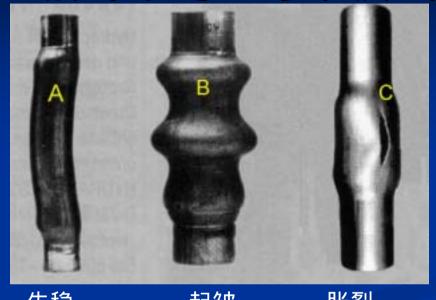
轿车排气管道的液压胀形

light weight

- reduced numbers of parts
- reduced internal pressure loss(during engine operation

VOLVO hydroformed exhaust components (Schuler Hydrofoming, 1998)

轿车排气管道的液压胀形



BMW V-4- cylinders (Schuler Hydrofoming, 1998)

VW 2.0 1-1.61 V-4- cylinders (Schuler Hydrofoming, 1998)

液压胀管的主要破坏形式

失稳

起皱

胀裂

- 1 当轴向推进的速度过快时,管坯的轴向压缩大于径向 的扩张,容易产生失稳和起皱。
- 2 当轴向推进的速度过慢时,管坯的径向的扩张大于轴 向压缩,管壁变得越来越薄,最后产生破裂。

本部分重点

- □管材胀形的受力(有无轴向进给的区别)
- 管材胀形的模具有哪几类?
- 管材液压胀形的过程?
- 管材液压胀形的缺陷有哪些?