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EXACT DISTRIBUTIONS OF R2 AND ADJUSTED R2

IN A LINEAR REGRESSION MODEL
WITH MULTIVARIATE t ERROR TERMS

Kazuhiro Ohtani* and Hisashi Tanizaki*

In this paper we consider a linear regression model when error terms obey a
multivariate t distribution, and examine the effects of departure from normality of
error terms on the exact distributions of the coefficient of determination (say, R2)

and adjusted R2 (say, R
2
). We derive the exact formulas for the density function,

distribution function and m-th moment, and perform numerical analysis based on
the exact formulas. It is shown that the upward bias of R2 gets serious and the
standard error of R2 gets large as the degrees of freedom of the multivariate t error

distribution (say, ν0) get small. The confidence intervals of R2 and R
2

are examined,
and it is shown that when the values of ν0 and the parent coefficient of determination
(say, Φ) are small, the upper confidence limits are very large, relative to the value of
Φ.

Key words and phrases: Adjusted R2, exact distribution, interval estimation, mul-
tivariate t error terms, R2.

1. Introduction

To measure goodness of fit of an estimated linear regression model, the co-
efficient of determination (say, R2) and the adjusted coefficient of determination
(say, R

2) have traditionally been used (see Section 2 for R2 and R
2). Thus, there

are many studies on the small sample properties of R2 and R
2. For example,

Barten (1962) suggests a modified version of R2 to reduce its bias, and Press and
Zellner (1978) discuss the reason why the study of R2 is important in the case of
fixed regressors and they perform Bayesian analysis of R2. Also, Cramer (1987)
derives the exact formulas for the first two moments of R2 and R

2, and shows
that R2 is seriously biased upward in small samples while R

2 is more unreliable
than R2 in terms of standard deviation.

Although it is assumed that the model is correctly specified in the above
studies, Carrodus and Giles (1992) examine the small sample properties of R2

when the independence of error terms is mistakenly assumed. Also, using asym-
metric linear loss functions, Ohtani (1994) examines the risk performances of R2

and R
2 when the relevant regressors are omitted in the specified model and when

irrelevant regressors are included in the specified model. Ohtani and Hasegawa
(1993) examine the bias and mean squared error (MSE) performances when the
proxy variables are used instead of unobservable regressors and the error terms
obey a multivariate t distribution.
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Although there are many studies on the small sample properties of R2 and
R

2, the studies on the exact distribution of R2 and R
2 per se are few. Although

Ohtani (1994) derives the exact distribution and density functions of R2 and
R

2, he assumes that the error terms obey a normal distribution. As is discussed
in Fama (1965) and Blattberg and Gonedes (1974), there exist many economic
data that may be generated by distributions with fatter tails than a normal
distribution. One example of such distributions is a multivariate t distribution.
To examine the effects of departure from normality of error terms on the sampling
performances of estimators and test statistics, the multivariate t distribution has
often been used. Some examples are Zellner (1976), Ullah and Zinde-Walsh
(1984), Giles (1991), and Namba and Ohtani (2002). Although Srivastava and
Ullah (1995) examined the sampling properties of R2 and R

2 under a general non-
normal error distribution, their analysis is based on the large sample asymptotic
expansions.

In this paper we consider a linear regression model when error terms obey a
multivariate t distribution, and examine the effects of departure from normality
of error terms on the exact distributions of R2 and R

2. In Section 2 the model
and estimators are presented, and in Section 3 the exact formulas for the density
function, distribution function and m-th moment are derived. In Section 4 we
evaluate means, standard errors, density functions, and confidence intervals of
R2 and R

2 numerically. The numerical results show that the upward bias of R2

gets serious and the standard error of R2 gets large as the degrees of freedom
of the multivariate t error distribution (say, ν0) get small. It is also shown that
when the values of ν0 and the parent coefficient of determination (say, Φ, which
is defined in Section 4) are small, the upper confidence limits of R2 and R

2 are
vary large. Finally, the 95% confidence intervals of R2 for Φ = 0.5 are shown.

2. Model and estimators

We consider the following linear regression model:

y = �β0 + Xβ + u,(2.1)

where y is an n×1 vector of observations of the dependent variable, � is an n×1
vector consisting of ones, X is an n× (k− 1) matrix of non-stochastic regressors,
β0 is an intercept, β is a (k − 1)× 1 vector of regression coefficients, and u is an
n × 1 vector of error terms.

As to the error terms, we assume that u obeys a multivariate t distribution
with location parameter 0, scale parameter σ2, and degrees of freedom parameter
ν0. Then, as is shown in Zellner (1976), the density function of u is written as:

p(u) =
∫ ∞

0
pN (u | τ) pIG(τ) dτ,(2.2)



EXACT DISTRIBUTIONS OF R2 AND ADJUSTED R2 103

where

pN (u|τ) =
1

(2π)n/2 τn
exp

(
−u′u

2τ2

)
,(2.3)

pIG(τ) =
2

Γ(ν0/2)

(
ν0σ

2

2

)ν0/2

τ−(ν0+1) exp
(
−ν0σ

2

2τ2

)
.(2.4)

We assume that ν0 > 2 so that the first two moments of u may exist. Then, we
have E[u] = 0 and E[uu′] = σ2

u In = [ν0/(ν0 − 2)]σ2 In.
We assume without loss of generality that all the regressors are measured

as deviations from their sample means (i.e., X ′� = 0). Then, the ordinary least
squares (OLS) estimators of β0 and β are:

β̂0 = �′y/n = y,(2.5)

β̂ = S−1X ′y,(2.6)

where S = X ′X. The associated residual vector is:

e = y − (�y + Xβ̂).(2.7)

Since y′y − ny2 = β̂′Sβ̂ + e′e, the sample coefficient of determination is written
as:

R2 = 1 − e′e

y′y − ny2 =
β̂′Sβ̂

β̂′Sβ̂ + e′e
.(2.8)

Also, the adjusted coefficient of determination is:

R
2 = 1 − n − 1

n − k

(
1 − R2

)
.(2.9)

If we define a formally general estimator as:

R2
h = hR2 + 1 − h,(2.10)

where h ≥ 1, then R2
h reduces to R2 when h = 1, and to R

2 when h = (n −
1)/(n − k). Since 0 ≤ R2 ≤ 1, we see that 1 − h ≤ R2

h ≤ 1.

3. Exact density and distribution functions

If we assume temporarily that τ is fixed, then the error terms obey a normal
distribution with E[u] = 0 and E[uu′] = τ2 In. As is shown in Ohtani (1994), the
density function of R2

h, given τ , is:

p(c | τ) =
∞∑
i=0

wi(λ)
B((k − 1)/2 + i, (n − k)/2)

h−(n−1)/2−i+1(3.1)

× (c + h − 1)(k−1)/2+i−1 (1 − c)(n−k)/2−1,
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where wi(λ) = [(λ/2)i/i!] exp(−λ/2) and λ = β′Sβ/τ2.
Using (2.4) and (3.1), the density function of R2

h can be obtained as follows:

p(c) =
∫ ∞

0
p(c | τ) pIG(τ) dτ(3.2)

=
∞∑
i=0

1
B((k − 1)/2 + i, (n − k)/2) i!

h−(n−1)/2−i+1

× (c + h − 1)(k−1)/2+i−1 (1 − c)(n−k)/2−1

× 2
Γ(ν0/2)

(
ν0σ

2

2

)ν0/2 (
β′Sβ

2

)i

×
∫ ∞

0
τ−(ν0+1)−2i exp

(
−β′Sβ + ν0σ

2

2τ2

)
dτ.

Making use of the change of variable, t = (β′Sβ + ν0σ
2)/(2τ2), and performing

some manipulations, we obtain the following distribution:

p(c) =
∞∑
i=0

θi ν
ν0/2
0 Γ(ν0/2 + i)

B((k − 1)/2 + i, (n − k)/2) i! Γ(ν0/2)(ν0 + θ)ν0/2+i
(3.3)

× h−(n−3)/2−i (c + h − 1)(k−1)/2+i−1 (1 − c)(n−k)/2−1,

where θ = β′Sβ/σ2, and B(·, ·) is the beta function.
The distribution function of R2

h is:

F (c0) =
∫ c0

1−h
p(c) dc

(3.4)

=
∞∑
i=0

θi ν
ν0/2
0 Γ(ν0/2 + i)

B((k − 1)/2 + i, (n − k)/2) i! Γ(ν0/2)(ν0 + θ)ν0/2+i

× h−(n−3)/2−i

∫ c0

1−h
(c + h − 1)(k−1)/2+i−1 (1 − c)(n−k)/2−1 dc.

Making use of the change of variable, t = (c + h − 1)/h, and performing some
manipulations, (3.4) reduces to:

F (c0) =
∞∑
i=0

θi ν
ν0/2
0 Γ(ν0/2 + i)

i! Γ(ν0/2)(ν0 + θ)ν0/2+i
Ic∗0((k − 1)/2 + i, (n − k)/2).(3.5)

where c∗0 = (c0+h−1)/h, and Ia(·, ·) is the incomplete beta function ratio. When
β = 0 (i.e., θ = 0), we see that the distribution function reduces to:

F (c0) = Ic∗0((k − 1)/2, (n − k)/2).(3.6)

Putting λ1 = λ2 = 0 in eq. (18) in Ohtani (1994) which is the distribution
function when the error terms obey a normal distribution, and comparing with
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(3.6), we see that when β = 0, the distribution function is robust to the change of
the error distribution from a normal distribution to a multivariate t distribution.
However, when β �= 0, this robustness does not hold.

Also, the formula for the m-th moment of R2
h is:

E
[(

R2
h

)m]
=

∫ 1

1−h
cm p(c) dc

(3.7)

=
∞∑
i=0

θi ν
ν0/2
0 Γ(ν0/2 + i)

B((k − 1)/2 + i, (n − k)/2) i! Γ(ν0/2)(ν0 + θ)ν0/2+i

× h−(n−3)/2−i

∫ 1

1−h
cm (c + h − 1)(k−1)/2+i−1 (1 − c)(n−k)/2−1 dc.

Again, making use of the change of variable, t = (c + h − 1)/h, the integral in
(3.7) reduces to:∫ 1

0
[th + (1 − h)]m (th)(k−1)/2+i−1 [(1 − t)h](n−k)/2−1 h dt(3.8)

=
m∑

r=0

mCr h(n−3)/2+r+i (1 − h)m−r

∫ 1

0
t(k−1)/2+r+i−1 (1 − t)(n−k)/2−1 dt

=
m∑

r=0

mCr h(n−3)/2+r+i (1 − h)m−r B((k − 1)/2 + r + i, (n − k)/2).

Thus, using the formula, B(a, b) = Γ(a)Γ(b)/Γ(a + b), we finally obtain the
expectation of (R2

h)m:

E
[(

R2
h

)m]
=

∞∑
i=0

Γ((n − 1)/2 + i) Γ(ν0/2 + i) θi ν
ν0/2
0

Γ((k − 1)/2 + i)Γ(ν0/2) i! (ν0 + θ)ν0/2+i
(3.9)

×
m∑

r=0

mCrh
r (1 − h)m−r Γ((k − 1)/2 + r + i)

Γ((n − 1)/2 + r + i)
.

4. Numerical analysis

In this section we perform numerical analysis based on the exact formulas
given in (3.3), (3.5) and (3.9). We define Φ as follows:

Φ =
β′Sβ

β′Sβ + nσ2
u

=
θ

θ + nν0/(ν0 − 2)
,(4.1)

which is called the parent coefficient of determination (see Press and Zellner
(1978), Cramer (1987) and Ohtani and Hasegawa (1993)). Note that the relation-
ship between Φ and R2 is given by plimn→∞ Φ = plimn→∞ R2. In the numerical
evaluations, we first decided the value of Φ, and then calculated the value of θ
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Table 1. Mean, standard error and 95% confidence interval of R2 for k = 5 and n = 20.

ν0 Φ Mean S.E. cL cU

5 0.8 0.8633 0.1028 0.5984 0.9731
0.6 0.7307 0.1525 0.3832 0.9298
0.4 0.5881 0.1774 0.2464 0.8688
0.2 0.4226 0.1762 0.1485 0.7684

10 0.8 0.8522 0.0823 0.6535 0.9563
0.6 0.7043 0.1334 0.4175 0.9014
0.4 0.5513 0.1613 0.2536 0.8297
0.2 0.3885 0.1640 0.1420 0.7307

30 0.8 0.8476 0.0650 0.7001 0.9439
0.6 0.6914 0.1163 0.4526 0.8802
0.4 0.5323 0.1493 0.2645 0.8051
0.2 0.3717 0.1574 0.1394 0.7114

100 0.8 0.8464 0.0583 0.7183 0.9387
0.6 0.6875 0.1094 0.4675 0.8722
0.4 0.5265 0.1448 0.2696 0.7969
0.2 0.3666 0.1554 0.1387 0.7056

∞ 0.8 0.8459 0.0553 0.7206 0.9351
(normal) 0.6 0.6860 0.1063 0.4514 0.8633

0.4 0.5241 0.1429 0.2283 0.7796
0.2 0.3645 0.1545 0.0866 0.6732

Figure 1. Density functions of R2 for k = 5, n = 20, and Φ = 0.6.

through θ = nν0Φ/[(ν0 − 2)(1 − Φ)]. The parameter values used in the numer-
ical evaluations were k = 3, 4, 5, 6, 7, 8, n = 10, 20, 30, 40, ν0 = 3, 5, 10, 30, 100,∞
(normal), and various values of Φ. The numerical evaluations were executed on
a personal computer, using the FORTRAN code. The infinite series in the exact
formulas converged rapidly with the convergence tolerance of 10−12.

Tables 1 and 2 show the mean, standard error (denoted as ‘S.E.’) and 95%
confidence interval of R2 and R

2 when k = 5 and n = 20, where ‘cL’ and ‘cU ’
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Table 2. Mean, standard error and 95% confidence interval of R
2

for k = 5 and n = 20.

ν0 Φ Mean S.E. cL cU

5 0.8 0.8269 0.1302 0.4913 0.9659
0.6 0.6589 0.1932 0.2187 0.9110
0.4 0.4783 0.2247 0.0454 0.8338
0.2 0.2687 0.2232 −0.0785 0.7067

10 0.8 0.8128 0.1042 0.5611 0.9447
0.6 0.6254 0.1689 0.2621 0.8751
0.4 0.4316 0.2043 0.0546 0.7843
0.2 0.2254 0.2078 −0.0868 0.6589

30 0.8 0.8070 0.0823 0.6202 0.9290
0.6 0.6091 0.1473 0.3066 0.8482
0.4 0.4076 0.1891 0.0684 0.7532
0.2 0.2041 0.1994 −0.0901 0.6345

100 0.8 0.8055 0.0739 0.6432 0.9224
0.6 0.6042 0.1386 0.3255 0.8382
0.4 0.4002 0.1835 0.0748 0.7427
0.2 0.1977 0.1968 −0.0910 0.6270

∞ 0.8 0.8049 0.0701 0.6461 0.9177
(normal) 0.6 0.6022 0.1346 0.3052 0.8268

0.4 0.3972 0.1810 0.0226 0.7208
0.2 0.1951 0.1957 −0.1570 0.5860

Figure 2. Density functions of R
2

for k = 5, n = 20, and Φ = 0.6.

denote the confidence limits such that P (R2 < cL) = P (R2
< cL) = 0.025 and

P (R2 > cU ) = P (R2
> cU ) = 0.025, where P (A) is the probability of an event

A. Figures 1 and 2 show the density functions of R2 and R
2 when k = 5, n = 20

and Φ = 0.6.
We see from Tables 1 and 2 that R2 is seriously biased upward in small

samples, and R
2 is more unreliable than R2 in terms of standard error. In

particular, the upward bias of R2 gets serious and the standard error of R2 gets
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Table 3. 95% confidence interval when Φ = 0.5.

ν0 = ∞ ν0 = 3

k n cL cU cL cU

3 10 0.2770 0.8678 0.2933 0.9658
20 0.3187 0.7558 0.2361 0.9374
30 0.3445 0.7056 0.2170 0.9270
40 0.3617 0.6760 0.2073 0.9295

4 10 0.3470 0.9008 0.3676 0.9741
20 0.3489 0.7762 0.2743 0.9421
30 0.3638 0.7199 0.2432 0.9302
40 0.3758 0.6871 0.2273 0.9318

5 10 0.4205 0.9310 0.4443 0.9819
20 0.3794 0.7963 0.3125 0.9468
30 0.3831 0.7342 0.2694 0.9334
40 0.3900 0.6981 0.2472 0.9342

6 10 0.4983 0.9575 0.5241 0.9889
20 0.4104 0.8161 0.3508 0.9515
30 0.4026 0.7483 0.2954 0.9366
40 0.4041 0.7090 0.2671 0.9365

7 10 0.5822 0.9791 0.6083 0.9948
20 0.4418 0.8354 0.3893 0.9562
30 0.4222 0.7624 0.3215 0.9398
40 0.4184 0.7199 0.2869 0.9388

8 10 0.6755 0.9940 0.6996 0.9987
20 0.4737 0.8544 0.4279 0.9608
30 0.4419 0.7763 0.3476 0.9430
40 0.4327 0.7308 0.3067 0.9412

large as the degrees of freedom of the multivariate t error distribution get small.
The phenomena are also seen from Figure 1. This indicates that as the tails of
the error distribution get fatter, R2 becomes more unreliable. Also, we see from
Figures 1 and 2 that the density function of R

2 is flatter than that of R2 though
the modes of the density functions of R

2 are smaller than those of R2.
We see from Tables 1 and 2 that the confidence intervals of R2 and R

2

are considerably wide, and the confidence intervals get wide as the degrees of
freedom of the multivariate t error distribution get small. This phenomenon is
also expected from Figures 1 and 2. In particular, when the values of ν0 and Φ
are small, the upper confidence limits of R2 and R

2 are vary large. For example,
when ν0 = 5 and Φ = 0.2, the upper confidence limit of R2 is cU = 0.7684, and
that of R

2 is cU = 0.7067. This indicates that even when the estimated values of
R2 and R

2 are more than 0.7, the parent coefficient of determination may be just
0.2. We see from Table 2 that when the value of Φ is small, the lower confidence
limits of R

2 can be negative though the absolute value of cL becomes small. This
phenomenon is caused by the shift to the right of the density function when ν0

decreases, as is shown in Figure 2.
Finally, we show 95% confidence intervals for Φ = 0.5 and for some values of

k and n in Table 3. Although there is no definite reason why Φ = 0.5 is selected,
we can confirm at the confidence coefficient 0.95 that the parent coefficient of
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determination is at least more than half if the value of R2 exceeds the upper
limit given in Table 3. Since ν0 = ∞ and ν0 = 3 are two extreme values, we
can confirm at least Φ = 0.5 if the value of R2 is larger than the upper limit for
ν0 = 3 even if the true value of ν0 is larger than 3, and we may doubt Φ = 0.5 if
the value of R2 is less than the lower limit for ν0 = ∞.
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