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Neural Network Nonlinear Predictive Control Based on Tent-map 
Chaos Optimization* 
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Abstract  With the unique ergodicity, irregularity, and special ability to avoid being trapped in local optima, chaos 
optimization has been a novel global optimization technique and has attracted considerable attention for application 
in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-
tive control (NNPC) strategy based on the new Tent-map chaos optimization algorithm (TCOA) is presented. The 
feedforward neural network is used as the multi-step predictive model. In addition, the TCOA is applied to perform 
the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-
tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method. 
Keywords  model-based predictive control, neural network, Tent-map, chaos optimization, nonlinear system 

1  INTRODUCTION 
Model-based predictive control (MPC) technique 

is now popular and has been implemented success-
fully in several industrial processes[1] owing to its 
special characteristics, such as the capabilities of 
model-based prediction, rolling optimization, and 
feedback tuning. Several versions of the MPC tech-
nique include dynamic matrix control (DMC)[2], gen-
eralized predictive control (GPC)[3], and so on. The 
above techniques are fundamentally similar since all 
are based on linear process modeling[4]. However, 
because of the assumption of linearity of the unknown 
system parameters, MPC encounters great difficulties 
when confronted with a system that has high nonlin-
earity and complexity. Therefore, there are several 
novel intelligent predictive controllers[5—7] to deal 
with the complex nonlinear systems. 

Recently, under the receding horizon principle 
and MPC framework, attention has been focused on 
nonlinear predictive control using a nonlinear model 
describing the behavior of a system. As a mathemati-
cal model for the human brain, the neural network 
(NN) has been commonly applied in most branches of 
natural science, and not only the control systems field. 
The nonlinear modeling capability of NN is well 
documented[8,9]. Multi-layer feedforward neural 
networks are the most extensively utilized NNs in 
control and identification applications. For nonlinear 
plants, the ability of the MPC to make accurate pre-
dictions can be enhanced if a neural network is used to 
learn the dynamics of the plant instead of the standard 
nonlinear modeling techniques. The neural-network- 
based predictive control (NNPC) strategies have been 
found to be effective in controlling a wide class of 
nonlinear processes in the past[10—19]. In the NNPC, 
the neural network will be used as the prediction 
model of the nonlinear plant and the system perform-
ance is greatly dependent on the online optimization 
procedure. Several algorithms were successfully im-

plemented in the NNPC system, such as the gradient 
descent method[11—15] and the Newton-Raphson 
method[16]. The Jacobian or Hessian matrix used for 
solving the optimization is normally formulated in 
terms of the structure of the neural network, i.e., 
weights and biases. To reduce the computational load 
for a large predictive horizon, Noriega and Wang[17] 
presented a recursive algorithm for calculating the 
Jacobian matrix. However, these numerical optimiza-
tion methods usually provide local optim and require 
the NNPC cost function which is differential and it is 
still a complex procedure for calculating the Jacobian 
or Hessian matrix even under some simplifications; 
hence, the intelligent algorithms are more suitable for 
optimizing in NNPC, such as the genetic algorithm 
(GA)[18] and the particle swarm optimization 
(PSO)[19]. 

Chaos is a kind of characteristic of nonlinear 
systems, which is a bounded unstable dynamic be-
havior that exhibits sensitive dependence on initial 
conditions and includes infinite unstable periodic mo-
tions. A chaotic motion can traverse every state in a 
certain region (called the chaos space) by its own 
regularity, and every state is visited only once, and 
thus, there is no precise periodicity. Owing to the 
unique ergodicity and special ability to avoid being 
trapped in local optima, chaos has been a novel opti-
mization technique, and the chaos optimization algo-
rithm (COA)[20] is considerably higher than some 
other stochastic algorithms. 

In this article, a novel neural network nonlinear 
predictive control strategy based on the new Tent-map 
chaos optimization algorithm (TCOA) is presented. 
The neural network, which is trained by the BP algo-
rithm with adaptive learning rate and momentum fac-
tor (BPALM)[21], is used as the multi-step predictive 
model in NNPC. The Tent-map is studied in the 
mathematics of dynamical systems because it has sev-
eral interesting properties such as chaotic orbits, simple 
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shape, and so on. Most importantly, the Tent-map 
shows the outstanding advantages and has higher  
iterative speed than the Logistic map, because the 
probability density function of the chaotic sequence 
for the Tent-map is a uniform function whereas the 
probability density function of chaotic sequence for 
the Logistic map is a Chebyshev-type function[22]. 
The TCOA is applied to perform the nonlinear opti-
mization to enhance the convergence and accuracy. 
The simulation on a laboratory-scale liquid-level sys-
tem shows that the method is effective. 

2  NEURAL NETWORK PREDICTIVE CONT- 
ROL (NNPC) 

In contrast to the neural network direct control, 
the NNPC is more practical. Here, the neural network 
will be used as the prediction model of the nonlinear 
plant. 

Assume that the unknown nonlinear system is 
expressed as the input-output form by: 

( ) ( )
( ) ( )
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where, y(t) and u(t) are the output and input of the 
system, respectively; f(·) is the unknown nonlinear 
function to be estimated by a neural network; na and 
nb are the orders of the system; d is the time delay, 
which is assumed to be at least one. 

Since the input to the neural network is: 
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the neural model for the unknown nonlinear system (1) 
can be expressed as: 

ˆˆ( ) [ ( )]y t f t= X                (3) 
where, ˆ( )y t  is the output of the neural network and 

f̂  is the estimation of f. 
The purpose of the NNPC algorithm is to select 

the control signal u(t) such that the output of the system 
y(t) is made as close as possible to the set-point r(t). A 
schematic illustration of the NNPC is given in Fig.1. 

 
Figure 1  NNPC scheme 

The process control input is calculated to mini-
mize a criterion J at each sampling instant t, 
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where, N is the prediction horizon and Nu is the con-
trol horizon, and generally Nu≤N; λ is the control 
weighting factor; u(t) is the control signal; Δ is the 
difference operator, ( ) ( ) ( 1)u t u t u tΔ = − − ; ˆ( )y t j+  
is the j-step-ahead predicted output by the network 
prediction model; r ( )y t j+  is the j-step-ahead future 
reference output, which is obtained as follows: 

r

r r

( ) ( )
( ) ( 1) (1 ) ( )
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y t j y t j r tα α
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⎨ + = + − + −⎩

    (5) 

where, α is a soft factor, 0≤α＜1, and r(t) represents 
the real set-points. The purpose of the weighting fac-
tor λ is to penalize large change in the process input 
and reduce actuator wear. It is usual to set λ as a posi-
tive constant. 

Rewrite the criterion (4) in vector notation as 
follows: 

T T
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where, 
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and 
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Using the gradient decent rule, it can be obtained 

that 
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where, ηc is a learning rate,  
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Since ( ) ( ) ( 1)u t u t u tΔ = − − , there is 
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It can be seen that each element in the above matrix 
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can be found by differentiating Eq.(3) with respect to 
each element in Eq.(7). As a result, the following can 
be obtained: 

1
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∑

X

X
   (13) 

for 1,2, ,n N= ⋅ ⋅ ⋅ ; u1,2, ,m N= ⋅ ⋅ ⋅  
Equation (12) is the well-known Jacobian matrix, 

which must be calculated using Eq.(13), and every 
time a new control signal has to be determined. This 
can result in a large computational load for a big N 
and Nu. To simplify the computation, Noriega and 
Wang[17] presented a recursive algorithm for calcu-
lating the Jacobian matrix. More details of the calcula-
tion procedure can be referred to Refs.[11—17]. 

Most of the previous works are, however, based 
on the nonlinear programming method, which pro-
vides local optimum values only and in addition, these 
values depend on the selection of the starting point. 
Moreover, these gradient-based methods require vast 
cost in the complex calculation of the Jacobian or 
Hessian of the criterion. To simplify and reduce the 
computation load of NNPC, the intelligent optimiza-
tion (gradient-free) methods are more appropriate and 
flexible. 

3  TENT-MAP CHAOS OPTIMIZATION 
Chaos, an apparently disordered behavior that is 

nonetheless deterministic, is a universal phenomenon 
that occurs in several nonlinear systems. It is featured 
by highly unstable motion of deterministic systems in 
a bounded region of the phase space. High instability 
indicates that the distance of two nearby orbits in-
creases exponentially with time, which is a result of 
the extreme sensitivity of chaotic systems to the initial 
conditions. The Lyapunov exponents quantify this 
property. The magnitude of the Lyapunov exponent 
represents the principal rate of the orbits’ divergence 
in the phase space. For a one-dimensional dynamical 
system, xi+1＝f (xi), and the Lyapunov exponent (LE) 
is defined as the long-time average of the exponent 
with respect to an orbit: 

1

0

1LE lim ln ( )
N

iN i
f ' x

N
 

−

→∞ =

= ∑         (14) 

Chaos is then characterized by the boundedness 
of the system trajectories with a positive Lyapunov 
exponent, which implies that the average gradient of 
the map is greater than unity, and accordingly, two 
nearby orbits in phase space diverge at an exponential 
rate. 

It was emphasized that the sensitivity to the ini-
tial value suggests the irregularity of the series {xi} 
generated by chaos. Consider the ith number xi of the 
series. It may be possible that xj with j＞i is quite 
close to xi. Unless xi＝xj exactly, however, the part xi, 
xi+1, xi+2, ··· is very different from the part xj, xj+1, 

xj+2, ··· owing to the sensitivity to the initial difference. 
Although the long-term behavior of a chaotic 

system shows typical stochastic properties, chaos is 
not equivalent to a random process. A chaotic motion 
can traverse every state in a certain region (called the 
chaos space) by its own regularity, and every state is 
visited only once, and therefore, there is no precise 
periodicity. The unique ergodicity and the irregularity 
of the series generated by chaos make chaotic dynam-
ics a potential candidate in the field of global optimi-
zation, namely, the chaos optimization algorithm 
(COA)[20]. In fact, it has been successfully applied in 
improving the performance of the genetic algorithm 
(GA)[23] and particle swarm optimization (PSO)[24], 
in solving nonlinear optimization problems for the 
sliding mode control (SMC)[25], and so on. 

Chaos variables are almost generated by the Lo-
gistic map in the literatures. However, the invariant 
density (also called the probability density) of the it-
erates for the Logistic map is: 

1( )
2 (1 )

x
x x

ρ =
π −

          (15) 

The Chebyshev-type distribution function in the 
interval [0, 1] is shown in Fig.2. As seen in Fig.2, the 
invariant density of the iterates in the small interval  
[0, 0.05] and [0.95, 1] is considerably higher than in 
the other interval [0.05, 0.95]. If the global optimum is 
not in the interval [0, 0.05] and [0.95, 1] but in   
[0.05, 0.95], the Logistic-map-based COA (LCOA) 
may require a large number of iterations. Thus, it af-
fects the global search capacity and computational 
efficiency. 

 
Figure 2  Probability density for the Logistic map 

The invariant density of the iterates for Tent-map 
is: 

( ) 1xρ =                (16) 
Since the invariant density of the iterates is the 

uniform distribution function in the interval [0,1], the 
Tent-map shows outstanding advantages and higher 
iterative speed than the Logistic map. In this study, the 
Tent-map is used in chaos optimization to generate the 
chaotic time series. Consider the equation of Tent-map: 

1
2 , [0,0.5)

2(1 ), [0.5,1]
i i

i
i i

x x
x

x x+
∈⎧
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        (17) 

where, xi is the chaotic variable. Its Lyapunov expo-
nent is: 

LE ln 2 0= >               (18) 



Chin. J. Ch. E. (Vol. 15, No.4) 

August, 2007 

542 

The chaotic evolutions can be generated by 
Eq.(17), and the ergodic area (i.e., chaos space) is the 
interval (0, 1). A general procedure of chaos optimiza-
tion can be found in Ref.[20]. 

4  NNPC BASED ON TENT-MAP CHAOS OPT- 
IMIZATION 

The core problem in NNPC is the online optimi-
zation of the criterion Eq.(4). In this study, the control 
actions T

u( ) [ ( ), ( 1), , ( 1)]t u t u t u t N= + ⋅ ⋅ ⋅ + −U are 
sought via Tent-map chaos optimization. 

Since Nu components are involved in the control 
actions U(t), Nu initial chaotic variables, 1,0x , 

u2,0 ,0, , Nx x⋅ ⋅ ⋅ , ,00 1jx≤ ≤ , u1,2, ,j N= ⋅ ⋅ ⋅ , are se-
lected randomly, and the fixed points of the Tent-map, 
such as 0 and 2/3, cannot be used as initial variables. 
The lower bounds and upper bounds of the searched 
variables are denoted as bd j

l  and bd j
u , u1,2, ,j N= ⋅ ⋅ ⋅ . 

J* and U* are assumed to be the optimal cost index 
and the optimizers, respectively. Jk+1 and Uk+1 respec-
tively denote the cost index and the NNPC control 
actions in the (k+1) th iteration. 

The major steps of the NNPC based on the 
Tent-map chaos optimization can be described as fol-
lows: 

Step 1. At time step t, simultaneously sample in-
puts and outputs of the process [including y(t)]. 

Step 2. Start with the previously calculated con-
trol input vector, and compute the predictive output 
values using the neural network model, and thus, de-
termine the cost function J[U(t)]. 

Step 3. Apply the Tent-map-based chaos optimi-
zation to calculate a new control input that minimizes 
criterion (4). 

① Chaotify the variables. Substitute 1, 2,, , ,k kx x ⋅ ⋅ ⋅  

u ,N kx  in the Eq.(17) to generate Nu chaotic variables 

u1, 1 2, 1 , 1, , ,k k N kx x x+ + +⋅ ⋅ ⋅  via the Tent-map. 
② Perform the transformation from the chaotic 

space to the solution space using the following for-
mula, namely, the first carrier wave. 

( )bd bd, 1 bd , 1j jjj k j ku ll x+ +−= + ⋅U  

u1, 2, , j  N= ⋅ ⋅⋅              (19) 
③ Compute the performance index Jk+1 in Eq.(4), 

and assign the optima as follows: If k＝0 or Jk+1≤J*; 
then, J*＝Jk+1, U*＝Uk+1; otherwise, do nothing. 

Repeat the above ①, ②, and ③ until J* and U* 
do not improve within certain steps, and turn to the 
next ④. 

④ Utilize the Tent-map Eq.(17) again to generate 
Nu chaotic variables x1,k+1, x2,k+1,···, x1,k+1 and perform 
chaos search using second carrier wave. 

*
1 , 1k j kxβ+ += +U U            (20) 

where, βxj,k+1 is a chaos variable with small ergodic 
interval; β is an adjusting coefficient, normally chosen 

as a small positive constant, here, β＝0.01. 
⑤ Compute the performance index Jk+1 in Eq.(4), 

and assign the new optima; do the same as ③.  
Repeat the above ④ and ⑤ until J* and U* do 

not improve within certain steps, and turn to Step ④. 
Step 4. Send the first control input u(t) to the process. 
Step 5. t:＝t+1, turn to Step 1. 

5  SIMULATION STUDY 
To validate the theoretical developments, the fol-

lowing simulation study is presented. 
Example: Control of a laboratory-scale liquid-level 

system. 
This example was taken from Ref.[13, 14]. The 

model is identified from a laboratory-scale liquid level 
system. The system consists of a D.C. water pump 
feeding a conical flask, which in turn feeds a square 
tank, giving the system second-order dynamics. The 
controllable input is the voltage to the pump motor, 
and the plant output is the height of the water in the 
conical flask. The aim is that the water height must 
follow some demand signals, and the identified model 
is given as: 

2

2

2

( ) 0.9722 ( 1) 0.3578 ( 1)
0.1295 ( 2) 0.3103 ( 1) ( 1)

0.04228 ( 2) 0.1663 ( 2) ( 2)

0.03259 ( 1) ( 2)

0.3513 ( 1) ( 2)
0.3084 ( 1) ( 2) ( 2)
0.1087 ( 2) ( 1) ( 2)

y t y t u t
u t y t u t

y t y t u t

y t y t

y t u t
y t y t u t
y t u t u t

= − + − −
  − − − − −

  − + − − −

  − − −

  − − +
  − − − +
  − − − +

2

0.2573 ( 2) ( 1)

0.2939 ( 2) ( 1)
0.4770 ( 2) ( 1) ( 1)

y t e t

y t e t
y t u t e t

  − − +

  − − +
  − − −

(21) 

The desired set-points r(t) are switched between 
2 and －2 every 100 iterations, and e(t) is a zero 
mean white noise sequence with variance 0.1. The 
initial conditions are set as y(－1)＝0, y(－2)＝0. 

A feedforward neural network with 4 input neu-
rons, 7 hidden neurons, and 1 output neuron is used, 
namely 4-7-1 structure. The input signal applied to 
plant (21) is a finite sequence of uniformly distributed 
random variables with range [－2, 2]. Thus, it gener-
ates input/output samples (patterns), which will be 
used to train the NN. Among the samples, 100 sam-
ples are used as training NN data, while the remaining 
100 samples are used as testing NN data. In conven-
tional BP algorithm[26], the input signal is often used 
to choose a proper learning rate that stays fixed during 
the whole process of training. Therefore, its conver-
gence tends to be very slow, and it often produces 
suboptimal solutions. To improve the performance of 
the BP algorithm, the BP algorithm with adaptive 
learning rate and momentum factor (BPALM)[21] is 
employed to train the weights and biases. During the 
training, the weights and biases of the NN are opti-
mized by the BPALM, which minimize the mean 
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square error criterion: 

[ ]2
nn

1

1 ˆ( ) ( | )
2

p

t
E y t y t

p =

= −∑ W      (22) 

where, p represents the training samples, and W 
represents the optimized neural weights vector. The 
weights are therefore updated as follows[21]: 

[ ]nn( 1) ( ) ( ) ( ) ( ) ( 1)
( )

Et t t t t t
t

η μ
∂

+ = + + − −
∂

W W W W
W

 

(23) 
where, η and μ are the learning rate and the momen-
tum factor, respectively. η and μ are adaptively ad-
justed at each iteration given by:  

( )

( )

nn nn1

nn nn

nn nn1

( ), ( ) ( 1)1
( 1) ( ) ( ) ( 1)

( ), ( ) ( 1)1

t E t E t
t t E t E t

t E t E t
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η η

ηθ

< −+⎧
⎪+ = = −⎨
⎪ > −−⎩
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( )

nn nn2

nn nn

nn nn2

( ), ( ) ( 1)1
( 1) ( ) ( ) ( 1)

( ), ( ) ( 1)1

t E t E t
t t E t E t

t E t E t

μθ
μ μ

μθ

< −+⎧
⎪+ = = −⎨
⎪ > −−⎩

   (25) 

where, 0＜θ1, θ2＜1. In this article, θ1 and θ2 are set to 
be 0.05, and the initial learning rate and the momen-
tum factor are set as η(0)＝0.01, μ(0)＝0.8. 

The parameters of the NNPC are set as N＝7,  
Nu＝4, λ＝0.05, and α＝0.2. Figs.3(a), (b), and (c) 
show the control of the liquid level system by 
quasi-Netwon, LCOA, and TCOA, respectively. As 
seen in Fig.3, the proposed controller has a good 
tracking capability. In addition, the Tent-map chaos 
optimization (TCOA) method is compared with the 
quasi-Newton, Logistic-map chaos optimization 

(LCOA) methods in terms of the mean square tracking 
error (MSE) as shown in Table 1. It is seen that the 
TCOA method has smaller mean square tracking error 
than the quasi-Newton and LCOA methods. 

Table 1  Comparison of the mean square tracking error 

MSE of quasi-Newton MSE of LCOA MSE of TCOA
0.0632 0.0359 0.0181 

6  CONCLUSIONS 
In this article, a novel nonlinear neural network 

predictive control (NNPC) strategy based on the new 
Tent-map chaos optimization algorithm (TCOA) is 
presented. The neural network is used as the 
multi-step predictive model and the TCOA is applied 
to perform the nonlinear rolling optimization to en-
hance the convergence and accuracy in the NNPC. 

The disadvantages of the gradient-based tech-
niques such as slow convergence and dependence on 
initial values can be addressed by the chaos optimiza-
tion algorithm. The integration of TCOA with neural 
network not only avoids the risk of trapping in the 
local optimum point but also allows neglecting the 
error gradient information Furthermore, the TCOA 
can avoid calculating the complex Jacobian or Hessian 
matrices required in gradient-based methods and re-
duce the computation loads of the NNPC. The simula-
tion results show that the method is effective. 

NOMENCLATURE 
d time delay of system 
E(t) output vector of system 
Enn mean square error criterion of NN 
e(t) output error of system 
f̂  estimate of unknown function f 
J cost function of NNPC 
J* optimal cost index  
LE Lyapunov exponent 
bd j

l  j-low- bound of solution space 
N prediction horizon 
Nu control horizon 
na degree of system output 
nb degree of system input 
r(t) set-point 
U* optimal input vector of system 
U(t) input vector of system 
u(t) input of system 

bd j
u  j-upper-bound of solution space 
W weights vector of neural network 
X(t) input vector to the neural network 
{xi} series of chaos 
Y(t) output vector of system 
ˆ ( )tY  output vector of neural network 
Yr(t) reference output vector of system 
y(t) output of system 
ˆ( )y t  output of the neural network 
yr(t) reference output of system 
yr(t+j) j-step-ahead future reference output 
α soft factor of the reference output  
β adjusting coefficient of chaos optimization 
Δ symbol of backward difference 
η learning rate of neural weights 

 
(a) quasi-Newton 

 
(b) LCOA 

 
(c) TCOA 

Figure 3  Control of the liquid level system 
- - - - r(t); —— y(t) 
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ηc learning rate of NNPC 
θ1 adjusting coefficient of NN learning rate 
θ2 adjusting coefficient of NN momentum factor 
λ control weight factor 
μ momentum factor of neural weights 
ρ(x) probability density of chaotic map 
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