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Abstract. For certain security applications, including identity based encryption
and short signature schemes, it is useful to have abelian varieties with security
parameters that are neither too small nor too large. Supersingular abelian vari-
eties are natural candidates for these applications. This paper determines exactly
which values can occur as the security parameters of supersingular abelian vari-
eties (in terms of the dimension of the abelian variety and the size of the finite
field), and gives constructions of supersingular abelian varieties which are optimal
for use in cryptography.

1. Introduction

The results of this paper show that it is the best of times and the worst of times
for supersingular abelian varieties in cryptology. The results in Part 1 give the bad
news. They state exactly how much security is possible using supersingular abelian
varieties. Part 2 gives the good news, producing the optimal supersingular abelian
varieties for use in cryptographic applications.

One-round tripartite Diffie-Hellman, identity based encryption, and short digital
signatures are some problems for which good solutions have recently been found.
These solutions make critical use of supersingular elliptic curves and Weil (or Tate)
pairings. It was an open question whether or not these new schemes could be im-
proved (more security for the same signature size or efficiency) using abelian varieties
in place of elliptic curves. This paper answers the question in the affirmative. We
construct families of examples of the “best” supersingular abelian varieties to use in
these cryptographic applications (§§5–6), and determine exactly how much security
can be achieved using supersingular abelian varieties (§§3–4).

Abelian varieties are higher dimensional generalizations of elliptic curves (elliptic
curves are the one-dimensional abelian varieties). Weil and Tate pairings exist and
have similar properties for abelian varieties that they have for elliptic curves. Super-
singular abelian varieties are a special class of abelian varieties. For standard elliptic
curve cryptography, supersingular elliptic curves are known to be weak. However,
for some recent interesting cryptographic applications [17, 13, 2, 3, 20, 8], super-
singular elliptic curves turn out to be very good. New schemes using supersingular
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elliptic curves and Weil or Tate pairings are being produced rapidly. The abelian
varieties in this paper can be utilized in all these applications, to give better results
(e.g., shorter signatures, or shorter ciphertexts) for the same security.

The group of points on an abelian variety over a finite field can be used in cryp-
tography in the same way one uses the multiplicative group of a finite field. The
security of the system relies on the difficulty of the discrete logarithm (DL) problem
in the group of points. One of the advantages of using the group A(Fq) of an abelian
variety in place of the multiplicative group F∗

q of a finite field Fq is that there is
no known subexponential algorithm for computing discrete logarithms on general
abelian varieties.

One of the attacks on the DL problem in A(Fq) is to map A(Fq) (or the relevant
large cyclic subgroup of A(Fq)) into a multiplicative group F∗

qk , using the Weil or
Tate pairing [16, 7, 6]. If this can be done for some small k, then the subexponential
algorithm for the DL problem in F∗

qk can be used to solve the DL problem in A(Fq).
Thus, to have high security, #A(Fq) should be divisible by a large prime which does
not divide #F∗

qk = qk − 1 for any very small values of k.
On the other hand, for cryptographic applications which make use of the Weil or

Tate pairing, it is important that A(Fq) (or the relevant large cyclic subgroup of
A(Fq)) can be mapped into F∗

qk with k not too large, in order to be able to compute
the pairing efficiently. Thus for these applications it is of interest to produce families
of abelian varieties for which the security parameter k

g is not too large, but not
too small. (In defining the security parameter, one takes the minimal k.) Taking
supersingular elliptic curves, one can attain security parameter up to 6. However, it
seems to be difficult to systematically produce elliptic curves with security parameter
larger than 6 but not enormous. To obtain security parameters that are not too large
but not too small, it is natural to consider supersingular abelian varieties.

In [8], Galbraith defined a certain function k(g) and showed that if A is a su-
persingular abelian variety of dimension g over a finite field Fq, then there exists
an integer k ≤ k(g) such that the exponent of A(Fq) divides qk − 1. For example,
k(1) = 6, k(2) = 12, k(3) = 30, k(4) = 60, k(5) = 120, and k(6) = 210.

Note that, since cryptographic security is based on the cyclic subgroups of A(Fq),
for purposes of cryptology it is only necessary to consider simple abelian varieties,
i.e., abelian varieties which do not decompose as products of lower dimensional
abelian varieties.

In §4, we determine exactly which security parameters can occur, for simple super-
singular abelian varieties. For example, we show that if A is a simple supersingular
abelian variety over Fq of dimension g, then the exponent of A(Fq) divides qk − 1
for some positive integer k less than or equal to the corresponding entry in Table 1
(where p = char(Fq)), and each entry can be attained. The maximum of each col-
umn shows how these bounds compare with the bounds of Galbraith stated above,
and how they improve on his bounds when g ≥ 3. For these bounds, see Theorems
11, 12, and 6 below. A ‘∗’ means that there are no simple supersingular abelian
varieties of dimension g over Fq.
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g 1 2 3 4 5 6
q a square 3 6 9 15 11 21
q not a square, p > 11 2 6 ∗ 12 ∗ 18
q not a square, p = 2 4 12 ∗ 20 ∗ 36
q not a square, p = 3 6 4 18 30 ∗ 42
q not a square, p = 5 2 6 ∗ 15 ∗ 18
q not a square, p = 7 2 6 14 12 ∗ 42
q not a square, p = 11 2 6 ∗ 12 22 18

Table 1. Upper bounds on the cryptographic exponents

In particular, we show that the highest security parameter for simple supersin-
gular 4-dimensional abelian varieties is 7.5 = 30/4, and this can be attained if and
only if p = 3 and q is not a square. In particular, this answers in the affirmative an
open question from [3] on whether one can use higher dimensional abelian varieties
to obtain short signatures with higher security. When the dimension is 6 the highest
security parameter is 7, and this can be attained if and only if p = 3 or 7 and q is not
a square. In dimension 2 the highest security parameter is 6, which ties the elliptic
curve case. However, these abelian surfaces are in characteristic 2, while the best
supersingular elliptic curves occur only in characteristic 3. Therefore, there may be
efficiency advantages in using abelian surfaces over binary fields.

In §§5–6 we find the best supersingular abelian varieties for use in cryptography.
Theorem 17 gives an algorithm whose input is an elliptic curve and whose output
is an abelian variety with higher security. The abelian variety is constructed as
a subvariety of a Weil restriction of scalars of the elliptic curve (in the same way
that the “XTR supergroup” [15] turns out to be the Weil restriction of scalars
from Fp6 to Fp of the multiplicative group). The group of points of the abelian
variety lies inside the group of points of the elliptic curve over a larger field, and
thus all computations (including Weil and Tate pairings) on the abelian variety can
be done directly on the curve. We construct 4-dimensional abelian varieties with
security parameter 7.5, thereby beating the security of supersingular elliptic curves,
and construct abelian surfaces over binary fields with security parameter 6. We
obtain efficient implementations of the BLS short signature scheme [3] using these
abelian varieties. This gives the first practical application to cryptography of abelian
varieties that are not known to be jacobians of curves.

Theorem 20 gives a method for generating supersingular curves whose jacobian
varieties are good for use in cryptography. This result produces varieties in infinitely
many characteristics. Example 21 gives families of examples of jacobian varieties
that are “best possible” in the sense that they achieve the upper bounds listed in
the top row of Table 1.

Since k
ϕ(k) → ∞ as k → ∞ (where ϕ is Euler’s ϕ-function), Theorems 11 and

12 imply that security parameters for simple supersingular abelian varieties are
unbounded (as the dimension of the varieties grows). However, k

ϕ(k) grows very
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slowly, and computational issues and security considerations preclude using high
dimensional abelian varieties with high security parameters, at least at this time.
We therefore restrict the examples in this paper to small dimensional cases.

The results in §4 rely on the theory of cyclotomic fields, Honda-Tate theory,
and work of Zhu. The proof of Theorem 17 uses the theory of Weil restriction
of scalars. The proof of Theorem 20 uses the theory of complex multiplication of
abelian varieties, applied to Fermat curves.

Part 1. Bounds on the security

We begin with some preliminaries on abelian varieties.
Suppose A is an abelian variety over a finite field Fq, where q is a power of a

prime p. Then A is simple if it is not isogenous over Fq to a product of lower
dimensional abelian varieties, and A is supersingular if A is isogenous over Fq to
a power of a supersingular elliptic curve. (An elliptic curve E is supersingular if
E(Fq) has no points of order p.) A supersingular q-Weil number is a complex
number of the form

√
qζ where ζ is a root of unity. (Throughout the paper,

√
q

denotes the positive square root.)

Theorem 1 ([12, 19, 22]). Suppose A is a simple supersingular abelian variety over
Fq, where q is a power of a prime p, and P (x) is the characteristic polynomial of
the Frobenius endomorphism of A. Then:

(i) P (x) = G(x)e, where G(x) ∈ Z[x] is a monic irreducible polynomial and
e = 1 or 2;

(ii) the roots of G are supersingular q-Weil numbers;
(iii) A(Fq) ∼= (Z/G(1)Z)e unless q is not a square and either

(a) p ≡ 3 (mod 4), dim(A) = 1, and G(x) = x2 + q, or
(b) p ≡ 1 (mod 4), dim(A) = 2, and G(x) = x2 − q;
in these exceptional cases, A(Fq) ∼= (Z/G(1)Z)a× (Z/G(1)

2 Z×Z/2Z)b with
non-negative integers a and b such that a + b = e;

(iv) #A(Fq) = P (1).

The roots of G are called the q-Weil numbers for A. For a given abelian variety,
its q-Weil numbers are the Galois conjugates of a given one (under the action of the
Galois group of Q̄ over Q). We retain the notation of this section, including P , G,
and e, throughout the paper.

Theorem 2 ([12, 19]). The map that associates to a simple supersingular abelian
variety over Fq one of its q-Weil numbers gives a one-to-one correspondence between
the Fq-isogeny classes of simple supersingular abelian varieties over Fq and Galois
conjugacy classes of supersingular q-Weil numbers.

2. Definition of the cryptographic exponent cA

We introduce a useful new invariant, cA, which we will call the cryptographic
exponent. In the next section we show that cA captures the MOV security of the
abelian variety.
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Suppose A is a simple supersingular abelian variety over Fq and
√

qζ is a q-Weil
number for A. Let m denote the order of the root of unity ζ. Note that if

√
qζ ′ is

another q-Weil number for A, and m′ is the order of ζ ′, then ζ2 and (ζ ′)2 are Galois
conjugate, and therefore have the same order, namely m

gcd(2,m) = m′

gcd(2,m′) . If q is a
square, then ζ and ζ ′ are Galois conjugate, and thus m = m′. Therefore when q is
a square, m depends only on A.

Definition 3.

cA =

{
m
2 if q is a square,

m
gcd(2,m) if q is not a square.

We will call cA the cryptographic exponent of A. Let αA = cA/g and call it the
security parameter of A.

When q is not a square, cA is a natural number. When q is a square, cA is either
a natural number or half of a natural number.

If gcd(t, 2cA) = 1, then the cryptographic exponent for A over Fqt is the same as
the cryptographic exponent for A over Fq.

Let N denote the set of natural numbers. If k ∈ N, write Φk(x) for the k-
th cyclotomic polynomial

∏
ζ (x− ζ), where the product is over the primitive k-th

roots of unity ζ. Note that deg(Φk) = ϕ(k), where ϕ is Euler’s ϕ-function.

Lemma 4. Suppose that Φm(d) is divisible by a prime number `, and ` - m. Then
m is the smallest natural number k such that dk − 1 is divisible by `.

Proof. The roots of Φm in F` are exactly the primitive m-th roots of unity, since
` - m. By assumption, d is a root of Φm in F`, and so m is the order of d in F∗

` . �

We include a useful closely related result. The proof relies on a result that follows
from work in [14].

Proposition 5. If m, d ∈ N, d > 1, and (m, d) 6= (6, 2), then m is the smallest
natural number k such that dk − 1 is divisible by Φm(d).

Proof. Since xm−1 =
∏

r|m Φr(x), we have that Φm(d) divides dm−1. The proposi-
tion is true if m = 1 or 2. If m > 2 and (m, d) 6= (6, 2), it follows from (29) and (35)
of [14] that Φm(d) has a prime divisor which does not divide m. The proposition
now follows from Lemma 4. �

In the exceptional case (m, d) = (6, 2), we have Φm(d) = 3 which divides d2 − 1.

Theorem 6. Suppose A is a simple supersingular abelian variety over Fq.
(i) If q is a square then the exponent of A(Fq) divides Φ2cA(

√
q), which divides

√
q2cA − 1.

(ii) If q is not a square then the exponent of A(Fq) divides ΦcA(q), which divides
qcA − 1.

Proof. By Theorem 1(iii), the exponent of A(Fq) divides G(1). Let π be a q-Weil
number for A. If q is a square, then Φ2cA( π√

q ) = 0. Thus, G(x) =
√

qϕ(2cA)Φ2cA( x√
q )
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and G(1) =
√

qϕ(2cA)Φ2cA( 1√
q ) = ±Φ2cA(

√
q). If q is not a square, then ΦcA(π2

q ) =

0, so G(x) | qϕ(cA)ΦcA(x2

q ). Therefore G(1) | qϕ(cA)ΦcA(1
q ) = ±ΦcA(q). As in

Proposition 5, Φm(d) divides dm − 1. �

3. The cryptographic exponent and MOV security

The next result shows that the cryptographic exponent cA captures the MOV
security of the abelian variety. In other words, if A(Fq) has a subgroup of large
prime order `, then qcA is the size of the smallest field of characteristic p containing
a multiplicative subgroup of order `. Recall e ∈ {1, 2} from Theorem 1.

Theorem 7. Suppose A is a simple supersingular abelian variety over Fq, q = pn,
` > 5 is a prime number, ` | #A(Fq), and ` > (1 +

√
p)ng/e. Let r denote the

smallest natural number k such that ` | pk − 1. Then pr = qcA.

Since the proof is rather technical, we do not give it here, but instead prove the
following slightly weaker result.

Theorem 8. Suppose A is a simple supersingular abelian variety over Fq, ` is a
prime number, ` | #A(Fq), and ` - 2cA. Then cA is the smallest half-integer k such
that qk − 1 is an integer divisible by `.

Proof. By Theorem 6, we have ` | Φ2cA(
√

q) if q is a square, and ` | ΦcA(q) otherwise.
The theorem now follows from Lemma 4. �

Remark 9. For purposes of cryptography we are only interested in the case where
` is large. If ` > 2g + 1, then ` - 2cA, so the condition ` - 2cA is not a problem.
This follows since 2g = deg(P ) = edeg(G), deg(G) = ϕ(2cA) if q is a square,
deg(G) = ϕ(cA) or 2ϕ(cA) if q is not a square, and ϕ(M) ≥ `− 1 if ` | M .

4. Bounding the cryptographic exponent

Next we determine exactly which values can occur as cryptographic exponents
for simple supersingular abelian varieties. Let

Wn = {k ∈ N : ϕ(k) = n}.

For example, W1 = {1, 2}, Wn = ∅ if n is odd and n > 1,

W2 = {3, 4, 6}, W4 = {5, 8, 10, 12}, W6 = {7, 9, 14, 18}.

Let k′ denote the odd part of a natural number k. If p is a prime, define

Xp =

{
{k ∈ N : 4 - k and 2 has odd order in (Z/k′Z)∗} if p = 2,
{k ∈ N : p - k and p has odd order in (Z/kZ)∗} if p is odd;

Vp =


{k ∈ N : k ≡ 4 (mod 8)} if p = 2,
{k ∈ N : p | k and k ≡ 2 (mod 4)} if p ≡ 3 (mod 4),
{k ∈ N : p | k and k is odd} if p ≡ 1 (mod 4);
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Kg(p) =


(W2g ∩ Vp) ∪ (Wg − Vp) if g > 2,
(W4 ∩ Vp) ∪ (W2 − Vp) ∪ {1} if g = 2,
(W2 ∩ Vp) ∪ (W1 − Vp − {1}) if g = 1.

The next result can be shown to follow from Proposition 3.3 of [22].

Proposition 10 ([22]). Suppose A is a simple supersingular abelian variety over
Fq.

(i) If q is a square, then e = 2 if and only if 2cA ∈ Xp.
(ii) If q is not a square, then e = 2 if and only if cA = 1 and g = 2.

Theorem 11. Suppose g and n are natural numbers and n is even. Then c = m
2

occurs as the cryptographic exponent of a simple supersingular abelian variety of
dimension g over Fpn if and only if m ∈ (Wg ∩Xp) ∪ (W2g −Xp).

Proof. If ζ is a primitive m-th root of unity, then
√

pnζ corresponds by Theorem 2
to a simple supersingular abelian variety over Fpn of dimension d = edeg(G)/2 =
eϕ(m)/2. By Proposition 10(i), d = g if and only if m ∈ (Wg∩Xp)∪(W2g−Xp). �

Theorem 12. Suppose g and n are natural numbers and n is odd. Then c occurs as
the cryptographic exponent of a simple supersingular abelian variety of dimension g
over Fpn if and only if c ∈ Kg(p).

Proof. Suppose A is a simple supersingular abelian variety of dimension g over
Fq = Fpn with a q-Weil number π =

√
qζ with ζ a primitive m-th root of unity. Then

ϕ(cA) = [Q(π2) : Q]. We have 2g = e[Q(π) : Q] = e[Q(π) : Q(π2)][Q(π2) : Q].
It follows from Lemma 2.6 of [22] that Q(π) = Q(π2) if and only if cA ∈ Vp. It
follows from Proposition 10(ii) that cA ∈ Kg(p). The converse follows the same
reasoning. �

For any given g and q, it is easy to work out from Theorems 11 and 12 exactly
which values can occur as cryptographic exponents cA for g-dimensional simple
supersingular abelian varieties A over Fq, as is done in the following two corollaries.

Corollary 13. If n is even, then the only possible cryptographic exponents cA for
simple supersingular abelian surfaces A over Fpn are the numbers of the form m

2
with m ∈ {3, 4, 5, 6, 8, 10, 12}. For m ∈ {3, 4, 6}, m

2 occurs as a cA if and only if
p ≡ 1 (mod m), and for m ∈ {5, 8, 10, 12}, m

2 occurs as a cA if and only if p 6≡ 1
(mod m). An analogous statement holds for 4-dimensional varieties, with {3, 4, 6}
and {5, 8, 10, 12} replaced by {5, 8, 10, 12} and {15, 16, 20, 24, 30}, respectively.

Corollary 14. If n is odd, then the exact sets of cryptographic exponents cA that
occur for simple supersingular abelian varieties A of dimension g over Fpn with
2 ≤ g ≤ 5 are given below.

(i) Suppose g = 2.
(a) cA ∈ {1, 3, 4, 6} if p ≥ 7;
(b) cA ∈ {1, 3, 4, 5, 6} if p = 5;
(c) cA ∈ {1, 3, 4} if p = 3;
(d) cA ∈ {1, 3, 6, 12} if p = 2.

(ii) Suppose g = 3.
(a) There does not exist such

an A if p 6= 3, 7;
(b) cA = 14 if p = 7;
(c) cA = 18 if p = 3.
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(iii) Suppose g = 4.
(a) cA ∈ {5, 8, 10, 12} if p ≥ 7;
(b) cA ∈ {8, 10, 12, 15} if p = 5;
(c) cA ∈ {5, 8, 10, 12, 30} if p = 3;
(d) cA ∈ {5, 10, 20} if p = 2.

(iv) Suppose g = 5.
(a) There does not exist such

an A if p 6= 11;
(b) cA = 22 if p = 11.

Corollary 15. Suppose p is prime, n and g are odd natural numbers, and g > 1.
(i) If p 6≡ 3 (mod 4), then there does not exist a simple supersingular abelian

variety of dimension g over Fpn.
(ii) If p ≡ 3 (mod 4), and there exists a simple supersingular abelian variety of

dimension g over Fpn, then g = pb−1(p− 1)/2 for some natural number b.

Proof. Suppose there is a simple supersingular abelian variety A of dimension g
over Fpn . Since g > 1 is odd, we conclude from Theorem 12 that ϕ(cA) = 2g ≡ 2
(mod 4) and p | cA. This is only possible if cA = pb or 2pb, and p ≡ 3 (mod 4). �

Part 2. Optimal supersingular abelian varieties

Definition 16. Suppose A is a supersingular abelian variety of dimension g over Fq.
We say that A is optimal if A is simple, and cA ≥ cB for every simple supersingular
abelian variety B of dimension g over Fq.

Optimal supersingular elliptic curves are well-known. The jacobian of the genus
2 curve y2 + y = x5 + x3 over F2 is optimal (cA = 12), and was given in [8].

The next two sections give two different constructions of families of examples of
optimal supersingular abelian varieties. The first comes from taking a piece of the
Weil restriction of scalars of an elliptic curve. This construction has the advantage
of producing abelian varieties of dimensions 2, 3, 4, and 6 with the largest security
parameter possible for abelian varieties of that dimension, namely 6, 6, 7.5, and 7,
respectively. The best such examples occur in characteristics 2 and 3, which gives
a computational advantage. The second construction comes from jacobian varieties
of superelliptic curves, and has the advantage of giving a choice of infinitely many
abelian varieties and characteristics.

5. A subvariety of the Weil restriction of scalars

If k ⊂ k′ are finite fields, E is an elliptic curve over k, and Q ∈ E(k′), write
Trk′/kQ =

∑
σ∈Gal(k′/k) σ(Q). See Appendix A for a proof of a generalization of the

following result.

Theorem 17. Suppose E is a supersingular elliptic curve over Fq, π is a q-Weil
number for E, and π is not a rational number. Fix r ∈ N with gcd(r, 2pcE) = 1.
Then there is a simple supersingular abelian variety A over Fq such that:

(i) dim(A) = ϕ(r);
(ii) for every primitive r-th root of unity ζ, πζ is a q-Weil number for A;
(iii) cA = rcE;
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(iv) αA = r
ϕ(r)αE;

(v) there is a natural identification of A(Fq) with the subgroup of E(Fqr)

{Q ∈ E(Fqr) : TrFqr /F
qr/`

Q = O for every prime ` | r}.

Remark 18. By Theorem 17(iii), A(Fq) has the same MOV security as E(Fqr).
By Theorem 17(v), computation in A(Fq) is as efficient as computation in E(Fqr).
The advantage of using A(Fq) is that (by Theorem 17(iv)) its security parameter
αA is higher than that of E(Fqr) by a factor r/ϕ(r), so (for example) it provides
shorter signatures for the same security in the BLS short signature scheme [3].

Using E(Fqr), a signature in the BLS scheme is the x-coordinate of a point on
the elliptic curve, which is an element of Fqr and therefore is r log2(q) bits.

Fixing a basis for Fqr over Fq, an element of Fqr can be viewed as a vector with
r coordinates in Fq. Using A(Fq) in the short signature scheme and identifying
it with a subgroup of E(Fqr) as in Theorem 17(v), a signature will now be only
the first ϕ(r) coordinates of the x-coordinate of a point in E(Fqr) (along with a
few extra bits to resolve an ambiguity that may arise), so the signature is about
ϕ(r) log2(q) bits. Thus, for signature generation there is no additional computation
required: just follow the algorithm in [3] to produce the x-coordinate of a point in
E(Fqr), and drop the extra coordinates. However, for signature verification there is
now an extra step: given a signature one must reconstruct the missing coordinates
to get the x-coordinate of a point in our subgroup of E(Fqr), and then follow the
verification algorithm in [3]. For more information on this extra verification step,
see the examples below.

Theorem 17 can be applied in particular to the low dimensional cases where
(dim(A), p, r, cA) is (2, 2, 3, 12), (2, p > 3, 3, 6), (4, 2, 5, 20), (4, 3, 5, 30), (6, 2, 9, 36),
or (6, 3, 7, 42). Next we use Theorem 17 to give implementations in the cases
(4, 3, 5, 30) and (2, 2, 3, 12).

5.1. dim(A) = 4, p = 3. The largest security parameter for a 4-dimensional abelian
variety is 7.5, and this occurs only in characteristic 3.

When gcd(n, 6) = 1 there are exactly 2 isogeny classes of elliptic curves over F3n

with security parameter 6. Equations for a curve from each isogeny class, along with
one of its Weil numbers and its characteristic polynomial of Frobenius, are given
below, where ( 3

n) denotes the Jacobi symbol, which is +1 if n ≡ ±1 (mod 12), and
−1 if n ≡ ±5 (mod 12).

curve equation Weil number characteristic polynomial
E+

n y2 = x3 − x + ( 3
n)

√
3ne7πi/6 Gn(x) = x2 + 3

n+1
2 x + 3n

E−
n y2 = x3 − x− ( 3

n)
√

3neπi/6 Hn(x) = x2 − 3
n+1

2 x + 3n

By Theorem 11 there is no elliptic curve over F3n with security parameter 6 when
n is even. If n is an odd multiple of 3 then there are again two isogeny classes of
curves with the same Weil numbers and characteristic polynomials as in the above
table, but with different curves E+

n and E−
n .
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Applying Theorem 17 to the elliptic curves E+
n and E−

n over F3n with r = 5
produces 4-dimensional abelian varieties A+

n and A−
n over F3n , described in the

following table.

Weil number characteristic polynomial
A+

n

√
3neπi/30 H5n(x5)/Gn(x)

A−
n

√
3ne17πi/30 G5n(x5)/Hn(x)

Write E for E±
n and A for A±

n . By Theorem 17(iv), αA = 5
4αE = 7.5. Using the

characteristic polynomials to compute #A(F3n) for various n, we find the following
sample values of n for which #A(F3n) is of a size suitable for cryptographic appli-
cations, and has a large prime factor. Here the signature length is 4 log2(3n) (see
Remark 18), the DL security column contains log2(`) where ` is the largest prime
dividing #A(F3n), and the MOV security column contains log2(qcA) = log2(330n).

variety n signature length DL security MOV security
A+

n 15 95 95 713
A+

n 17 108 100 808
A+

n 19 120 112 903
A+

n 33 209 191 1569
A+

n 43 273 265 2045

Let k = F3n and k1 = F35n . As discussed in Remark 18, the extra computation
required for signature verification amounts to solving the problem: given 4 of the 5
k-coordinates of x, where (x, y) ∈ E(k1) and Trk1/k(x, y) = O, compute the fifth.

We give an algorithm to do this. Suppose Q = (x, y) ∈ E(k1) and
∑4

i=0 σi(Q) = O
where σ generates Gal(k1/k). Then there is a function F on E with zeros at the
points σi(Q) for 0 ≤ i ≤ 4, a pole of order 5 at O, and no other zeros or poles. Let
g(z) =

∏4
i=0(z− σi(x)) ∈ k[z], and let X and Y denote the coordinate functions on

E. Then g(X) is a function on E with zeros at ±σi(Q) for 0 ≤ i ≤ 4, a pole of order
10 at O, and no other zeros or poles. Thus g(X) = FF̃ , where F̃ is F composed with
multiplication by −1 on E. Write F = f1(X) + f2(X)Y with f1(X), f2(X) ∈ k[X].
Since X has a double pole at O and Y a triple pole, we have deg(f1) ≤ 2 and
deg(f2) = 1. Setting g(X) = f1(X)2 − Y 2f2(X)2 = f1(X)2 − (X3 −X ± 1)f2(X)2

gives equations relating the coefficients of g, f1, and f2.
Suppose we know 4 of the 5 coordinates of x with respect to some fixed basis of

k1 over k, and let b ∈ k denote the missing coordinate. The coefficients of g are
polynomials in b with coefficients in k. Solving the above system of equations for b
reduces to computing the resultant of 2 polynomials in 2 variables, and then finding
the roots of a degree 9 polynomial in k[z]. (The extra bits in the signature are used
here in case the polynomial has more than one root.) This extra verification step
takes a few seconds on a desktop computer, using the number theory software pack-
age KASH to compute the resultant and find its roots, but this could be optimized
by writing a dedicated program.

Remark 19. An alternative way to generate a signature from the point Q above
is to take 4 of the 5 symmetric functions of x and its conjugates (i.e., 4 of the 5
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coefficients of the polynomial g), instead of taking 4 of the 5 k-coordinates of x. It is
computationally very fast to recover the missing coefficient of g using the algorithm
above. Then x can be computed by factoring g over k1. In our experiments the
method above, which works over k rather than k1, seems to be more efficient.

One could alternatively apply Theorem 17 with q = 3 and r = 5n and gain
an additional factor of n/ϕ(n) in the signature length. However, the verification
problem becomes harder.

5.2. dim(A) = 2, p = 2. The largest security parameter for an abelian surface is 6,
and this occurs only in characteristic 2.

When n is odd there are exactly 2 isogeny classes of elliptic curves over F2n with
αE = 4, namely those of y2 +y = x3 +x+1 and y2 +y = x3 +x. Applying Theorem
17 with these curves and r = 3 produces two abelian surfaces A±

n over F2n with
Weil number ±

√
2neπi/12 and characteristic polynomial of Frobenius

x4 ∓ 2
n+1

2 x3 + 2nx2 ∓ 2
3n+1

2 x + 22n.

(One of these abelian varieties was given in [8] as the jacobian of a hyperelliptic
curve.)

By Theorem 17(iv) (or directly from the definition), αA±
n

= 6. Using the char-
acteristic polynomials to compute #A±

n (F2n) for various n, we find the following
sample values of n which are suitable for cryptographic applications. Here the sig-
nature length is 2n.

variety n signature length DL security MOV security
A+ 43 86 82 516
A− 53 106 93 636
A+ 79 158 141 948
A+ 87 174 167 1044
A− 87 174 156 1044
A− 103 206 192 1236
A− 121 242 220 1452

As discussed in Remark 18, there is no extra computation required to gener-
ate short signatures using A±

n , and the extra computation required for signature
verification amounts to solving the following problem: given two of the three F2n-
coordinates of a point in the subgroup of E±

n (F23n) corresponding to A±
n (F2n) under

Theorem 17(v), find the third coordinate. Using the method described above in the
case of p = 3, g = 4, and r = 5, in the present case the computation reduces to
taking one square root in F2n and solving one quadratic polynomial over F2n . Tak-
ing square roots in a field of characteristic 2 is just a single exponentiation, and
solving a quadratic equation is not much harder. Neither of these operations took
measurable time on a desktop computer with the field F2103 .

6. Jacobian varieties that are optimal when q is a square

The next result gives families of examples of jacobian varieties that are optimal.
They have the advantage of giving a choice of infinitely many field characteristics.
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Theorem 20. Suppose that a, b, n ∈ N have no common divisor greater than 1, n
is odd, and n + 2 − ((n, a) + (n, b) + (n, a + b)) = ϕ(n). Let q be a prime power
congruent to −1 (mod n), and let F = Fq2. For γ ∈ F ∗, let Cγ be the curve

yn = γxa(1− x)b

over F and write Aγ for its jacobian variety. Then Cγ has genus ϕ(n)/2 and Aγ is
supersingular. If in addition γ generates F ∗ modulo n-th powers, then Aγ is simple,
cAγ = n, and Aγ(F ) is cyclic.

Proof. The genus g of Cγ being ϕ(n)/2 follows from the fact that g is independent
of γ, and the formula for the genus of C±1 given on p. 55 of [4].

Since q ≡ −1 (mod n), Theorem 20.15 of [18] shows that the Frobenius endomor-
phism of A1 is multiplication by −q. In particular, the characteristic polynomial of
Frobenius is (x + q)2g, and A1 is supersingular. Since every Aγ is isomorphic to A1

over the algebraic closure F̄ , every Aγ is supersingular.
The endomorphism ring End(Aγ) contains the group of n-th roots of unity µn,

where ξ ∈ µn acts on Cγ by sending (x, y) to (x, ξy). Fix an n-th root δ of γ. Then
δq2

is also an n-th root of γ. Let ζ = γ(q2−1)/n = δq2−1. Then ζn = 1, so we can
view ζ ∈ µn ⊂ End(Aγ). We have a commutative diagram

C1
φ1−−−−→ C1

λ

y yλ′

Cγ
φγ−−−−→ Cγ

where φ1, φγ are the q2-power maps (x, y) 7→ (xq2
, yq2

) of C1 and Cγ , respectively,
and λ, λ′ : C1 → Cγ are the isomorphisms (x, y) 7→ (x, δy), (x, y) 7→ (x, δq2

y).
Writing [φγ ], [λ′], etc. for the induced maps on A1 and Aγ , we noted above that
[φ1] = −q, and so the Frobenius endomorphism of Aγ is

[φγ ] = [λ′ ◦φ1 ◦ λ−1] = [λ−1] ◦ [φ1] ◦ [λ′] = [λ−1] ◦ (−q) ◦ [λ′] = −q ◦ [λ′ ◦ λ−1] = −ζq.

Suppose now that γ generates F ∗ modulo n-th powers. Then ζ is a primitive
n-th root of unity, and since n is odd, −ζ is a primitive 2n-th root of unity. The
characteristic polynomial P (x) of Frobenius on Aγ has degree 2g = ϕ(n) = ϕ(2n),
and has −ζq as a root, so P (x) =

∏
ξ(x − ξq), product over primitive 2n-th roots

of unity ξ. Thus P (x) = qϕ(2n)Φ2n(x/q). Since Φ2n(x) is irreducible, so is P (x).
Therefore Aγ is simple and cA = n. By Theorem 1, Aγ(F ) is cyclic. �

Example 21. Suppose (g, n, a, b) is one of the following 4-tuples:

g n a b
3 9 3 1
4 15 5 3
6 21 7 3
9 27 9 1
10 33 11 3
`−1
2 ` α β
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where in the last row ` is a prime, 1 ≤ α, β ≤ `− 1, and α+β 6= `. Let q be a prime
power congruent to −1 (mod n), F = Fq2 , and γ a generator of F ∗ modulo n-th
powers. Let C be the curve yn = γxa(1 − x)b and A its jacobian variety. Then by
Theorem 20, A is simple and supersingular, genus(C) = dim(A) = g, cA = n, A(F )
is cyclic, and 2n is the smallest integer k such that #A(F ) divides qk − 1. In the
table, if g = 3, 4, 6, 9, 10, or if g > 3 and g is a prime of the form (`− 1)/2, then 2n
is the largest element of W2g, so A is optimal. Optimal examples with g = 1 and
5 are obtained by taking ` = 3 and 11 in the last row, and non-optimal examples
with g = 2 and 3 by taking ` = 5 and 7 in the last row.

7. Security

Proofs of security for cryptosystems based on elliptic curves rely on the difficulty
of some problem (EC Diffie-Hellman and/or Weil Diffie-Hellman, for the systems in
[17, 13, 2, 3, 20]). These hard problems generalize to abelian varieties, where they are
also believed to be hard. However, we note some additional security considerations.

Allowing the cryptographic exponent cA to take half-integer values when q is
a square means that cA correctly captures the MOV security of the variety. For
example, for every prime p there is a supersingular elliptic curve E over Fp2 such
that cA = 1

2 , by Theorem 11. By Theorem 1, E(Fp2) ∼= (Z/(p − 1)Z)2, and the
smallest field in which the Weil and Tate pairings take their values is Fp. Therefore,
solving the DL problem in F∗

p will break cryptographic schemes that base their
security on the difficulty of solving the DL problem in a subgroup of E(Fp2). In
other words, the MOV security here really comes from Fp, and not Fq. Theorem 7
says that in general the MOV security comes from a field of size qcA .

It follows from Theorem 8 that in the special case where A is an elliptic curve, q
is not a square, and Q is a point in A(Fq) of large order, the cryptographic exponent
cA coincides with the “security multiplier” for Q that was defined in [3].

Abelian varieties which are jacobians of hyperelliptic curves over a finite field
whose size is small compared to the curve’s genus are considered to be weak for
use in cryptography, due to attacks in [1, 10]. The examples coming from §5 do
not appear in general to be jacobians of curves. The examples in §6 are jacobians,
but outside of the cases equivalent to the a = b = 1 case they do not appear to be
jacobians of hyperelliptic curves. In any case, these attacks do not apply to abelian
varieties of small dimension.

Weil descent attacks [11, 9] have been carried out for certain elliptic curves over
binary fields. In these attacks one starts with an elliptic curve over Fqr and takes
its Weil restriction of scalars down to Fq. This is an abelian variety B of dimension
r over Fq. The attack proceeds by looking for a hyperelliptic curve whose jacobian
variety is related to B, solving the DL problem for this jacobian variety, and using
it to solve the DL problem for the original elliptic curve. For an abelian variety A
produced by Theorem 17 from an elliptic curve E, we have A(Fq) ⊆ E(Fqr). It is
tempting to try to break the associated cryptosystems by solving the DL problem on
E(Fqr) using Weil descent. However, the Weil descent attack replaces (the subfield
curve) E by its Weil restriction of scalars from Fqr to Fq, which has A as a large
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simple factor, so we are back where we started. In addition, it is not known how to
carry out Weil descent attacks except when p = 2 and dim(A) ≥ 4, and the most
important applications of Theorem 17 (the examples in §5) have either p = 3 and
dim(A) = 4, or p = 2 and dim(A) = 2. For these examples, one could ask whether
there is an efficient way to find hyperelliptic curves, if they exist, whose jacobians
are related to the given abelian variety in a helpful way. This is likely to be a hard
problem in general. Its analogue in characteristic zero would solve a long-standing
problem by producing a sequence of elliptic curves of unbounded rank.

Acknowledgments. The authors thank Steven Galbraith for his observations and
Dan Boneh for helpful conversations.
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Appendix A. Proof of Theorem 17

In this section we will state and prove a more general version (Theorem 24 below)
of Theorem 17.

Write Res(f, g) for the resultant of two polynomials f and g.

Lemma 22. Suppose a, b, c are pairwise relatively prime integers. Then there are
g1(x), g2(x) ∈ Z[x] such that

g1(x)
∏

a|d|abc

Φd(x) + g2(x)
∏

b|d|abc

Φd(x) =
∏

ab|d|abc

Φd(x).

Proof. Let f1(x) =
∏

a|d|abc,b-d Φd(x) and f2(x) =
∏

b|d|abc,a-d Φd(x). If ηi is a root of
fi for i = 1 and 2, then η1/η2 is a root of unity of order divisible by both a prime
divisor of a and a prime divisor of b. Hence η1/η2 − 1 is a (cyclotomic) unit in the
ring of algebraic integers. Therefore Res(f1, f2), an integer which is the product of
the differences of the roots of f1 and the roots of f2, is ±1. By Proposition 9 in §3.5
of [5], there are g1, g2 ∈ Z[x] such that g1(x)f1(x) + g2(x)f2(x) = Res(f1, f2). �

Lemma 23. Suppose M is a square matrix over a field F with characteristic poly-
nomial fM , and g(x) ∈ F [x]. Then det(g(M)) = Res(g, fM ).

Proof. This is clear if M is upper-triangular. To obtain the general case, replace F
by its algebraic closure and upper-triangularize M . �

Recall the notation e from Theorem 1.

Theorem 24. Suppose E is a supersingular abelian variety over Fq with e = 1.
Fix r ∈ N such that gcd(r, 2pcE) = 1. Then there is a simple supersingular abelian
variety A over Fq such that:

(i) dim(A) = ϕ(r) dim(E);
(ii) if π is a q-Weil number for E, then πζ is a q-Weil number for A for every

primitive r-th root of unity ζ;
(iii) cA = rcE ;
(iv) αA = r

ϕ(r)αE ;
(v) there is a natural identification of A(Fq) with the subgroup of E(Fqr)

{Q ∈ E(Fqr) : TrFqr /F
qr/`

Q = O for every prime ` | r}.
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Proof. Let Ω be the set of q-Weil numbers for E , and d = dim(E). Since e = 1,
the characteristic polynomial of the Frobenius endomorphism φE on E is PE(x) =∏

π∈Ω(x− π).
Let k = Fq and k1 = Fqr , and let B denote the Weil restriction of scalars (§1.3

of [21]) of E from k1 to k. Then B is an rd-dimensional abelian variety defined over
k, there is a natural isomorphism

B(k) ∼= E(k1), (1)

and PB(x) =
∏

π∈Ω(xr − πr) is the characteristic polynomial of the Frobenius en-
domorphism on B over k. Fix a π ∈ Ω and a primitive r-th root of unity ζ. Then
PB(πζ) = 0, so B has a simple supersingular abelian subvariety A with πζ as a
q-Weil number. We will show that the conclusions of the theorem hold for A.

Assertion (iii) holds by Definition 3. By Proposition 10 and the fact that p - r,
e = 1 for A. Thus, 2 dim(A) = [Q(πζ) : Q]. Since gcd(r, 2pcE) = 1 we have
Q(ζ) ∩ Q(π) = Q, so [Q(πζ) : Q] = [Q(π) : Q][Q(ζ) : Q] = 2 dim(E)ϕ(r). This
proves (i), and (ii) and (iv) follow. The isomorphism (1) identifies A(k) with a
subgroup of E(k1), and it remains only to determine this subgroup.

If ` is a prime divisor of r, write r = `im with ` - m, let k` = Fqr/` , and let
h`(x) =

∏
d|m Φ`id(x) = (xr − 1)/(xr/` − 1). Let

T = {Q ∈ E(k1) : Trk1/k`
Q = O for every prime ` | r} = ∩`|r ker(h`(φE)).

Applying Lemma 22 inductively one can show that there are γ`(x) ∈ Z[x] such
that

∑
`|r γ`(x)h`(x) = Φr(x). It follows that T = ker(Φr(φE)). Since φE is purely

inseparable, Φr(φE) is separable, so #T is the degree of the endomorphism Φr(φE).
Applying Lemma 23 to the matrix ME giving the action of φE on the `-adic Tate

module of E for some prime ` 6= p shows that

#T = deg(Φr(φE)) = det(Φr(ME))

= Res(Φr, PE) =
∏

Φr(η)=0

PE(η) = PA(1) = #A(k).

If E(k1) is cyclic, it follows that the isomorphism (1) identifies A(k) with T .
In the special cases where E(k1) is not cyclic (Theorem 1(iii)) one can show that
#A(k) = PA(1) is odd, and since the odd part of E(k1) is always cyclic, (1) identifies
A(k) with T in this case also. �
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