深埋隧道涌水过程的水力劈裂作用分析*

黄润秋 王贤能 陈龙生

(1成都理工学院工程地质研究所 成都 610059) (2香港大学地质学系 香港)

摘要 从断裂力学角度分析了高压水头作用下、裂隙的扩展机理、认为裂隙的扩展多属 [1] 型裂纹断裂扩展问题、由 此推导了水力劈裂作用发生的临界水头压力值。在此基础上、探讨了高压水头作用下裂隙张开度的变化、提出了裂 隙张开度变化的计算公式。

关键词 深埋隧道,涌水,临界水头压力,劈裂作用

分类号 TU 451 文献标识码 A

文章编号 1000-6915(2000)05-0573-04

1 前 言

涌水是隧道施工中常见的主要地质灾害, 也是 隧道运营中的主要病害。我国 1988 年以前建成的铁 路隧道有 80% 在施工中遇到了涌水问题, 而在运营 过程中还有涌水漏水病害的隧道占 30% 左右. 因此 隧道的水害是广大地质工作者关注的焦点之一。在 深埋隧道中,由于隧道通过的地段地质条件复杂,揭 露的水文地质单元多,水源补给量充足,所以其涌水 具有两个重要特点: 一是涌水量大, 二是水头压力 高。如日本的旧丹那隧道 1918 年开工后曾 6 次遇到 大突水,最大的一次断层突水达3 3m³/s,水头压力 高达 1.4~4.2M Pa、贯通时总涌水量达 1.68 m³/s、 致使该隧道历时 16 年才建成。我国的京广复线大瑶 山隧道通过断层时, 曾遇到 0 5 m³/s 的突水, 射程 达 8~ 10m; 拟建的雅砻江锦屏二级水电站长探硐 3 次遇到特大型突水, PD1 平硐 3 948 m 处涌水时喷水 距为35~37m,流量达0.61m³/s,实测水压高达 5M Pa

隧道的开挖, 使地下水的排泄有了新的通道, 破 坏了原有的补径排循环系统的平衡, 加速了径流循 环,也加剧了地下水对岩体的改造作用。对于深埋隧 道来说,由于水头压力高,这种力学改造作用尤为显 著。地下水的力学改造作用有静水压力作用和动水 压力作用。这两种水力作用都能使岩体发生水力劈 裂、使裂隙的连通性增加、张开度增大、从而增加渗 透能力。除此之外,动水压力作用还能使裂隙面上的 充填物发生变形和位移、尤其是剪切变形和位移、由 此导致裂隙的再扩展。本文主要探讨静水压力的水 力劈裂作用和静水压力作用对裂隙张开度的改造这 两个基本理论问题。

岩体水力劈裂作用的断裂力学分析 2

在地应力测量中, 经常采用水力劈裂法, 其原理 是通过向钻孔中注射高压水流迫使岩体发生劈裂, 然后根据注水压力来计算地应力的大小。水力压裂 技术也广泛用于油气田开发,通过向深部钻孔注入 高压流体, 诱发孔壁岩石破裂, 增加储层的渗透性, 提高油气产量和采收率。目前广为使用的高压水射 流切割岩石技术的原理也与此相似: 高压水通过岩 石微孔隙对颗粒施加液压,使颗粒受到拉伸应力,进 而使岩石矿物晶间的胶结物或晶体本身发生连续微 观断裂。

自然界水力压裂作用通常称为水力劈裂作用, 这种作用有时会导致严重的灾害发生。1976年、美 国的 Teton 坝在蓄水初期突然失事, 被几位国际权 威学者评为水力劈裂作用的后果^[1]。在深部岩体中, 由于地下水水压极高, 岩体有可能发生水力劈裂。雅 砻江锦屏二级水电站深埋勘探导水裂缝的扩展就是 一例: 在涌水点附近可观察到隧洞开挖之前的导水 裂缝的缝壁上常常被锈染呈黄褐色。而 PD 平硐在 2848.5m和3580m大型突水点附近还能观察到导

¹⁹⁹⁹年4月15日收到初稿, 1999年7月26日收到修改稿。

^{*} 国家教委跨世纪优秀人才计划基金和香港Croucher 基金资助研究项目。

作者 黄润秋 简介: 男, 1963 年生, 1988 年于成都理工大学水工系工程地质获博士学位, 现任地质灾害防治国家专业实验室主任, 主要从事工程 地质、岩石力学方面的研究工作。

Ρ

水裂缝末端没有锈染痕迹,这显然是隧洞开挖之后 地下水水力劈裂作用使原来的导水裂缝扩展的结果。 这种裂缝集中于突水点附近,显张性,网状交织,受 构造裂隙影响而具有一定方向性。

上述事实表明,水力劈裂作用实际上是在高水 头压力作用下,岩体断续裂隙(或空隙)发生扩展, 裂隙(或空隙)相互贯通后再进一步张开所致。为此, 可以建立如下断裂力学模型,分析发生水力劈裂作 用的临界水头压力值。

图 1 含裂纹的岩体模型 Fig 1 A rock mass model containing a crack

在图 1 所示的的岩体中, 含有一长度为 2*a* 的裂 纹(断裂力学中称裂隙为裂纹), 裂纹长轴方向与最 大主应力 σ 之间的夹角为 β, 裂纹中有孔隙水压力 *p* 作用, 则裂纹面上的应力状态为

$$\begin{cases} \sigma_{n} = -\left(\frac{\sigma_{1} + \sigma_{3}}{2} - \frac{\sigma_{1} - \sigma_{3}}{2}\cos 2\beta - p\right) \\ \tau = -\frac{\sigma_{1} - \sigma_{3}}{2}\sin 2\beta \end{cases}$$
(1)

断裂力学中规定拉为正压为负,而岩石力学的 规定正好相反,为此,在式(1)的前面冠以负号。在 高水头压力作用下,裂纹法向应力 & 可能为拉应力 也可能为压应力。法向应力 & 的性质不同,裂纹的 扩展方式和扩展条件也不同,下面将分别予以讨论。

当裂纹法向应力 ɑ. 为拉应力时, 裂纹的扩展问题属断裂力学中 I, II 复合型裂纹问题。工程上最关心的是裂纹扩展条件, 这里选用工程近似判据^[2],

$$K_{\rm I} + K_{\rm II} = K_{\rm Ik} \tag{2}$$

式中: *K*_k为 I 型断裂韧度值。将*K*₁, *K*₁ 表达式代入式(2),整理后得到发生水力劈裂作用时的临界水头压力值 *P*_c,

$$P_{c} = \frac{\sigma_{1} + \sigma_{3}}{2} - \frac{\sigma_{1} - \sigma_{3}}{2} \cos 2\beta + \frac{\sigma_{1} - \sigma_{3}}{2} \sin 2\beta + \frac{K_{k}}{\sqrt{\pi a}}$$
(3)

当裂纹法向应力 G 为压应力时,裂纹扩展问题 属于纯 II 型裂纹问题。裂纹在压应力作用下将闭合, 闭合后的裂纹均匀接触并能传递正应力和剪应力, 此时裂纹上的有效剪应力为

$$\boldsymbol{\tau} = \boldsymbol{\tau} - \boldsymbol{\sigma}_{n} \tan \boldsymbol{\varphi} \tag{4}$$

式中: φ 为裂纹面上的内摩擦角。假定裂纹的闭合力为零,将式(1),(4)代入 K_{II} 表达式,有

$$K_{II} = \begin{bmatrix} -\frac{\sigma_{I} - \sigma_{I}}{2} \sin 2\beta + \\ \left(\frac{\sigma_{I} + \sigma_{I}}{2} - \frac{\sigma_{I} - \sigma_{I}}{2} \cos 2\beta - P \right) \tan \phi \sqrt{\pi a} \quad (5)$$

在断裂力学中、II型裂纹的扩展判据为

$$K_{\rm II} = K_{\rm Ik} \tag{6}$$

式中: K IIc 为 II 型断裂韧度值。将式(5)代入式(6), 整理后得到发生水力劈裂作用时的临界水头压力值 P 。

$$c = \frac{\sigma_{\rm I} + \sigma_{\rm i}}{2} - \frac{\sigma_{\rm I} - \sigma_{\rm i}}{2} \cos 2\beta - \frac{1}{\tan \varphi} \left(\frac{K_{\rm Ik}}{\sqrt{\pi a}} + \frac{\sigma_{\rm I} - \sigma_{\rm i}}{2} \sin 2\beta \right)$$
(7)

当地应力值、裂纹长度 *a* 和断裂韧度值 *K* ne 确定后, 在相同的高水压作用下,最容易发生水力劈裂的裂 纹应满足下列条件,

 $\frac{\partial P_{c}}{\partial \beta} = (\sigma_{1} - \sigma_{3}) \sin 2\beta - \frac{1}{\tan \varphi} (\sigma_{1} - \sigma_{3}) \cos s2\beta \quad (8)$ (8) 化简上式有

$$\tan 2\beta = \tan \varphi, \quad \beta = \frac{1}{2}\varphi \tag{9}$$

3 高水头压力作用下裂隙张开度分析

裂隙的张开度是衡量裂隙渗透性的重要指标。 在描述裂隙中渗流的纳维-斯托克(N avier-Stock s)方 程中,单宽流量 q 与裂隙张开度 b₀ 的三次方成正比,

$$q = - \frac{\mathbf{g}b_0^3}{12\mu}I \tag{10}$$

式中: g 为重力加速度, µ 为流体粘滞系数, I 为水力 梯度。该方程适用条件是: 裂隙两侧壁光滑平直, 张 开度较大且无充填物。但实际情况大都并非如此, 裂隙面的张开度和粗糙度各处并不相同, 充填物的 成分和厚度也不相同, 另外渗流和变形的耦合作用 也影响到裂隙的渗流。在高水压作用下, 裂隙的渗 流方程仍然是适用的, 而最关键的是如何确定裂隙 的张开度值。这里, 仅就应力空间中的裂隙张开度 进行分析。

考虑到如图 2 所示的岩体裂隙模型, 若裂隙面 上及两侧岩体未受任何形式的外力作用, 裂隙的张 开度为 b_0 , 此时可把裂隙概化成厚度为 b_0 的界面层。 当含裂隙的岩体受法向应力 σ_1 和综合剪应力 τ 作用 时, 裂隙将发生变形。当界面层厚度远小于裂隙的 延伸长度时, 可以认为 $\epsilon = \epsilon = \chi_y = \chi_x = 0$, 即裂 隙的变形可视为有侧限的变形^[4]。设法向应力 σ_n 引 起变形为 V_1 ,由剪胀引起的法向附加变形为 V_2 ,综 合剪应力 τ 引起的变形为 H,则总的法向变形为

图 2 岩体裂隙模型 Fig 2 A jointed rock model

$$V = V_1 - V_2$$
 (11)

根据法向刚度 K_n 和切向刚度 K_s 的定义^[4],对于平面 应变问题有

$$d\sigma_{n} = K_{n}dV_{1} = \frac{M}{b_{0} - V_{1} + V_{2}}dV_{1} \qquad (12)$$

$$d\tau = K_{s}dH = \frac{G}{b_{0} - V_{1} + V_{2}}dH$$
 (13)

上两式中: *M* 为有侧限的变形模量, 描述的是轴向 应力和应变之间的关系, 且其余两个方向上的轴向 应变为零^[6]; *G* 为剪切模量; *K* 和 *K* , 的单位为 M Pa/m。

考虑到初始条件 $\sigma_n = 0$ 时, $V_1 = 0$, 对式(12) 积 分有

$$V_1 = (b_0 + V_2) [1 - \exp(-\frac{G_n}{M})]$$
 (14)

剪切位移 dH 产生的剪胀角 dn 由下式来计 算^[7]:

$$\tan\left(\mathrm{d}n\right) = \mathrm{d}V_{2}/\mathrm{d}H \tag{15}$$

据N. Barton 的节理剪胀角^[7]的表达式,并将式 (13) (15) 代入,可得

$$\frac{dV_2}{b_0 - V_1 + V_2} = \frac{\varphi_b}{90 \circ - \varphi_b} \frac{1}{G} [\arctan(\frac{\tau}{\sigma_n}) - \varphi_b] d\tau$$
(16)

联立式(14), (16) 求出V₁, V₂, 代入式(11) 求出考虑 剪胀情况下的总体法向变形,

$$V = \frac{\alpha - \beta + 2\alpha\beta}{1 + \alpha\beta} b_0 \tag{17}$$

上两式中: α , β 称为张开度系数,

$$\alpha = 1 - \exp\left(\frac{\sigma_n}{M}\right) \tag{18}$$

$$\beta = \exp\left\{\frac{\varphi_{\rm h}}{90 \, \circ} \frac{1}{\varphi_{\rm h}} \frac{1}{G} \left[\arctan\left(\frac{\tau}{\sigma_{\rm h}}\right) - \varphi_{\rm h}\tau - \frac{\sigma_{\rm h}}{2}\ln\left(1 + \frac{\tau^2}{\sigma_{\rm h}^2}\right)\right]\right\} - 1 \quad (19)$$

此时, 裂隙的实际张开度 b^{*}为

$$b^* = b_0 - V = \frac{(1 - \alpha)(1 + \beta)}{1 + \alpha\beta}b_0$$
 (20)

若裂隙面上没有应力作用、裂隙的实际张开度。

 b^{+} 与裂隙的初始张开度 b_0 相等,则张开度系数 $\alpha = 0$, $\beta = 0$; 天然状态下,大多数裂隙是闭合的,裂隙 的实际的张开度 b^{+} 为零,则 $\alpha = 1$ 或 $\beta = -1$;若裂 隙的实际张开度 b^{+} 不为零,则相应的张开度系数令 为 α , β_0 ,其关系为

 $0 < \alpha < 1 - 1 < \beta < 0$ (21) 若裂隙面上有高水压作用,则裂隙面上有效法向应 力 α 和综合剪应力 τ 为

$$\vec{\sigma_n} = \sigma_n - p$$

$$\vec{\tau} = \sigma_n^* \tan\left[20\lg\left(\frac{\sigma_n}{\sigma}\right) + 30^\circ\right]$$
(22)

式中: α 为岩石的抗压强度。在 α_i , τ^i 作用下, 相应的张开度系数令为 α^i , β^i , 可以证明

 $0 < \alpha^{*} < \alpha_{0} < 1$ - $1 < \beta_{0} < \beta^{*} < 0$ (23) 此时, 裂隙张开度的增加值 Δb^{*} 为

$$\Delta b^{*} = \frac{(1 - \alpha^{*})(1 + \beta^{*})}{1 + \alpha^{*}\beta^{*}}b_{0} - \frac{(1 - \alpha_{0})(1 + \beta_{0})}{1 + \alpha_{0}\beta_{0}}b_{0}$$
(24)

以上考虑的是静水压力作用的影响,事实上, 地下水的动水压力作用也有类似的效应。除此之外, 地下水的流动还使裂隙中的充填物发生变形和位移, 使过水断面面积增大,渗流途径畅通,从而增大涌 水量。

4 实例分析

下面以锦屏深埋勘探硐 2 848 m 附近高压突水 为例, 说明本文的分析。

此处实测地应力值为 σ = 38. 16M Pa, σ 3= 14.81M Pa, 大理岩的 I 型裂纹断裂韧度值 $K_{\rm IE}$ 为 15.2MN /m^{3/2}, II 型裂纹断裂韧度值 $K_{\rm IE}$ 为 11.2 MN /m^{3/2}, 裂纹面上的内摩擦角取为 30 ° 若裂纹的 长度为1.1m,裂纹长轴方向与最大主应力之间的夹 角 β 为 0 ° 则采用式(3)的分析表明,裂隙压裂的临 界水头压力值 $P_{\rm c}$ 为 22 30M Pa。实际上该处实测的 水头压力为 2 08 M Pa。因此该位置处的裂纹发生 I、II 复合型裂纹扩展性不大。

当考虑裂纹的扩展属纯 II 型裂纹问题时,用式 (7) 计算得到发生水力劈裂作用的临界水头压力值 *P*。为 1. 89M Pa,与实测值 2 08M Pa 较吻合。所以 在高压水头作用下,裂纹的扩展一般属于 II 型裂纹 问题,采用式(7)预测水力劈裂的临界水头压力值较 为合理。

采用式(20), 评价裂隙压裂后其张开度的变化。 根据实验值, 取大理岩的抗压强度 α 为 120M Pa, 弹 模 E 为 30 000M Pa, 泊松比 μ 为 0 25。实测导水裂隙 倾角为 70 °, 水压力 P 值为 2 08M Pa, 裂隙基本摩擦

© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

角 \Re 取为 30 ° 计算得到裂隙张开度的增加值 Δb^* 为 0 032 b_{0} 。

5 结 论

本文的研究表明,深埋隧道工程施工中,不良 的水文地质结构可能会在隧道周围产生高水头压力 的环境,这类高水头压力可能导致隧道围岩中断续 延伸结构面的劈裂,进而相互贯通,成为地下水的 集中涌出通道,其表现形式即为高压突水。在高水 头压力作用下,裂隙的劈裂多表现为Ⅱ型裂纹的断 裂扩展,据此,本文给出了判断裂隙劈裂的临界水 头压力计算判据。本文的研究还给出了裂隙压裂后, 其张开度变化的计算公式,从而为涌水量的评价提 供了基础。

文

仵彦卿,张倬元 岩体水力学导论[M] 成都:西南交通大学出

献

版社,1994

- 2 高 庆 工程断裂力学[M] 重庆: 重庆大学出版社, 1985
- 3 张 宁 锦屏水电站地应力研究[J] 水文地质与工程地质, 1996, 23(4): 26~ 30
- 4 周维垣,孙 钧 高等岩石力学[M].北京:水利电力出版社, 1990
- 5 金国栋 高水压破碎岩石的试验与应用[J] 岩石力学与工程学报, 1987, 6(3): 205~215
- 6 潘别桐,黄润秋,工程地质数值法[M],北京:地质出版社, 1994
- 7 孔德坊 岩石裂隙强度[M] 北京: 地质出版社, 1982
- 8 田开铭,万 九 各向异性裂隙介质渗透性能的研究与评价 [M].北京:学苑出版社,1990
- 9 徐光黎 节理张开度水力学分析[J]. 勘察科学技术, 1993, (2): 31~33
- Moore G K. Quantification of ground water flow in fracture rock
 [J]. Ground Water, 1997, 35(4): 54~ 57
- Chown J C, Kueper B H. The use of upward hydraulic gradients to arrest down water DNA PL migration in rock fracture [J]. Ground Water, 1997, 35(4): 68~ 71

HYD RO-SPL ITT ING OFF ANALY SIS ON UNDERGROUND WATER IN DEEP-LY ING TUNNELS AND ITS EFFECT ON WATER GUSHING OUT

Huang Runqiu¹, Wang Xianneng¹, Chen Longseng² (¹Cheng du University of Technology, Cheng du 610059 China) (²Department of Geology, The University of Hong Kong, Hong Kong, China)

Abstract The mechanism of water gushing in jointed surrounding rocks of deep-lying tunnels is studied The results show that a hydro-splitting course under high water pressure is involved just before water gushing out, which can be described by a fracture model with a joint and type II failure A ccording to the criterion of fracture instability, a formula of critical water pressure resulting in hydro-splitting is derived A lso, the spacing variation of a joint under high pore water pressure during water gushing is especially regarded An equation is put forward to describe the joint spacing variation (Δb) based on the deformation of joint walls A s an example, the case of Jinping deep-lying tunnel is discussed. It gives a reasonable explanation to the high pressure water gushing encountered in this project

Key words deep-lying tunnel, water gushing out, critical water pressure, hydro-spliting off