
 1

A New Forward Secure Signature Scheme using Bilinear
Maps*

Fei Hu1 Chwan-Hwa Wu2 J. D. Irwin3

September 8, 2003

Abstract
Forward-secure signatures are used to defeat signature forgeries in cases of key

exposure. In this model, the signature key evolves with time and it is
computationally infeasible for an adversary to forge a signature for some time-
period prior to the key’s exposure.

In this paper a new forward-secure digital signature scheme is presented, which
is based on the use of bilinear maps recently advocated by Boneh and Franklin [9].
This scheme is efficiently constructed and can be used with a large number of time
periods with a log magnitude complexity. The signing and key-update operations
are very efficient when compared with other previously available schemes. A
formal definition, as well as a detailed analysis of the security performance or this
scheme, is presented. The security proof for this scheme is based on the
Computational Diffie-Hellman assumption, which leads to a unique approach to
proving security in the random oracle model. Furthermore, within the proof both
the hash oracle and the signing oracle are constructed in an innovative manner.

1 Introduction

1.1 The Key Exposure Problem
The Key exposure problem has been classified as one of the biggest problems for a security
system. In a conventional system, the system security is completely compromised once the
key is exposed. Together with the increasing use of small, easy-to-lose, handheld devices, the
key exposure problem is rapidly becoming more prevalent. Since users are employing their
portable devices for a variety of transactions, cryptographic computations are inevitably
required. While exposure of the key is certainly of great concern to the user, corporations and
services providers must also employ stronger security measures in their systems in order to
protect themselves from key exposure resulting from either malicious break-in or
unintentional leakage.

To address this problem, several different approaches have been suggested. Many of them
try to minimize exposure of the secret by splitting it and storing the parts in different places,
usually via secret sharing [8, 30]. There are many follow-ups to this idea, including a
threshold signature [13] and proactive secret sharing [22, 23]. However, as indicated in [5],
distribution can be quite costly and not a viable option for the average user. The highly

* This is the full version of our paper.
1 Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA.
Email: feihu@eng.auburn.edu. Supported by Department of ECE, Auburn university.
2 Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA.
Email: wu@eng.auburn.edu
3 Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA.
Email: jdirwin@eng.auburn.edu

 2

cooperative and interactive nature of the threshold schemes also makes the communication
and computation burden prohibitively high for wireless devices.

1.2 The Forward-secure Signature
The term (perfect) “forward secrecy” was first used by Günther [21] within the context of
session key exchange protocols, and again later in [14]. The basic idea is simply that
compromising a long-term key does not compromise past session keys; therefore, action in
the past is in some way protected against a loss of the current key. Anderson suggested this
paradigm and the idea of a digital scheme with forward security in an invited lecture
presented at the year 1997 ACM CCS conference [3]. It was first formalized by Bellare and
Miner in the context of a forward-secure signature scheme [5].

The basic idea presented in [5] is the use of a key-evolving signature scheme whose
operation is divided into time-periods, with a different secret key being used for each time-
period. Each secret key is used to sign the message in the current time-period and derive the
secret key for the next time-period. Like the ordinary signature scheme, the public key is
constant for all time-periods. A verification scheme checks both the signature’s validity and
time-period. The signature scheme is forward-secure because it is impossible for an adversary
to forge a signature for a previous time-period even if it obtains the current secret key.

Following the initial work by [5], a sequence of other deviations of the forward-secure
signature [1, 27, 24, 28] was suggested. In [1], an improved forward-secure signature scheme
with much shorter keys than those outlined in [5] was proposed. Krawczyk [27] suggested a
method for constructing a forward-secure scheme from any signature scheme, and thus made
the forward security of standard signature schemes (RSA, DSS) possible. Itkis and Reyzin
[24] proposed another forward-secure signature scheme based on the Guillou-Quisquater
signature. It provides efficient signing, verifying and storage, but the price tag for these
features is a longer running time for the key generation and update routine. Maklin [28]
proposed a generic construction that can be based on any underlying signature with an
unlimited total number of time-periods.

Integrating forward-secure signature with threshold techniques has also been investigated
[2, 31]. The forward-secure encryption scheme considered in [7] and [12] focused on private
and public key cryptography respectively. Key insulated cryptography [16] and intrusion
resilient cryptography [25, 17] were recently introduced to achieve a higher level of security.
However, these two approaches require time synchronization and interaction between the
device and server for each time-period. Therefore, they may not be applicable in some
scenarios.

1.3 Our Contribution
The scheme outlined in this paper extends the work by Gentry-Silverberg [20], Canetti-
Halevi-Katz [12] and Dodis etc. [17], and is the first construction of forward-secure
signatures based on bilinear maps. Although the underlying signature scheme (HIDS) for this
approach was initially considered by Gentry and Silverberg [20], their scheme works in a
different context and is not forward-secure. Furthermore, the authors have not provided any
security proof for their scheme (HIDS). Inspired by the works in [12, 17], we construct a
forward-secure signature scheme based on the scheme outlined in [20]. The security of this
new approach is based on the Computational Diffie-Hellman assumption, and leads to a
unique way of proving security in the random oracle model. Furthermore, within our proof,
the hash oracle and the signing oracle are constructed in an innovative manner in order to
accommodate the bilinear map.

Our scheme is very efficient in terms of the total number of time periods, T, and all of our
parameters have a complexity no larger than (log)O T . Therefore, when compared with other
forward secure signature schemes [5, 1, 24], our scheme is especially useful in scenarios
where frequent key updates or long operational system times, are required. The signing and
key update operations in our scheme are very simple, and only require one addition and one

 3

multiplication on the additive group 1G – on average for key update. Verification only
requires (log)O T mapping operations and multiplications. Because our scheme is based on
bilinear maps that can be constructed from Weil and Tate pairings on an elliptic curve, we are
able to work on a much smaller finite field and hence achieve both smaller key sizes and
signature sizes, when T is relatively small. Since complexity is related to logT , increases in
size are very slow as T increases.

1.4 Outline of the Paper
Our approach is first to provide precise definitions for the key-evolving signature scheme and
its forward security. Then some mathematical background in bilinear maps is provided. In
section 3, a detailed description of the scheme and its security analysis is given. Some
features of the scheme are given in section 4. Finally, the appendix provides a detailed
security proof.

2 Definitions
In this section, we define the key-evolving signature scheme and the formal notion of forward
security in the random oracle model. All these definitions closely follow those given in [1],
which, in turn, are based on the first formal definition of forward-secure signature proposed
by Bellare and Miner [5]. We also present the definition of the Computational Diffie-Hellman
assumption and review the preliminaries of bilinear maps, since our scheme is based on them.

2.1 The Forward-secure Digital Signature Scheme
The approach employed by forward-secure digital signature schemes involves updating the
secret key periodically. Therefore, a forward-secure signature scheme is, first, a key-evolving
signature scheme. The operational time of a forward-secure signature scheme is divided into
time-periods. As in standard signature schemes, it consists of a key generation algorithm, a
signing algorithm and a verification algorithm. In addition, a key update algorithm is needed
to update the secret key from one time-period to another, based on the secret key used in the
current time-period. Forward security results from the fact that the update algorithm is a one-
way function and it is very difficult for an adversary to recover previous secret keys even if
the secret key in the current time-period is known 4.

The signing algorithm signs a message with the secret key for that specific time-period.
However, the public key remains constant for all time-periods. The verification algorithm
verifies not only the validity of the signature but also the time-period in which the message is
signed.

Definition 2.1 [Key-evolving Signature Scheme]. A key-evolving digital signature scheme
is an algorithm with the quadruple, KE - SIG = (Gen, Upd, Sig, Ver) , such that:

1. Gen , the key generation algorithm, is a probabilistic algorithm that inputs a security
parameter k N∈ (given in unary as 1k) and the total number of time-periods T , and
returns a public key PK and the initial secret key 0SK .

2. Upd , the secret key update algorithm, accepts as input the secret key iSK for the
current time-period, and returns the new secret key 1iSK + for the next time-period.

4Obviously, it is important for the signer, i.e. key owner, to properly destroy the “old" secret key.

Otherwise, an adversary who obtains the “old" secret key can easily forge the signature for previous
time-periods. As pointed out by Itkis and Reyzin [24], secure deletion of the secret key is not a trivial
task, and it is not unreasonable to insist that the signer guarantee the deletion operation rather then
guaranteeing their placement in some “safe" place.

 4

This algorithm is usually deterministic.
3. Sig , the signing algorithm, accepts as input the secret key iSK in the current time-

period and a message M . It returns a pair i sign〈 , 〉 , that represents the signature of
M and time-period index i . This algorithm may be probabilistic.

4. Ver , the verification algorithm, accepts as input the public key PK , a message M
and a candidate signature i sign〈 , 〉 , and returns 1 if the signature of M is valid or 0,
otherwise. This algorithm is typically deterministic.

The verification algorithm is required to verify that a signature of M , generated via
()

iSK MSig , is valid for period i . For convenience, it is also assumed that the secret key iSK
for time-period {0 1}i … T∈ , , − , always contains both the value i and the total number of
periods T . For the last time period 1T − , ()1TSK −Upd returns the empty string TSK .

Since we work in the random oracle model, all algorithms in KE - SIG will also have
oracle access to a public hash function H , which is assumed random in our security analysis.
The reason for this stipulation will now be addressed.

SECURITY ANALYSIS USING THE RANDOM ORACLE MODEL. Our work is performed in the
random oracle (RO) model, which is widely used and was explicitly formulated by Bellare
and Rogaway [6]. It assumes that all parties, including adversaries, have oracle access to a
truly random function. In implementing an ideal system, the random oracle must be replaced
with some “cryptographic hash function”, e.g., MD5 or SHA, since a truly random function
does not exist in the real world. The RO model, i.e. its methodology, provides a practical and
efficient way to design cryptographic protocols and schemes.

The security of the signature scheme should guarantee that it is computationally infeasible
for any adversary to forge a signature message pair without knowledge of the secret key for
that time-period. The possibility of key exposure, caused by adversarial break-in, must also be
considered. Since we consider the time period starting at zero, we need modify slightly the
security model suggested by Abdalla and Reyzin [1] to suit the needs.5

In this model, an adversary knows the public key PK , the total number of time-periods T
and the current time-period. For the key-evolving signature scheme KE-SIG = (Gen, Upd,
Sig, Ver), the adversary F is functioning in three stages: the chosen-message attack (cma)
phase, the break-in (breakin) phase, and the forgery (forge) phase. In the cma phase, F has
access to the signing oracle, and can obtain the signature of any message it selects under the
current secret key. The breakin phase is used to model the possible key exposure caused by an
adversary F break-in. In such a case, F is given the current secret key iSK . In the final
forge phase, F outputs its forgery, i.e. a signature message pair. The adversary F is said to
be successful if it forges the signature of some “new” message for some time-period prior to
the break-in. Here, the term “new” message is used to indicate some message that has never
been queried for the signature by the adversary. We use the following experiment to evaluate
the success probability of breaking the forward-security of the signature scheme. The use of
k T, ," indicates that the arguments of the key generation algorithm could be more than just
k and T .

Experiment F-Forge-RO(- ,)FKE SIG

Select {0 1} {0 1}lH ∗: , → , at random

0() (,)
R

HPK SK k T, ← , "Gen
0i ←

Repeat

5The security model in [1] was modified using the security model by Bellare and Miner in [5] to work
in the random oracle model.

 5

(),
1(); () 1

H
SKiH H

i id F PK SK SK i i•
+← , ← ; ← + ;Sig cma Upd

Until ()d = breakin or ()i T=
If d ≠ breakin and i T= then 1i T← +

1i i← −
() (,)H

iM b sign F SK, 〈 , 〉 ← forge
If () 1H

PK M b sign, 〈 , 〉 =Ver and 0 b i≤ < and M was not queried of ()
b

H
SK •Sig in

period b
Then return 1 else return 0

In this formulation, it is understood that the state of F is preserved across its various
invocations once we first pick and fix coin for it [5]. In this foregoing experiment, a random
oracle H , i.e.the public hash function which is assumed to be random, is selected first; and
then the key generation algorithm (Gen), with access to H-oracle6, will generate both the
public key and the secret key for time-period 0. In the chosen-message attack phase (cma),
F queries the signing oracle (()

i

H
SK •Sig) and the H -oracle as many times as it wants, and

then outputs some value d to indicate it is finished. As long as d is not breakin , it proceeds
to the next time-period. At some time i, F decides to break-in; it is then given the current
secret key iSK . If F does not break-in by the last time-period, it is given TSK , which by
definition is the empty string. F will then try to forge a signature for some new message M
in time-period b i< . Depending upon the signature verification results, the experiment will
return a 1 or 0 to indicate the success or failure of the adversary F .

Definition 2.2 [Forward-security in the Random Oracle Model]. Let KE-SIG = (Gen,
Upd, Sig, Ver) be a key-evolving signature scheme, H a random oracle and F an adversary
as described earlier. Let (- [])fwsig k T F, , ,Succ "KE SIG denote the probability that the
experiment F-Forge-RO (KE-SIG[])k T F, , ," returns 1. Then the insecurity of KE-SIG is
the function

(- []) max { (- [])}fwsig fwsig
sig hash F

k T t q q k T F, , ; , , = , , ,Insec Succ" "KE SIG KE SIG ,

where the maximum is taken over all adversaries F for which the following condition holds:
the execution time for the above experiment is at most t ; F makes at most sigq signing

queries to the signing oracle and hashq hash queries to the -oracleH .

2.2 Cryptographic Preliminaries and Assumptions
Let q be some large prime, and let g be a generator of some cyclic group G with prime
order q . The security of our signature scheme is based upon the difficulties encountered in
solving the CDH problem.

Definition 2.3 [CDH Assumption]. A probabilistic algorithm A is said to be ()t ε, -break
CDH in a cyclic group G if A runs at most time t , computes the Diffie-Hellman function

()a b ab
g qDH g g g, , = with input ()g q, and ()a bg g, with a probability of at least ε , where

the probability is over the coins of A and ()a b, is chosen uniformly from q q×Z Z . The
group G is a ()t ε, -CDH group if no algorithm ()t ε, -breaks CDH in this group.

BILINEAR MAPS. Our signature scheme is constructed using the bilinear map suggested by
Boneh and Franklin [9]. Definitions of the terms employed in the use of bilinear maps are

6 We adopt the convention to denote the access of the hash oracle and signing oracle as the superscript
in expressions.

 6

briefly outlined as follows. Let 1G and 2G be two groups of order q for some large prime
q . A bilinear map 1 1 2ê : × →G G G is a one-way mapping between these two groups that has
following properties:
1. The map is bilinear; that is, for all 1, P Q∈G and all qa b, ∈Z , there is ()ê aP bQ,

()abê P Q= , .
2. The map is non-degenerate, i.e. the map does not send all pairs in 1 1×G G to the identity

in 2G . In particular, because 1G and 2G are in prime order q , if P is a generator of 1G
then ()ê P P, is a generator of 2G .

3. There is an efficient algorithm to compute the map ()ê P Q, for any 1 P Q, ∈G .
A parameter generator IG is defined as a randomized algorithm that takes a security
parameter k N∈ (denoted as unary 1k), runs in polynomial time k , and outputs the
description of the two groups 1G and 2G (of prime order q) and the bilinear maps ê , having
the above properties. The description of 1G , 2G contains the polynomial time (in k)
algorithm for computing the group operation. k is used to determine the bit length of q .

To simplify the efficiency analysis with input security parameter k , we assume the
computation for IG is a ()nO k bit operation, a group operation on 1G is at most a 1()nO k
bit operation, a group operation on 2G is at most a 2()nO k bit operation and one mapping
operation is a ()eO k bit operation. In this case, 1 2, , , n n n e N∈ are orders of the polynomial
time algorithm and are determined by the constructing of the bilinear map.

Note that the parameter generator, that generates 1 2and G G , which are ()t ε, -CDH
groups, can be constructed from Weil and Tate pairings on elliptic curves or abelian varieties
[9, 18, 26, 29, 32]. However, our scheme is independent of any specific construction.

3 The Proposed Forward-secure Signature Scheme

3.1 Scheme Overview
Our scheme employs the binary tree structure, which has been widely used by many

researchers in cryptographic design. In [5], Bellare and Miner first suggested the possibility of
using such a structure to form a forward secure signature scheme. It was also adopted in [20,
12, 17].

Following the approach in [12, 17], we define the total number of time-periods T to be a
power of 2 (2lT =). Therefore, each time-period (0 2 1)li i≤ < − can be represented using a
binary representation in l bits, that is, 1 2 3 li i i i i〈 〉 = " . We construct a full binary tree of height
l to cover all time-periods. The root of the tree is called node ε . Each leaf of the tree is
labeled with its binary representation i〈 〉 and denotes the time-period i . The time-period
evolves from the leftmost leaf to the rightmost leaf with the first leaf representing time-period
0, the second leaf representing time-period 1, and so forth, culminating in the last time-period
2 1l − . All other internal nodes , i..e. a node that is not a root or leaf of the tree, are labeled
with the binary representation of its position in j bits, where j is the depth of the node
(1 j l≤ <). We denote each of these internal nodes as ζ in short representation and

1 2 jζ ζ ζ ζ= " in binary representation.

The root node ε contains the “root secret” sε and a “root verification point” Q . For each
internal node ζ , we denote its left and right child node as 0ζ and 1ζ individually. Each of
the nodes ζ also contain a “node secret” sζ , a “local secret” 1Sζ ∈G , and a “verification

 7

point” Qζ . The “local secret key” for node ζ is ()sk Sζ ζ ζ= ,Q , where

1 1 2 1 2 1
()

j
Q Q Qζ ζ ζ ζ ζ ζ ζ −

= , , , ""Q . Each leaf contains a “leaf secret” is〈 〉 , a “local secret”

1iS〈 〉 ∈G and a “verification point” 1iQ〈 〉 ∈G . The “local secret key” for a leaf is then
()i i isk S〈 〉 〈 〉 〈 〉= , Q , where

1 1 2 1 2 1
(,)

li i i i i i i iQ Q Q Q
−〈 〉 〈 〉= , , , ""Q . Note that iQ〈 〉 is also included in

i〈 〉Q . All those “verification points” are necessary to verify the signature and are included in
the signature when the user signs a message. However, they are not really “secrets” and can
be revealed to the public. The secret keys have the following properties:

1. To sign a message during time-period i , one needs only is〈 〉 and isk〈 〉 .
2. Given skζ , secrets 0skζ and 1skζ can be efficiently derived.

3. If one has no knowledge of skζ for any prefixes ζ of i〈 〉 , then given PK
and time-period i , it is infeasible to derive isk〈 〉 .

The “global secret key” iSK for time-period i consists of (1) is〈 〉 , (2) isk〈 〉 , and (3)

{
0 1 2 11ji i i isk

−" }, for each 0ji = , 1 j l≤ ≤ . The first two parts are the “leaf secret” and the “local

secret key” for the leaf. Given the binary representation 0 1 li i i i〈 〉 = " (where 0i is the root),
for each index j (1 j l≤ ≤) that provides 0ji = , node 0 1 20 ji i i iζ = " has a right sibling node

0 1 2 11 1ji i i iζ −= " . These right sibling nodes are important for key updates. Thus, the last part

of iSK is a set of “local secret keys” for all right sibling nodes for time period i . ()iψ is used
to denote all these right sibling nodes for time period i .

To reduce the storage requirement, we utilize the same simplification techniques outlined
in [17] and eliminate some redundant storage of “verification points” in isk〈 〉 and
{

0 1 2 11ji i i isk
−" }. We decompose isk〈 〉 , {

0 1 2 11ji i i isk
−" } and represent iSK as { }i i i is S〈 〉 〈 〉 〈 〉 〈 〉, , ,S Q .

Here iS〈 〉 and i〈 〉Q are decomposed from isk〈 〉 ; { | ()}i S iζ ζ ψ〈 〉 = ∈S represents all the “local
secrets” of those right sibling nodes for time period i . Other redundant storage of ζQ is
eliminated. Note that the “node secret” (including root node) sζ (or sε) is randomly selected

and will be deleted as soon as the derivation of 0 1S Sζ ζ, and Qζ (or 0 1S S, and Q) is
performed. Therefore, sζ is not a part of iSK .

We can see from the foregoing description that it is easy to derive "isk〈 〉 for a later time-
period "i i> given the “global secret key” iSK . However, by properly destroying the “old
secrets”, we can make the derivation of the previous secret key difficult for everyone, even
the signer. In our scheme, i〈 〉S is stored for key update purposes only. Given i〈 〉S , it is easy to
update the current iS〈 〉 to 1iS〈 + 〉 . Update of i〈 〉Q and i〈 〉S (to 1i〈 + 〉Q and 1i〈 + 〉S) accompanies the
update of iS〈 〉 (to 1iS〈 + 〉) naturally, where 1is〈 + 〉 is selected at random. The forward security of
our signature scheme is based on the intractability of iS〈 〉 after time-period i . Assuming the
safe deletion of iS〈 〉 at the end of time-period i , the one-way property of the key update
algorithm guarantees the forward security of our scheme. Figure 1 shows the overall structure
of the binary tree and an example for time period 5i = . Detailed algorithms will be presented
in the following section.

 8

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

ε

010

0101 0 01 010 0101

(0101)
, { , , , }

() { 1, 011}

0101, i i

i i

S s H
Q s P Q Q Q Q

i node node

i S

ψ

〈 〉 〈 〉

〈 〉 〈 〉

= +

= =

=

〈 〉 =
Q

0, (0)

, { }0

S s H

Q s P

ζ εζ
φζ ζ

= =

= =Q

01, (01)0 0
, { }01 0

S S s H

Q s P Q

ζ ζ

ζ ζ

= = +

= =� Q
010, (010)01 01

, { , }010 0 01

S S s H

Q s P Q Q

ζ ζ

ζ ζ

= = +

= =Q

011, (011)01 01
{ , }0 01

S S s H

Q Q

ζ ζ

ζ

= = +

=Q

1, (1)

{ }

S s Hζ εζ
φζ

= =

=Q

Time period

{ , , , , }1 2PK ê P Q
Q s Pε

=

=

G G

0 24-1
Figure 1. The overall structure of the binary tree and an example for time period 5i = . The binary
representation is 0101i〈 〉 = . Nodes in dark gray are right sibling nodes that are important for key
update purposes. Other nodes in light gray are irrelevant at time period i .

3.2 Scheme Details
Our construction is based on the HIDS (hierarchical identity-based signature) in [20] and the
ke -PKE in [12]. We emphasize that there is no security proof for HIDS in [20] and the
proof in [12] does not fit our context directly, because our scheme is a signature, rather than
an encryption, scheme.

We assume the hash function 1{0 1}H ∗: , →G is defined either by Gen or other
specifications of the scheme. H is public to all parties and assumed to be random. We use φ
to denote an empty string and 0 j to denote j zeros. The details of our scheme are:

algorithm (1 2)k lT, =Gen

run (1)kIG to generate 1 2,G G (of prime order q) and ê

select a random generator 1P ←G ;
R

qsε ←Z ; set Q s Pε=
public key 1 2{ }PK ê P Q= , , , ,G G

0 1(0) (1)S s H S s Hε ε= , = ; set 0 0()sk S φ= , , 1 1()sk S φ= , , 10
{ }l S=S

For 1j = to 1l −
let 0 jζ = ; (0 1, sk skζ ζ) = Extract(, skζ ζ)
parse 0 0 0{ }sk Sζ ζ ζ= , Q , 1 1 1{ }sk Sζ ζ ζ= , Q , 10 0

{ }l l Sζ= ∪S S

select
0l

R

qs ←Z ; set
0 0l lQ s P= ; set 0 0 00 0 0

{ { }}l l lSK s S Qζ ζ= , , , ∪S Q (10lζ −=)
delete all other intermediate values

return 0()PK SK,

 9

Subroutine Extract(, skζ ζ)

parse 1 2 jζ ζ ζ ζ= " , where jζ = ; parse { }sk Sζ ζ ζ= , Q

R

qs Q s Pζ ζ ζ← , =Z

0 1 2(0)jS S s Hζ ζ ζ ζ ζ ζ= + " , 1 1 2(1)jS S s Hζ ζ ζ ζ ζ ζ= + "
set 0 0 0 1 1 1{ } { }sk S sk Sζ ζ ζ ζ ζ ζ= , , = ,Q Q , where 0 1 { }Qζ ζ ζ ζ= = ∪Q Q Q

return (0 1, sk skζ ζ)

The subroutine Extract is used to derive the “local secret key” for child nodes. Given the
input skζ and the node ζ , it returns the “local secret key” 0 1, sk skζ ζ . The Upd algorithm
also uses this subroutine.

algorithm ()iSKUpd

If 1i T= −
1iSK φ+ = ; delete iSK

else
let 0 1 2 li i i i i〈 〉 = " where 0i ε= for convenience, parse iSK as { }i i i is S〈 〉 〈 〉 〈 〉 〈 〉, , ,S Q
If 0li =

get 1iS〈 + 〉 from i〈 〉S ; set 1 1{ }i i iS〈 + 〉 〈 〉 〈 + 〉= −S S (remove 1iS〈 + 〉 from i〈 〉S)

select 1

R

i qs〈 + 〉 ←Z ; set 1 1i iQ s P〈 + 〉 〈 + 〉= ; set 1 1({ }) { }i i i iQ Q〈 + 〉 〈 〉 〈 〉 〈 + 〉= − ∪Q Q
set 1 1 1 1 1{ }i i i i iSK s S+ 〈 + 〉 〈 + 〉 〈 + 〉 〈 + 〉= , , ,S Q ; delete iSK

else
find the largest j (1 j l≤ <) that gives 0ji =

let 0 1 2 11ji i i iη −= " where 0i ε= for convenience, we have 1 0l ji η −〈 + 〉 =
get Sη from i〈 〉S ; set 1 { }i i Sη〈 + 〉 〈 〉= −S S (remove Sη from i〈 〉S)
For 1m = to l j−

let 10mζ η −= , (0 1, sk skζ ζ) =Extract(, skζ ζ),
parse 0 0 0{ }sk Sζ ζ ζ= , Q , 1 1 1{ }sk Sζ ζ ζ= , Q ; 1 1 1{ }i i Sζ〈 + 〉 〈 + 〉= ∪S S

select 1

R

i qs〈 + 〉 ←Z ; set 1 1i iQ s P〈 + 〉 〈 + 〉=

set 1 1 0 1 0 1{ { }}i i i iSK s S Qζ ζ+ 〈 + 〉 〈 + 〉 〈 + 〉= , , , ∪S Q (10l jζ η − −=); delete iSK
delete all other intermediate values

return 1iSK +

Depending on the input time period, the key update algorithm returns empty string (for the
last time period) or proceed to calculate the secret key for the next time period. The
calculation algorithm has two cases. If the -thl bit of i〈 〉 equals zero, it simply randomly
selects 1is〈 + 〉 , gets the local secret 1iS〈 + 〉 from i〈 〉S , deletes 1iS〈 + 〉 from i〈 〉S to avoid
redundant storage and updates i〈 〉Q to 1i〈 + 〉Q by replacing the “verification point” for the
leaf. If the -thl bit of i〈 〉 is not equal to zero, it finds the largest index j that produces

0ji = , the corresponding right sibling node η , and derives 1iS〈 + 〉 from Sη . The update of

i〈 〉S and i〈 〉Q follows the derivation of 1iS〈 + 〉 , and 1is〈 + 〉 is selected at random.

 10

algorithm ()
iSK MSig

parse 1 2 li i i i〈 〉 = " , { }i i i i iSK s S〈 〉 〈 〉 〈 〉 〈 〉= , , ,S Q
let 1 2()i i lV S s H i i i M〈 〉 〈 〉= + " and { , }isign V 〈 〉= Q
return i sign〈 , 〉

algorithm (,)PK M i sign, 〈 〉Ver

parse 1 2 li i i i〈 〉 = " , { , }isign V 〈 〉= Q and
1 1 2 1 2 1

{ , }
li i i i i i i iQ Q Q Q
−〈 〉 〈 〉= , , , ""Q

let

1 2 1 1 2
2

()

(())
j

l

i i i j
j

ê P VX
ê Q H i i i

−
=

,
=

, ...∏ "

; 1 1 2(()) (())i lY ê Q H i ê Q H i i i M〈 〉= , ⋅ , "

If X Y= then return 1 (true)
else return 0 (false)

The following analysis shows how to verify if sign is a valid signature for time-period i and
message M . If the signature is valid, we have

1 1 2 1 212 12

12 1
1 2 1 212 12 2

(() () ())
()

(()) (())

l
i i i j i ljj

sl l i i i j
i i i j jjj j

ê P s H i s H i i i s H i i i M
ê P V

ê Q H i i i ê P H i i i
X

ε 〈 〉−=

−
−= =

, + +
,

, ... ,

∑
= =
∏ ∏

"

"
"

" "

"

1 1 2 1 212 12

12 1
1 2

2

(()) (()) (())

(())

l
i i i j i ljj

sl i i i j
j

j

ê P s H i ê P s H i i i ê P s H i i i M

ê P H i i i

ε 〈 〉−=

−

=

, ⋅ , ⋅ ,

,

∏
=

∏

"

"

" "

"

12 1
1 1 2 1 2

2

12 1
1 2

2

(()) (()) (())

(())

sl i i i j
j i l

j
sl i i i j

j
j

ê P s H i ê P H i i i ê P s H i i i M

ê P H i i i

ε
−

〈 〉
=

−

=

, ⋅ , ⋅ ,

,

∏
=

∏

"

"

" "

"

1 1 2 1 1 2(()) (()) (()) (())i l i lê P s H i ê P s H i i i M ê Q H i ê Q H i i i M Yε 〈 〉 〈 〉= , ⋅ , = , ⋅ , =" "

Thus, the verification succeeds (algorithm (,)PK M i sign, 〈 〉Ver returns 1).

3.3 Efficiency Analysis
SIGNING AND VERIFYING. The signing operation in our scheme requires only one
multiplication and addition on 1G , which uses 1()nO k bit operations. The total signing
computation is independent of the total number of the time periods, T . The verification
requires more computation because it involves the pairing computation. To verify a signature
one must do (log)O T pairing operations and (log)O T multiplications or division on 2G .
Therefore, the total computation for verification is 2(log log)neO k T k T+ bit operations, and
the complexity is (log)O T solely in terms of T .

KEY GENERATION. The key generation only requires operations on 1G . It requires 1
multiplication to generate Q in the public key (1()nO k bit operations), 2log T multiplications

 11

and 2log 1T − additions to generate
0lS (1(log)nO k T bit operations), another 2log T

multiplications and 2log 1T − additions to generate
0lS (1(log)nO k T bit operations), and an

additional 2log T multiplications to generate
0lQ (1(log)nO k T bit operations). In addition,

the parameter generator IG runs in polynomial time in ()nO k . Therefore, the total
computation is 1 1(log)n n nO k k T k+ + bit operations. The total computation complexity in
terms of T is (log)O T .

KEY UPDATE. Key generation only requires operations on 1G . In the worst case, the key
update takes up to 2log T multiplications to generate 1i〈 + 〉Q , 2log 1T − multiplications and

2log 1T − additions to generate 1iS〈 + 〉 , another 2log 1T − multiplications and 2log 1T −

additions to generate 1i〈 + 〉S . The computation is 1(log)nO k T bit operations. Considering all
time periods, the average computation is reduced to 1()nO k and the complexity, in terms of
T , is reduced to (1)O .

SIZES. Assuming an element in either the public or private key, with the exception of the
description for groups and the map ê , is represented in ()O k bits, the public key size is
then ()O k . The complexity in terms of T is then (1)O . The private key contains a ()O k bits

is〈 〉 , a ()O k bits iS〈 〉 , a 2() logO k T bits i〈 〉Q , and an average 2() log 2O k T bits of i〈 〉S .
Therefore, it has the size of (log)O k T k+ , which is (log)O T in terms of T . The signature
contains a ()O k bits V and all the Qζ . The size is (log)O k T k+ , which is (log)O T in
terms of T .

Table 3-1 summarizes our results.

Key generation time 1 1(log)n n nO k k T k+ + (log)O T
Signing time 1()nO k (1)O
Verification time 2(log log)neO k T k T+ (log)O T
Key update time 1()nO k (1)O
Public key size ()O k (1)O
Private key size (log)O k T k+ (log)O T
Signature size (log)O k T k+ (log)O T

Table 3-1 A Complexity Summary of our signature scheme.

3.4 Security Analysis
The following theorem provides an upper bound on the insecurity of our signature scheme.
Since the security of our scheme is based on a different cryptographic assumption, i.e. the
CDH assumption, than previous works, we have a unique method for proving security in the
random oracle model. Both the hash oracle and the signing oracle are constructed in an
innovative manner, and the technique employed in the proof uses ideas from [1, 5, 12].

Theorem 3.1. If there exists a forger F that runs in time at most t , asking at most hashq hash
queries and sigq signing queries, such that ([])fwsig k T F ε, , , >Succ "KE - SIG then there

exists a adversary A that (' ')t ε, -break CDH in group 1G where

 12

1 2' (log)nt t O k k T= + +
' 1 1 (1)hash sigT q qε ε= ⋅ + + ⋅

Proof idea: To break CDH in the additive group 1G with the order of q , A is given P (a
random generator of 1G), 'P aP= and 'Q bP= , where , qa b∈Z is randomly chosen and
remains unknown to A . The target of A is to derive 'S abP= with the help of the forger F .
To derive 'S , A runs F as the subroutine. A provides F the public key and answers its
hash queries, signing queries and breakin query. Note that F has no other means of
obtaining answers to these queries and cannot verify that the hash answers are the same as
those given by the public hash function H . A appears to be the real signer to F , as long as
the signatures and the secret key, answered by A , are verifiable using the related hash
answers from A . A embeds the CDH problem into the public key and then answers the
foregoing queries. After F forges a signature successfully, A is able to derive the answer to
the CDH problem using the forged signature.

The procedure for A is briefly described as follows. First of all, A guesses a random
index i (0 i T≤ <), hoping the forger F will ask for the breakin query in time period i . A
then generates public key 1 2{ }PK ê P Q= , , , ,G G with 'Q Q= . A gives the public key to
F and runs from the time period 0 to 1T − (as in the Experiment
F-Forge-RO(- ,)FKE SIG). A can easily answer the hash queries and signing queries from
F because A completely controls the hash oracle. A embeds 'P into some hash entries and
provides them to F in its queries. During the execution, A must make a second guess of the
random index 'g , hoping the final forgery is based on the 'g -th hash query. A sets this hash
entry specifically. Suppose all the guessing is correct and forger F finally outputs a signature
on message 'gM for some time period 'i i< . A is then able to derive 'S abP= from this
signature utilizing the non-degenerate property of the bilinear map ê , the “verification
points” in time period 'i and related hash entries. The lower bound probability to solve the
CDH problem is derived from the lower bound probability of a successful forgery.

Due to space limitations, a detailed proof is included in Appendix A.

Theorem 3.2 Let [,]k TKE-SIG represent our key evolving signature scheme with modulus
size k and number of time periods T . Then for any t , sigq and hashq ,

(- []) (1) (, ')cdhfwsig
sig hash hash sigk T t q q T q q k t, ; , , ≤ + + InsecInsec KE SIG

where 1 2' (log)nt t O k k T= + + .

Proof: The insecurity function is computed simply by solving for the function in Theorem 3.1
and then represent ε as 'ε

' 1 1 (1)hash sigT q qε ε= ⋅ + + ⋅ ⇒

(1) 'hash sigT q q ε ε+ + =

Theorem 3.2 follows.

4 Discussions
The scheme proposed in this paper can be readily incorporated with PKI. The system
parameters 1 2, , , ê PG G can be published, and Q is bound to the signer by a certificate. In
comparison to previous forward secure signature schemes [5, 1, 24], our scheme has the
advantage that no parameter has a complexity value of more than logT , where T is the total
number of time periods. In [5, 1], the signing and verification times are both linear in T . For
the scheme in [24], the signing and verification are fast and independent of T , but their key

 13

generation and key update times are still linear in T . This advantage ensures that our scheme
is particularly useful for systems requiring frequent key updates or a long operating time.
Furthermore, in some cases, the signature size of our scheme can even be reduced to ()O k .
For example, for some verifier who has previously received a signature for the same time
period, the transmission of “verification points” Q can be neglected, and the verifier can
simply use those “verification points” stored for the previous signature.

The efficiency of our scheme is balanced across all its aspects. The efficient signing and
verification (in terms of T) comes at the cost of signature and private key sizes. All these
sizes are not independent to T (has a logT complexity). However, a distinct feature of our
scheme is that it is based on bilinear maps that can be constructed from Weil or Tate pairings
on an elliptic curve. Our scheme can work on a smaller finite field and, as a result, achieves a
shorter signature size than other known forward secure signature schemes [5, 1, 24] when the
total number of time period is small (e.g. 64T ≤). These other schemes, which are based on
the integer factoring problem or a strong RSA assumption, normally have a 1024-bit group
size. Using the same bilinear map construction in the BLS signature scheme [11], we can
achieve a 171 bit signature with 1024-bits security in RSA based approach, when T=1.
Furthermore, the logT complexity also guarantees that a size increase is very slow when T
increases.

The signing and key update operations in our scheme require only one addition and one
multiplication (on average), which is very efficient when compared with previous schemes.
The efficiency of our signing and key update operations is comparable to a signing operation
in the BLS signature scheme [11] if the bilinear map is constructed in the same manner. The
BLS signing operation requires only one multiplication on the elliptic curve. However, an
addition operation on the elliptic curve is much faster than a multiplication operation and can
be neglected in this approximation. From the implementation results in [4], we find that a
BLS signature generation is faster than a RSA signature generation. Therefore, we can be
assured that our scheme is able to achieve more efficient signing and key updates when
compared with other known forward secure signature schemes [5, 1, 24], whose signature
generation or key update requires more computation than that involved in one RSA signature
generation.

Signature verification in our scheme is still limited by the efficient computation involved
in pairing operations. However, the results shown in [4, 19] have demonstrated a lot of
progress in this area. From [4], the computation time for a Tate pairing with the prime field
size of 512 bits (with preprocessing) is now comparable to one RSA signing operation with a
1024 bits modular and a 1007 bits exponent. We believe our scheme has a great potential and
should aid the progress of research in this field.

With its inherent features, our scheme is applicable in a number of areas. For example, for
mobile device authentication, the signature verification is done at the server side, which has
more computation power to do the pairing operations. Signature generation can be done
efficiently on the mobile device. The forward secure nature of the scheme provides a stronger
security guarantee and the LogT complexity also enables frequent key updates or longer
system reset times in scenarios where they are needed.

5 Conclusions
In this paper, we have proposed the first forward secure signature scheme based on bilinear
maps. Our scheme is efficiently constructed with a complexity of no more than (log)O T ,
with flexibility based on the underlying bilinear map. We also provide a detailed performance
analysis based on the complexity assumptions of the underlying construction. The security of
our scheme is based on the Computational Diffie-Hellman assumption and is unique in
comparison to other approaches. We provide the formal definitions and the security proofs for
our scheme in the random oracle model, in which the hash oracle and signing oracle are
constructed in an innovative manner that accommodates the bilinear map. Our scheme offers

 14

an efficient signing and key update operation when compared to previous schemes. Although
signature verification is still limited by the efficiency of the paring operations, our signature
scheme is useful in many applications due to its enhanced scalability from the standpoint of
time periods, efficient signing and key updates.

References

1. M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme”, Advance in
Cryptology – ASIACRYPT 2000, Vol. 1976 of Lecture Notes in Computer Science, T. Okamoto
ed., pp. 116–129, Springer-Verlag, 2000.

2. M. Abdalla, S. Miner, and C. Namprempre, “Forward-secure threshold signature schemes”,
Topics in Cryptology – CT-RSA 2001, Vol. 2020 of Lecture Notes in Computer Science, D.
Naccache ed., pp. 441–456, Springer-Verlag, 2001.

3. R. Anderson, “Two remarks on public-key cryptology”, Invited lecture, CCCS’97, Available at
http://www.cl.cam.ac.uk/users/rja14/.

4. P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing-based
cryptosystems”, Advance in Cryptology – CRYPTO 02, Vol. 2442 of Lecture Notes in Computer
Science, pp. 354–368, Springer-Verlag, 2002.

5. M. Bellare and S. Miner, “A forward-secure digital signature scheme”, Advance in Cryptology –
CRYPTO 99 proceedings, Vol. 1666 of Lecture Notes in Computer Science, M. Wiener ed., pp.
431–448. Springer-Verlag, 15-19 August 1999.

6. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm in designing efficient
protocols”, In First Annual Conference on Computer and Communications Security, ACM, pp.
62–73, 1993.

7. M. Bellare and B. Yee, “Forward-security in private-key cryptography”, Topics in Cryptology –
CT-RSA 2003, vol. 2612 of Lecture Notes in Computer Science, M. Joye ed, pp. 1–18, Springer-
Verlag, 2003.

8. G. R. Blakley, “Safeguarding cryptographic keys”, Proceedings of AFIPS 1979 National
Computer Conference, Vol. 48, pp. 313–317, 1979.

9. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, SIAM Journal on
Computing, Vol. 32, No. 3, pp. 586-615, 2003.

10. D. Boneh, “The decision Diffie-Hellman problem”, Proceedings of the Third Algorithmic
Number Theory Symposium, Vol. 1423 of Lecture Notes in Computer Science, Joe P. Buhler ed.,
pp 48–63, Springer Verlag, 1998.

11. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”, In Advances in
Cryptology - ASIACRYPT 2001, LNCS Vol. 2248, pp. 514-532, Springer-Verlag, 2001.

12. R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption scheme”, To appear
in Advances in Cryptology – Eurocrypt ’03, At http://eprint.icar.org/2003/083/.

13. Y. Desmedt and Y. Frankel, “Threshold cryptosystems”, Advances in Cryptology – CRYPTO 89
proceedings, Vol. 435 of Lecture Notes in Computer Science, G. Brassard ed., pp. 307–315,
Springer-Verlag, 1989.

14. W. Diffie, P. van Oorschot, and M. Wiener, “Authentication and authenticated key exchange”,
Designs, Code, and Cryptography, Vol. 2, pp. 107–125, 1992.

15. W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions on
Information Theory, 22(6), pp. 644–654, November 1976.

16. Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated public key cryptosystems”, Advances in
Cryptology – Eurocrypt 2002, Vol. 2332 of Lecture Notes in Computer Science, L. Knudsen ed.,
pp. 65–82, Springer Verlag, 2002.

17. Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung, “Intrusion resilient public-key
encryption”, Topics in Cryptology – CT-RSA 2003, Vol. 2612 of Lecture Notes in Computer
Science, M. Joye ed, pp. 19–32, Springer-Verlag, 2003.

18. S. Galbraith, “Supersingular curves in cryptography”, Advances in Cryptology – Asiacrypt 2001,
Vol. 2248 of Lecture Notes in Computer Science, pp. 495–513, Springer-Verlag, 2001.

19. S. Galbraith, K. Harrison and D. Soldera, “Implementing the tate pairing”, Algorithm Number
Theory Symposium – ANTS V, Vol 2369 of Lecture Notes in Computer Science, pp 324–337,
Springer-Verlag, 2003.

20. C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryptography”, Advances in Cryptology –
Asiacrypt 2002, Vol. 2501 of Lecture Notes in Computer Science, Y. Zheng ed., pp. 548–566,
Springer-Verlag, 2002.

 15

21. C. Günther, “An identity-based key-exchange protocol”, Advances in Cryptology –
Eurocrypt’89, Vol. 434 of Lecture Notes in Computer Science, J-J. Quisquater and J. Vandewille
ed., pp. 29–37, Springer Verlag, 1989.

22. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing or how to cope
with perpetual leakage,” Advances in Cryptology - CRYPTO ’95 Vol. 963 of Lecture Notes in
Computer Science, D. Coppersmith ed., pp. 339–352, Springer, 1995.

23. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive public key and
signature scheme”, Proceedings of the 4th ACM Conference on Computer and Communications
Security, pp. 100–110, ACM press, 1997.

24. G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and verifying”,
Advances in Cryptology-CRYPTO 2001, Vol. 2139 of Lecture Notes in Computer Science, J.
Kilian, ed., pp. 332–354, Springer-Verlag, 2001.

25. G. Itkis and L. Reyzin, “SiBIR: Signer-base intrusion-resilient signatures”, Advances in
Cryptology – CRYPTO 2002, Vol. 2442 of Lecture Notes in Computer Science, M. Yung ed., pp
499–514, Springer-Verlag, 2002.

26. A. Joux, “The Weil and Tate pairing as building blocks for public key cryptosystems”, in
Proceeding of Fifth Algorithmic Number Theory Symposium, Vol. 2369 of Lecture Notes in
Computer Science, pp. 22–32, Springer-Verlag, 2002.

27. H. Krawczyk, “Simple forward-secure signatures for any signature scheme”, Proceedings of the
7th ACM Conference on Computer and Communications Security, pp. 108–115, ACM Press
2000.

28. T. Maklin, D. Micciancio and S. Miner, “Efficient generic forward-secure signatures with an
unbounded number of time periods”, Advances in Cryptology – Eurocrypt 2002, Vol. 2332 of
Lecture Notes in Computer Science, L. Knudsen ed., pp. 400–417, Springer-Verlag, 2002.

29. K. Rubin, A. Silverberg, “Supersingular abelian varieties in cryptography”, Advances in
cryptology – crypto 2002, Vol. 2442 of Lecture Notes in Computer Science, pp. 336–353,
Springer-Verlag, 2002.

30. A. Shamir, “How to share a secret”, Communications of ACM, 22(11), pp. 612–613, 1979.
31. W. Tzeng and Z. Tzeng, “Robust forward-secure digital signature with proactive security”,

Public Key Cryptography – Proceedings of PKC’01, Vol. 1992 of Lecture Notes in Computer
Science, K. Kim ed., pp. 264 –276, Springer-Verlag, 2001.

32. E. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve cryptosystems”,
Advances in cryptology – Eurocrypt 2001, Vol. 2045 of Lecture Notes in Computer Science, pp.
195–210, Springer-Verlag, 2001.

A. Appendix --Proof of Theorem 3.1

Our proof technique is a combination of those given in [5, 1, 12]. However, some details can
be simplified because we are working from a different context. The structure of the proof is
very similar to those contained in [1], but the method is different because this scheme is based
on different mathematical assumptions. Although the results in [20, 12] help illustrate how the
tree-based scheme works, they do not result in our proofs because they concentrate on
encryption schemes. The detailed proof to our forward secure signature scheme proceeds as
follows.

As discussed in [1], we first assume that if F outputs a forgery , j sign〈 〉 for message
'M and time period j, then the hash oracle has been queried on 1 2(')lj j j M" , where

1 2 lj j j" is the binary representation of j. This assumption is reasonable because any forger
can be modified to do so. In addition, this may increase the number of hash queries to

1hashq + , because this hash query may not be part of the hashq hash queries performed earlier
by F . We further assume that if F asks for the signing query for some message M in some
time period j, then the hash query 1 2()lj j j M" must also be requested simultaneously.
Similar to our first assumption, any forger can be modified to do so and this may further
increase the number of hash queries up to 1hash sigq q+ + . We also assume that F maintains
all necessary bookkeeping and does not ask for the same hash query twice.

First of all, A has to guess the time period i at which F will ask for the breakin query. It

 16

randomly selects i , 0 i T< ≤ , hoping that the breakin query will occur at this time period. A
then generates the public key 1 2{ }PK ê P Q= , , , ,G G in a manner similar to a real signer,
but A sets 'Q Q bP= = directly. Note, that in this case, s bε = is unknown to both A and F .
A gives the public key to forger F , and runs from time period 0 to 1T − while maintaining
all the “node secrets”.

To answer the hash query and the signing query of F , A maintains two tables, a hash
query table and a signing query table.

Hash queries are answered at random. Each entry in the hash table is a tuple (, , ,)x yΙ ∆ ,
in which Ι is the input value, (representing a node index when the number of bits of Ι is less
than l), x is the random “exponent” for P , y is a partial “node/leave secret” (if necessary)
and ∆ is the output value. We use Ι∆ to denote the output value corresponding to the input I
and ()H∆ = Ι to denote the relationship between the input and output of the hash table.

The hash table is initiated from time period i . A first randomly selects

1 2 1 2 3 1 2
, , ,

li i i i i i i i qx x x ∈"" Z , and
1 2 1li i i qy

−

∗∈" Z for time period i , and sets hash entry

1(, , , ')i Pφ φ ,
1 2 1 21 2(, , ,)i i i ii i x x Pφ ,

1 2 3 1 2 31 2 3(, , ,)i i i i i ii i i x x Pφ …,
1 2 1 1 2 11 2 1(, , ,)

l ll i i i i i ii i i x x Pφ
− −− " ""

and
1 2 1 2 1 1 2 1 2 1

1
1 2(, , , ')

l l l ll i i i i i i i i i i i ii i i x y x P y P
− −

−−" " " "" , where 'P aP= i.e. a part of the CDH
problem that was given to A. Then, A finds all indexes j (1 j l≤ ≤) such that 0ji = , sets

entry 1 1(1, , ,)x x Pφ if 1 0i = , and sets other hash entries (when 2 j l≤ ≤ and 0ji =) as

1 2 1 1 2 1 1 2 1 1 2 1

1
1 2 1 1 1(1, , , ')

j j j jj i i i i i i i i i i i ii i i x y x P y P
− − − −

−
− −" " " "" .

1 2 11ji i i qx
−
∈" Z , and

1 2 1ji i i qy
−

∗∈" Z are

selected at random. Finally, in case of 1 1i = , A sets entry 0 0(0, , , ')x x Pφ with *
0 qx ∈Z

selected at random. Note that all possible hash queries for 1iΙ = , 1i =0 and 1, are defined as

0 1 and ∆ ∆ in the hash table.
After the hash table is initiated, A answers hash queries according to the input. To answer

a hash query with an input of k (1)k l≤ ≤ bits, let 1 2 kw w w" be the binary representation of
input w, A first checks to see if w is within the hash table. If the entry already exists, A
outputs the corresponding O . If not, A randomly selects

1 2 kw w w qx ∈" Z , stores the entry

1 2 1 21 2(, , ,)
k kk w w w w w ww w w x x Pφ" "" and outputs

1 2 kw w wx P" . To answer a hash query with an

input of l bits or more, input w is parsed as 1 2 l gw w w M" , where gM could be a chosen
message by F. Let 1 2 lv w w w〈 〉 = " (0 v T≤ <) represent the first l bits of w, gM summarizes
the remaining bits. The index g (1 1hash sigg q q≤ ≤ + +) denotes the g-th hash query with an
input longer than l bits. A checks to see if the entry exists in the hash table. If not, A
answers the query depending on the value of v. For v i< , A randomly selects

1 2 l gw w w M qx ∈" Z , v qy ∗
〈 〉 ∈Z (if vy〈 〉 was not define before), stores the entry

1 2 1 2 1

1
1 2(, , ,)

l g l gl g w w w M v w w w M v ww w w M x y x P y−
〈 〉 〈 〉− ∆" "" and outputs the ∆ value

(1 2()l gH w w w M∆ = "); for v i≥ , A randomly selects
1 2 l gw w w M qx ∈" Z , stores the entry

1 2 1 21 2(, , ,)
l g l gl g w w w M w w w Mw w w M x x Pφ" "" and outputs the ∆ value. During execution, A

must guess a random index 'g (1 ' 1hash sigg q q≤ ≤ + +), hoping the forgery is based on the

'g -th hash query; set the entry to
1 2 ' 1 2 '1 2 '(, , ,)

l g l gl g w w w M w w w Mw w w M x x Pφ" "" if the input is

more than l bits, and return the ∆ value. In the case that the input of this hash query is less
than l bits, A fails and aborts.

The signing query is answered at random with two cases. For time period 'i i< , A
chooses “node secret”

1 2 1' ' ' ji i i qs
−
∈" Z (2 j l≤ ≤) at random and sets the “verification point”

for leaf ' 'i iQ y Q〈 〉 〈 〉= with 'i qy ∗
〈 〉 ∈Z chosen at random. Here, “leaf secret” ' 'i is y sε〈 〉 〈 〉= ⋅

 17

although sε is unknown to A. Let 1 2' ' ' 'li i i i〈 〉 = " . Then A returns '{ , }isign V 〈 〉= Q , where

1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' '
2

j j l g

l

i i i i i i i i i M i
j

V s x P x y Q
− 〈 〉

=

= +∑ " " " and 'i〈 〉Q consisting of
1 2 1' ' ' ji i is P

−" (2 j l≤ ≤) and

'iQ〈 〉 . To answer a signing query in time period i , let 1 2 li i i i〈 〉 = " . Then A chooses

1 2 1ji i i qy
−

∗∈" Z (for 2 1j l≤ ≤ − , and 0ji ≠) and “leaf secret” i qs〈 〉 ∈Z at random, sets

1 2 1 1 2 1l li i i i i iQ y Q
− −
=" " (

1 2 1li i iy
−" was selected during the initiation of hash table), and returns

'{ , }isign V 〈 〉= Q , where
1 2 1 2 1

1

2
j j

l

i i i i i i
j

V x y Q
−

−

=

=∑ " "
1 2 1 2 1 1 2()

l li i i i i i i l gx y Q s H i i i M
− 〈 〉+ +" " " and 'i〈 〉Q

consists of
1 2 1ji i iy Q

−" (2 1j l≤ ≤ −),
1 2 1li i iQ

−" , and is P〈 〉 . In summary, the two cases described

above are now listed to illustrate that the above equations are correct.

1. For time period 'i i< , let ' 'i iy s sε〈 〉 〈 〉= ,

1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' '
2

j j l g

l

i i i i i i i i i M i
j

V s x P x y Q
− 〈 〉

=

= +∑ " " "

1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' ' 1 1
2

(') (')
j j l g

l

i i i i i i i i i M i
j

s x P x y s P s H i s H iε ε ε− 〈 〉
=

= + − +∑ " " "

1 2 1 1 2

1
1 ' ' ' 1 2 ' ' ' ' ' 1

2
(') (' ' ') (('))

j l g

l

i i i j i i i i M i
j

s H i s H i i i y s x P y H iε ε−

−
〈 〉 〈 〉

=

= + + −∑ " ""

1 2 11 ' ' ' 1 2 ' 1 2
2

(') (' ' ') (' ' ')
j

l

i i i j i l g
j

s H i s H i i i y s H i i i Mε ε− 〈 〉
=

= + +∑ " " "

1 2 11 ' ' ' 1 2 ' 1 2
2

(') (' ' ') (' ' ')
j

l

i i i j i l g
j

s H i s H i i i s H i i i Mε − 〈 〉
=

= + +∑ " " "

and we have
1 1 2 1 2 1' ' ' ' ' ' ' '{ , , , , }

li i i i i i i is P s P s P Q
−〈 〉 〈 〉= ""Q , where

' ' ' 'i i i iQ s P y s P y Qε〈 〉 〈 〉 〈 〉 〈 〉= = = .

2. For time period i , let
1 2 1 1 2 1j ji i i i i iy s sε− −

=" " ,

1 2 1 2 1 1 2 1 2 1

1

1 2
2

()
j j l l

l

i i i i i i i i i i i i i l g
j

V x y Q x y Q s H i i i M
− −

−

〈 〉
=

= + +∑ " " " " "

1 2 1 1 2 1 2 1 2 1

1

1 2
2

() ' '
j j l l

l

i i i i i i i i i i i i i l g
j

y s x P x y Q s H i i i M s P s Pε ε ε− −

−

〈 〉
=

= + + + −∑ " " " " "

1 2 1 1 2 1 2 1

1

1 2 1 2
2

' () ' ()
j l l

l

i i i j i i i i i i i l g
j

s P s H i i i x y s P s P s H i i i Mε ε ε− −

−

〈 〉
=

= + + − +∑ " " "" "

1 2 1 1 2 1 1 2 1 2 1

1
1

1 1 2 1 2
2

() () (') ()
j l l l

l

i i i j i i i i i i i i i i l g
j

s H i s H i i i y s x P y P s H i i i Mε ε− − −

−
−

〈 〉
=

= + + − +∑ " " " "" "

1 2 1 1 2 1

1

1 1 2 1 2 1 2
2

() () () ()
j l

l

i i i j i i i l i l g
j

s H i s H i i i y s H i i i s H i i i Mε ε− −

−

〈 〉
=

= + + +∑ " "" " "

1 2 1 1 2 1

1

1 1 2 1 2 1 2
2

() () () ()
j l

l

i i i j i i i l i l g
j

s H i s H i i i s H i i i s H i i i Mε − −

−

〈 〉
=

= + + +∑ " "" " "

and we have
1 1 2 1 2 1' { , , , , }

li i i i i i i iy Q y Q y Q s P
−〈 〉 〈 〉= ""Q , where

1 2 1 1 2 1 1 2 1 1 2 1j j j ji i i i i i i i i i i iQ s P y s P y Qε− − − −
= = =" " " " (2 j l≤ ≤).

If the breakin query occurs in time period i , A simply outputs the current secret key

 18

{ }i i i i iSK s S〈 〉 〈 〉 〈 〉 〈 〉 〈 〉= , , ,S Q . Already known are is〈 〉 ,
1 2 1 2 1 1 2 1 2 1

1

2
j j l l

l

i i i i i i i i i i i i i
j

S x y Q x y Q
− −

−

〈 〉
=

= +∑ " " " "

and
1 1 2 1 2 1

{ , , , , }
li i i i i i i iy Q y Q y Q s P
−〈 〉 〈 〉= ""Q . For elements in i〈 〉S , A calculates

1 2 1 1 2 1 2 1 1 2 1 1 2 1

1

1 1
2

j m m j j

j

i i i i i i i i i i i i i i i
m

S x y Q x y Q
− − − −

−

=

= +∑" " " " " for all indexes j (2 j l≤ ≤) such that 0ji = .

The validity of this equation is illustrated as follows:

1 2 1 1 2 1 2 1 1 2 1 1 2 1

1

1 1
2

' '
j m m j j

j

i i i i i i i i i i i i i i i
m

S x y Q x y Q s P s Pε ε− − − −

−

=

= + + −∑" " " " "

1 2 1 1 2 1 1 2 1 1 2 1

1
1

1 1 2 1
2

() () (')
m j j j

j

i i i m i i i i i i i i i
m

s H i s H i i i y s x P y Pε ε− − − −

−
−

=

= + + −∑ " " " ""

1 2 1 1 2 1

1

1 1 2 1 2 1
2

() () (1)
m j

j

i i i m i i i j
m

s H i s H i i i s H i i iε − −

−

−
=

= + +∑ " "" "

In the case where 1 0i = , A sets 1 1 1 1()S s H i s x P x Qε ε= = = . Forger F can then derive the
secret key ''iSK for "i i> . A aborts if the breakin query is not in time period i .

Suppose that the guess for the break-in time and the index of hash for the signature
forgery are correct, and forger F finally outputs a signature ' i sign〈 , 〉 on message 'gM for

time period 'i i< and 1 1'i i= . If the verification condition holds, A can derive 'S abP=
utilizing the properties of the bilinear map ê :

1 2

1 2 1

(1)

1 ' ' ' 1 2 '

' ' ' 1 2
2

() ((')) ((' ' '))
((' ' '))

j

j

i i i l gl

i i i j
j

ê P V ê Q H i ê Q H i i i M
ê Q H i i i

−

...

=

,
= , ⋅ , ⇒

, ...∏ "

"

1 2 1 2 1

(2)

1

' ' ' 1 2 ' ' ' ' 1 2
2

() (('))
((' ' ')) ((' ' '))

l j

l

i i i l g i i i j
j

ê P V ê Q H i
ê Q H i i i M ê Q H i i i

−...
=

,
= , ⇒

, ⋅ , ...∏ ""

1 2 1 1 2

(3)

' ' ' 1 2 ' ' ' 1 2 ' 1
2

((' ' ') (' ' ')) (, ('))
j l

l

i i i j i i i l g
j

ê P V s H i i i s H i i i M ê P s H iε−
=

, − ... − = ⇒∑ " " "

1 2 1 1 2

(4)

' ' ' 1 2 ' ' ' 1 2 ' 1
2

(' ' ') (' ' ') (')
j l

l

i i i j i i i l g
j

V s H i i i s H i i i M s H iε−
=

− ... − = ⇒∑ " " "

1 2 1 2 1 1 2 1 2

(5)

' ' ' ' ' ' ' ' ' ' ' '
2

j j l g l

l

i i i i i i i i i M i i i
j

V x Q x Q abP
−...

=

− − = ⇒∑ "

1 2 1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' ' ' '
2

'
j j l g l

l

i i i i i i i i i M i i i
j

S abP V x Q x Q
−...

=

= = − −∑ "

Similarly, A can derive
1 2 1 2 1 1 2 1 2

1
0 ' ' ' ' ' ' ' ' ' ' ' '

2
' ()

j j l g l

l

i i i i i i i i i M i i i
j

S abP x V x Q x Q
−

−
...

=

= = ⋅ − −∑ " when

1 1' i i≠ . For 'i i< and 1 1' i i≠ , the only possible case is the one in which 1 1' 0, 1i i= = , and
hence 1 0(')s H i x abPε = . The above derivations utilized the non-degenerate property of the
bilinear map in step (3). Note that 1G and 2G are in prime order q , which implies that if P
is a generator of 1G , then (,)ê P P is a generator of 2G . It also means that there does not
exist 1 2 1, P P ∈G (1 2P P≠) that yields 1 2(,) (,)ê P P ê P P= . Therefore, 1P must be the same as

2P .

RUNNING TIME ANALYSIS. A runs F from time period 0 to 1T − . To answer the hash
query, ignoring the table look up time, requires some multiplications and additions on 1G , i.e.

 19

1()nO k bit operations. It also requires some inverse operations on q
∗Z – 2(log)O k T bit

operations for time period i . To answer a signing query, A may require some additional
multiplications on q

∗Z (2(log)O k T) and one less multiplication on 1G (1()nO k) than the real
user. To compute the final 'S abP= , it takes some multiplication and addition operations on

1G (1()nO k bit operations). Therefore, A exceeds the running time of F by
1 2(log)nO k k T+ .

PROBABILITY ANALYSIS. We first compare A ’s answer to the signing oracle with that of the
real signer. From F ’s point of view, A always acts like a real signer, except in one case, i.e.
when A answers the signing query for some time period 'i i< , and the hash entry that A
wants to use has already been defined to

1 2 1 21 2(, , ,)
l g l gl g w w w M w w w Mw w w M x x Pφ" "" by the

previous hash query of F . This is the only case in which A fails to answer the signing query
and the reason cause this is A’s wrong guessing of the hash index 'g . In other words, A
always acts like a real signer, as long as the guessing of 'g is correct.

There are totally two guesses performed by A . The probability to guess the correct time
period F sends the breakin query is exactly 1 T and the probability to guess the correct hash
query on which the forgery is based is Pr 1 (1)hash sigq q≥ + + . Therefore, the probability of
A ’s success in deriving 'S abP= is at least

' 1 1 (1)hash sigT q qε ε= ⋅ + + ⋅
where ε is the minimum probability for F to successfully forge a signature. Theorem 3.1
follows.

