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Abstract  In this article, a nonlinear dynamic multiway partial least squares (MPLS) based on support vector ma-
chines (SVM) is developed for on-line fault detection in batch processes. The approach, referred to as SVM-based 
DMPLS, integrates the SVM with the MPLS model. Process data from normal historical batches are used to de-
velop the MPLS model, and a series of single-input-single-output SVM networks are adopted to approximate 
nonlinear inner relationship between input and output variables. In addition, the application of a time-lagged win-
dow technique not only makes the complementarities of unmeasured data of the monitored batch unnecessary, but 
also significantly reduces the computation and storage requirements in comparison with the traditional MPLS. The 
proposed approach is validated by a simulation study of on-line fault detection for a fed-batch penicillin production. 
Keywords  fault detection, multiway partial least squares, support vector machines, time-lagged window 

1  INTRODUCTION 
In batch or fed-batch processes, raw materials are 

converted to products within a finite duration. In prac-
tical production, the process commonly exhibits large 
variations from batch to batch due to such influencing 
factors as the quality fluctuation of raw materials, de-
fect of equipments, contaminations, and other unpre-
dicted disturbances. These variations may have an 
adverse effect on the final product quantity and quality. 
But it is generally difficult to discern these variations 
for the operators. In this case, early detection of fault 
condition appears especially important. In fact, the 
process monitoring and diagnosis has been playing an 
important role in high-quality, safe, and efficient pro-
duction.  

During the last decade, several data-driven tech-
niques have been developed for batch process moni-
toring and diagnosis[1,2]. Multivariate statistic tech-
niques such as partial least squares (PLS) are particu-
larly focused[3―6]. For standard linear PLS, the inner 
relationship between the process variables and the 
final quality variables is modeled using a linear func-
tion. For highly nonlinear batch processes, however, 
this linear approximation is sometimes unsatisfactory. 
Nonlinear partial least squares (NPLS) models are 
more appropriate than linear models to study the be-
havior of the process. Wold et al. proposed nonlinear 
PLS using the quadratic or spline functions to model 
the inner relation[7]. Unfortunately, the algorithm of 
Wold’s NPLS is available only for pseudo-linear func-
tions, such as quadratic and spline functions. As far as 

other nonlinear relationships, such as logarithmic, ex-
ponential, reciprocal functions, are concerned, the 
above NPLS cannot be carried out. Another approach 
to nonlinear PLS modeling is to use artificial neural 
networks instead of the linear inner relationship 
(NNPLS)[8]. In theory, ANN is able to approximate 
any nonlinear function. In practical application, how-
ever, there exist some disadvantages such as the local 
bad minima, the topological structure of ANN, and 
over-training phenomenon. Moreover, for multiway 
partial least squares (MPLS) model, which is an ex-
tension of PLS to handle three-way data matrix in 
batch processes, the number of training samples of 
ANN is the number of reference batches, which is 
commonly limited (the number of 20—60). It is diffi-
cult for ANN to exhibit good performance with such 
small training samples. 

The support vector machines (SVM) is a novel 
machine learning method based on statistical learning 
theory (SLT)—a small-sample statistical theory, and 
thereby it is suitable for solving the problems arising 
due to small samples, nonlinearity, high dimension, 
and local minima[9]. Due to high accuracy and good 
generalization, SVM has been applied in machine 
learning, regression and prediction, classification task, 
and pattern recognition[10,11].  

In this article, a dynamic MPLS based on SVM 
(SVM-based DMPLS) is developed for on-line fault 
detection in batch processes. The SVM-based DMPLS 
enables the MPLS linear outer projection to calculate 
the latent variables and builds nonlinear inner models 
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using SVM. The inner models are a series of sin-
gle-input-single-output SVM predictor, which are 
trained on the latent variables generated from raw data. 
Therefore, SVM-based DMPLS not only handles cor-
related variables, but also builds a nonlinear relation-
ship through inner modeling. In addition, the applica-
tion of the time-lagged window technique not only 
makes the complementarities of the unmeasured data 
of monitored batch unnecessary, but also is helpful for 
tracking the dynamic process data. Besides, the com-
putation and storage requirements are significantly 
reduced in comparison with the traditional MPLS, 
because the SVM-based DMPLS only requires the 
previous partial measured data.  
 
2  METHODS 
2.1  Support vector machines nonlinear regression 

For a given data set 1{( , )}l
i i iS y == x , where xi is 

the input vector, yi the desired value, and l the total 
number of data pair, support vector machines’ nonlin-
ear regression maps the original data x onto a 
high-dimensional feature space via a nonlinear map-
ping function )(⋅ϕ  and then performs a linear regres-
sion in the feature space[9]. The linear regression func-
tion in the feature space is defined as: 

T( ) ( )f bϕ= +x w x            (1) 
where ( )ϕ x  is the mapped data in the feature space; 
both w and b are coefficients that will be estimated by 
the training data. The linear ε -insensitive loss func-
tion is chosen: 
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by minimizing the following objective function:  
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The first term in Eq.(3) is a weight decay, which is 
used to regularize weight sizes and penalize large 
weights. The second term is the empirical error (risk), 
which is scaled by the ε -insensitive loss function 

( )Lε ⋅  in Eq.(2). ε is called the tube size of the SVM. 
Errors greater than ε±  are denoted with the slack 
variables ξ  (above ε ) and *ξ  (below ε), respectively. 
Parameter C is the regularization constant determining 
the compromise between the empirical error and the 
regularized term. Both C and ε  need to be chosen 
empirically. 

By introducing Lagrange multipliers and kernel 

function, the optimal regression function [see Eq.(1)] 
is obtained in the following explicit form: 

( ) ( )*

1
( ) ,

l

ii i
i

f K x x bα α
=

= +−∑x       (4) 

where iα and *
iα are the Lagrange multipliers satisfy-

ing the expression * 0i iα α = , 0iα ≥ , * 0iα ≥ . Based 
on the Karush-Kuhn-Tucker (KKT) conditions[9], only 
a certain number of coefficients ( )*

i iα α−  are 
non-zero. The data pairs corresponding to these 
non-zero coefficients are named support vec-
tors. ),( xxiK  is the kernel function used to avoid the 
computation of the nonlinear mapping.  
 
2.2  Unfolding of three-way data matrix and 
time-lagged window technique 

The historical data collected from the batch and 
fed-batch processes are organized into two matrices: 
the process data matrix X (I×J×K) and the     
final-product quality data matrix Y(I×M), where I, J, 
K and M are the numbers of reference batches, process 
variables, samples, and final-product quality variables 
respectively. Before performing PLS, the three-way 
matrix X (I×J×K) needs be unfolded into a two-way 
matrix X (I×KJ) by preserving the batch direction. 
Each of the vertical slices of X  is a (I×J) matrix 
representing the values of J process variables for I 
reference batches at a sampling time. Then, the un-
folding matrix X is represented in the following form: 
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For on-line process monitoring of a new batch, 
traditional MPLS requires complete history of the new 
batch run. The unmeasured data from current time to 
the end of batch have to be filled with the estimated 
data. Although several different methods are proposed 
to estimate the missing data[3,12,13], the estimation val-
ues may not exactly follow the actual dynamic process 
behavior, and this may lead to false detection. This 
especially easily occurs during the initial phase of cul-
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tivation due to large amounts of missing data. More-
over, the size of the unfolding matrix X in Eq.(5) is 
usually rather large, as a result of which considerable 
effort is required in computation. In this article, only 
partial measured process data of new batch are used in 
SVM-based DMPLS modeling by applying the 
time-lagged window technique[14,15]. Suppose the cur-
rent sampling time of new batch (the monitored batch, 
numbered I+1) is k, then its time-lagged matrix 1I

k
+X  

and the corresponding 1~ I
kX  of reference batches are: 

1 1 1 1
1 2

I I I I
k k d k d kf f f+ + + +
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where superscripts I+1 and 1~I represent the (I+1)th 
batch and I reference batches in total, and d is the 
number of time lags. 
 
2.3  Development of SVM-based DMPLS 

Standard PLS model decomposes the matrices 
1~ I
kX  and 1~ I

kY  at time k into two linear combination 
of scores matrices T(I×R) and U(I×R), loading ma-
trices P(dJ×R) and Q(M×R), and residual matrices 
E(I×dJ) and F(I×M). 

1~ T

1

R
I

k r r
r=

= + = +∑X t p E TP E       (8) 

1~ T

1

R
I

k r r
r=

= + = +∑Y u q F UQ F       (9) 

where vectors tr and ur represent the rth latent variables 
retained in the model, R is the number of latent vari-
ables, the final-product quality data matrix 1~ I

kY  at any 

time k is invariable, namely, 1~ 1~I I
k =Y Y . For linear 

PLS, the inner relationship between latent variable ma-
trices U and T is modeled using a linear function, i.e. 
U=TB, where matrix B(R×R) is a diagonal matrix. The 
SVM-based DMPLS proposed in this article is to replace 
the linear inner relationship with SVM networks, while 
maintaining the linear outer relationship in Eqs.(8) and (9) 
unchanged. A series of single-input–single-output SVM 
networks are used to model the relationship between 
latent variables T and U. That is, 

ur=Sr(tr)+hr               (10) 
where Sr(·) stands for the rth inner relationship pre-
sented by a SVM network, and hr is the residual. 
Standard SVM regression function in Eq.(4) is rewrit-
ten as follows: 

 ( ) ( )*
,

1
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tu K bα α
=

= +−∑ t       (11) 

where K(·) is the kernel function, I is the number of 
reference batches in total, and the regression coeffi-
cients *( )i iα α−  and the constant b are determined by 
SVM regression algorithm[9]. Establishment of 
SVM-based DMPLS model is based on NIPALS algo-
rithm proposed by Wold[16]. The detailed procedure is 
given in Appendix A. 

During the progress of the monitored batch, a 
time-lagged matrix 1I

k
+X  in Eq.(6) becomes available 

at each sampling time k. After Scaling each column of 
1I

k
+X  to zero-mean and unit-variance, the predicted 

scores matrix 1(1 )I
k R+ ×t  and the residuals matrix 

1(1 )I
k dJ+ ×e  are given by 

( ) 11 1 TI I
k k

−+ +=t X W P W        (12) 
1 1 1 TI I I

k k k
+ + += −e X t P         (13) 

where W(dJ×R) is a weight matrix, which is composed 
of the weight vector wr produced by NIPALS algorithm. 
 
3  CASE STUDY 

Fed-batch penicillin fermentation process is 
taken as a case study. Process data are generated from 
a simulator named Pensim, which is based on a de-
tailed mathematical model describing penicillin 
fed-batch cultivation. This simulator can be used to 
develop statistical monitoring/control approaches as a 
tool[17,18]. A total of 14 variables including five input 
variables (Nos.1—4 and 14) and nine process vari-
ables (Nos.5—13) consist of the process data matrix X, 
while two final quality variables construct the matrix 
Y, as shown in Table 1. The duration of each batch run 
is 250h, and the sampling interval is chosen to be 1h. 
Moreover, measurement noises are also added to all 
the variables used in monitoring. Thirty normal 
batches are selected as reference batches to construct 
MPLS model. The size of matrices X and Y are 
(30×14×250) and (30×2), respectively. 

Table 1  Variables used in the monitoring 
No. Variables 
1 aeration rate, h－1 
2 agitator power, W 
3 substrate feed flow rate, h－1 
4 substrate feed temperature, K 
5 substrate concentration, g·L－1 
6 dissolved oxygen concentration, mmol·L－1 
7 biomass concentration, g·L－1 
8 penicillin concentration, g·L－1 
9 culture volume, L 

10 carbon dioxide concentration, mmol·L－1 
11 pH 
12 bioreactor temperature, K 
13 generated heat, J 
14 cooling water flow rate, h－1 
y1 final penicillin concentration, g·L－1 
y2 amount of penicillin produced (computed), g 
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For on-line monitoring, the number of time lags d 
is set to 50 by trial and error. The size of unfolding 
matrix 1~ I

kX  is (30×700) when k≥50. When k＜50, 
the unfolding matrix 1~ I

kX  is not constructed due to 
the time lags. In this case, all the data up to time k are 
used to construct MPLS model, namely, 

1~ (30 14 )I
k k×X . For SVM networks, sigmoid function 

is selected as the kernel. By cross-validation, six latent 
variables are found to be sufficient for describing the 
relationship between 1~ I

kX  and 1~ I
kY , which is able to 

explain about 80% of the variation of 1~ I
kY .  

Two testing batches are used to evaluate the 
monitoring performance. Batch 31 is a normal batch. 
For Batch 32, the substrate feed rate is abnormal from 
150 due to the fault of a feeding pump. It is linearly 
decreased from 0.0431h－1 at 150h to 0.03l8h－1 at the 
end of batch operation. 

Figures 1 and 2 show T2-chart and SPE-chart of 
the monitored batches, respectively. For normal Batch 
31, the T2 and SPE values, respectively, remain below 
their control limits during the whole batch run. For 
abnormal Batch 32, the fault can be detected success-
fully and quickly, where SPE values of Batch 32 ex-
ceed the 99% control limits at about 178h. 

 
Figure 1  T2-chart of two testing batches 

- - - Batch 31; —— Batch 32; 
- - - 95% control limit;  99% control limit 

 
Figure 2  SPE-chart of two testing batches 

- - - Batch 31; —— Batch 32; 
- - - 95% control limit;  99% control limit 

 
4  CONCLUSIONS 

This article proposed a new nonlinear dynamic 
MPLS model based on SVM (SVM-based DMPLS) 
for on-line batch fault detection. By introducing SVM 
into traditional PLS model, highly nonlinear dynamic 
batch processes are modeled effectively. In addition, 
the time-lagged window technique is adopted to avoid 

complementing unmeasured data of the monitored 
batch. At the same time, the computation and storage 
requirements are reduced significantly in comparison 
with traditional MPLS. The application of SVM-based 
DMPLS to penicillin production demonstrates that it 
provides an effective approach for fault detection in 
batch or fed-batch processes. 
 
NOMENCLATURE 

B  diagonal matrix representing the inner relation 
between T and U 

b  scalar threshold value 
C  penalty factor 
d  number of time lags 
E, F  residual matrices 
I  number of reference batches 
J  number of process variables 
K number of samples 

( , )iK x x   kernel function 
k current sampling time of present batch 

)(⋅εL   ε-insensitive loss function in SVM 
M  number of final-product quality variables 
P, Q  loading matrices 
pr, qr  the rth loading vector 
R  number of latent variables 
Sr(·)  standing for the inner relationship between tr and 

ur using a SVM network 
T, U  scores matrices 
tr, ur  the rth score vector 
W  weight matrix consisting of weight vector 
w  weight vector in SVM 
wr  produced by NIPALS algorithm 
X  two-way process data matrix 
X   three-way process data matrix 

1I
k
+X   time-lagged matrix of the (I+1)th batch at time k 

1~ I
kX   X time-lagged matrix for I reference batches at 

time k 
Y  two-way product quality data matrix 

1~ I
kY  Y time-lagged matrix for I reference batches at 

time k 
iα , *

iα   Lagrange multipliers 
ε  regression precision 
ξ , *ξ   slack variables 

( )ϕ ⋅   nonlinear mapping function in SVM 
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APPENDIX 
SVM-based DMPLS modeling procedure 
1  Scale the data to zero-mean and unit-variance. 
2  Let E0=X, F0=Y and r = 1. 
3  For each latent variable r, take ur = some column of Y. 
4  PLS outer transform:  

 ( )T T
1r r r r r−=w E u u u  

 normalize wr to norm 1: r r r=w w w  

 1r r r−=t E w  

 ( )T T T
1r r r r r−=q t F t t  

 normalize qr to norm 1: r r r=q q q  

 1r r r−=u F q  
 Iterate this step until it converges. 

5  Calculate the X loadings and rescale tr and wr: 
 ( )T T T

1r r r r r−=p t E t t  

 r r r=t t p  

 r r r=w w p  

 normalize pr to norm 1: r r r=p p p  

6  Inner SVM training  
Build a single-input–single-output SVM network to learn 
the inner relationship between ur and tr: 

 ( )r r r rS= +u t h  
7  Calculate the residuals: 

 for matrix X, T
1r r r r−= −E E t p  

 for matrix Y, T
1 ˆr r r r−= −F F u q  

 where ( )ˆr r rS=u t  

8  Determine the number of latent variables: 
 If r<R, then r=r+1 and return to Step 2 to calculate the next 

latent variables, where R is the number of latent variables 
and determined by cross-validation. Otherwise, terminate 
the modeling algorithm. 

 
 


