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COMPARISON OF MCMC METHODS FOR
ESTIMATING GARCH MODELS*

Manabu Asai**

This paper reviews several MCMC methods for estimating the class of ARCH
models, and compare performances of them. With respect to the mixing, efficiency
and computational requirement of the MCMC, this paper found the best method is
the tailored approach based on the acceptance-rejection Metropolis-Hastings algo-
rithm.
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1. Introduction

Autoregressive conditional heteroskedasticity (ARCH) models pioneered by
Engle (1982) and their extended version have been proven to be very successful
in modeling the volatility of financial time series; see Bollerslev et al. (1994).
Bayesian inference on ARCH models has been implemented using the impor-
tance sampling technique proposed by Geweke (1989) and more recently using
Markov chain Monte Carlo (MCMC) methods including Bauwens and Lubrano
(1998), Kim et al. (1998), Nakatsuma (2000), Vrontos et al. (2000) and Mitsui
and Watanabe (2003).

For each integer t, let εt be a model’s prediction error and σ2
t the variance of

εt given information at time t − 1. The most useful ARCH parameterization is
the generalized ARCH (GARCH) model introduced by Bollerslev (1986, 1987).
The GARCH(p, q) model is given by

εt = σtzt,(1.1)

zt ∼ i.i.d. with E(zt) = 0, V (zt) = 1,(1.2)

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j(1.3)

where ω, the αi, and the βj are nonnegative. Stationary conditions impose that∑p
i=1 αi +

∑q
j=1 βj < 1; for details, see Bollerslev (1986). Bollerslev (1987)

assumes that zt follows a standardized Student-t distribution.
It has long been recognized that the returns of financial assets are negatively

correlated with changes in the volatilities of returns; see Black (1976) and Christie
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(1982). In the class of ARCH models, for instance, Nelson (1991) proposed the
exponential GARCH (EGARCH) model, while Glosten et al. (1992) developed
a threshold indicator function GARCH model, which is commonly called GJR
model. The volatility equation of the GJR(p, q) model is given by

σ2
t = ω +

q∑
i=1

[α+
i I(εt−i > 0) + α−

i I(εt−i ≤ 0)]ε2
t−i +

q∑
j=1

βjσ
2
t−j ,(1.4)

where I(·) denotes indicator function.
In this paper, we review the main MCMC estimator proposed for estimating

ARCH models, summarize the main advantages and limitations of each of the
method considered, and compare the properties of these methods, focusing on
Student-t errors and asymmetric behavior of volatility by using simulated and
real data. In the Bayesian analysis, various estimation methods produce the
same posterior if the same prior and likelihood are used. In other words, ne-
glecting numerical differences, all MCMC methods here yield the same posterior
distribution. Based on the fact, conducting Monte Carlo experiments will pro-
duce almost the same properties, with respect to bias and mean squared errors,
among all MCMC methods. Hence, we need other criterions to measure efficiency
of estimation methods, which will be discussed in the next section.

The paper is organized as follows. Section 2 describes the various MCMC
methods for estimating parameters of ARCH class, and their main advantages
and limitations. This section is completed with an illustration with simulated
data. Section 3 illustrates the results with an empirical application that compares
the MCMC methods by fitting the GJR-t model to daily Tokyo stock price index.
Section 5 concludes the paper.

2. MCMC estimation

As stated above, a comparison of Bayesian MCMC methods needs alternative
measures of efficiency since the finite sample bias and mean squared error used
by frequentists have little sense in this situation.

Desirable properties for sampling methods in MCMC are efficiency and well
mixing, which yield fast convergence. In addition to these properties, computa-
tional requirements and model flexibility are important for applied econometrics.

In the following we review the main MCMC methods with respect to each
sampling algorithm, and summarize the main advantages and limitations of
each method. Some MCMC methods introduced here lack flexibility in model
specifications, and some are inconvenient to impose a prior restriction such as
α1 + β1 < 1 in the GARCH(1, 1).

2.1. Griddy Gibbs sampler
Bauwens and Lubrano (1998) applied the griddy Gibbs sampler (GGS) pro-

posed by Ritter and Tanner (1992) in order to conduct Bayesian inference on
GJR-t models.
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The idea of GGS is to form a simple approximation to the inverse cdf based
on the evaluation of π(θi | θ\i, y) on a grid of points, where π(θ | y) is the posterior
distribution, and π(θi | θ\iy) is the full conditional distribution for θi. When θi
is univariate, the kernel of π(θi | θ\i, y), conditionally on a previous draw of the
conditioning parameters, can be evaluated over a grid of points. One can then
compute the corresponding distribution function using deterministic integration
rule. Afterwards, one can generate a draw of θi by inversion of the distribution
at a random value sampled uniformly in [0, 1]. For more details of GGS and
applications to GARCH models, see chapters 3 and 7 of Bauwens et al. (1999).
Bauwens and Lubrano (1998) use trapezoidal rule of integration.

A merit of the GGS is that it is successful in dealing with the shape of
posterior, such as skewness, by using smaller MCMC outputs compared to other
methods. This is due to the fact that integration is done on a grid so that
every direction can be explored in detail. Another advantage of the GGS is that
the conditioning, which is a variance reduction technique, is easy. Conditioning

means that to estimate E(θi | y), one uses
∑M

j=1 E(θ
(j)
i | θ\i, y)/M instead of∑M

j=1 θ
(j)
i /M . This can be done by the same integration rule used in Gibbs

sampling.
The main cost of the method is the evaluation of posterior density kernel.

For example, if 33 point grids are used for each parameter of GARCH-t model to
sample 1000 draws, then the algorithm requires 132000 functional evaluations.
So it can be greedy in computational time.

Bauwens and Lubrano (1998) states that the choice of the grid of points has
to be made carefully and constitutes the main difficulty in applying the GGS.
Even if parameter space is bounded, such as 0 < α1 < 1 in GARCH(1, 1) models,
they recommend to restrict the integration to the subset of the parameter space
where the value of the posterior density is large enough to contribute the integrals.

As a general rule in MCMC, sets of parameters that are highly correlated
should be treated as one block. This is related to another drawback of GGS. For
this reason GGS may be inefficient in sampling, say, (ω, α1, β1) in GARCH(1, 1)
or parameters of higher order models. Although the GGS is flexible with respect
to parametric specification of a model, applying GGS to complicated model may
be inefficient in sampling and take much numbers of iterations before the burn-in.

2.2. Metropolis-Hastings algorithm
Nakatsuma (2000) developed an MCMC method to estimate GARCH(p, q)

models. Based on an ARMA(max{p, q}, q) representation of ε2
t , Nakatsuma

(2000) used Metropolis-Hastings (MH) algorithm for estimating ARMA mod-
els proposed by Chib and Greenberg (1994). The method of Nakatsuma (2000)
is also an extension of Müller and Pole (1995).

Although this method, originally, deals with normal distribution for condi-
tional density, it is easy to incorporate Student-t distribution by using the sam-
pling method of the degree-of-freedom parameter proposed by Geweke (1993) or
by Watanabe (2001). A short explanation about Watanabe (2001) is given in
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Section 3.
Stationary conditions, such α1+β1 < 1, can be taken into account in the MH

algorithm, by just rejecting all pairs of (α1, β1) that did not obey the preceding
restriction; see Gelfand et al. (1992).

One of the drawbacks of this method is that it is not applicable to GJR and
EGARCH, since they have no usual ARMA representations. Another draw back
is concerned with computational time in the sense that it needs an optimization
for sampling parameters of MA part, βi’s, in each MCMC iteration.

As for the MH algorithm of Müller and Pole (1995), it can be applied to
GJR and EGARCH. This method, however, needs a huge number of iterations
before the MH chain converges, due to low acceptance rates of the samplers.

It is helpful to describe the MCMC method used in Vrontos et al. (2000),
since their technique is based on Müller and Pole (1995). Vrontos et al. (2000)
propose modeling each GARCH and EGARCH model jointly, by using reversible-
jump MCMC introduced by Green (1995). In other words, the reversible-jump
method can be applied where the dimension of parameter space itself one of
the parameters to be simulated, corresponding to the model choice problem;
for details, see, for example, Robert and Casella (1999). In this framework,
sampling parameters of GARCH/EGARCH is not restrict to the MH of Müller
and Pole (1995), and can be conducted by any method except for the approach
of Nakatsuma (2000). But we shall make no further inquiry into this matter; to
do so would involve us in a discussion of the Bayesian model comparison that is
of no immediate relevance.

For notational convenience, we simply call the MH method of Nakatsuma
(2000) as the ‘MH’ hereafter.

2.3. Adaptive rejection Metropolis sampling
Kim et al. (1998) used the adaptive rejection Metropolis sampling (ARMS)

method proposed by Gilks et al. (1995) for estimating GARCH-t models.
Adaptive rejection sampling works by constructing an envelope function of

the log of the target density (provided this is concave), which is then used in
rejection sampling. Whenever a point is rejected, the envelope is updated to
correspond more closely to the true log density, thereby reducing the chance of
rejecting subsequent points. Fewer rejection steps imply fewer point-evaluations
of the log density. For some models the log-concavity constraint in the density
does not hold. The ARMS of Gilks et al. (1995) deals with this situation by
performing a Metropolis step on each point accepted at a rejection step in the
adaptive rejection sampling.

To conduct this method of Kim et al. (1998), it only requires the coding
of the log-likelihood function and the prior, if the C code of ARMS written by
Walley Gilks is available. Similarly to the GGS method, it is applicable when the
target density is unbounded, but it is better to bound it since the log-likelihood
may deliver overflow/underflow problems.

The main drawback of this method is computational requirements, which is
due to functional evaluations like the GGS and acceptance rate of metropolis
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step like the MH.

2.4. Acceptance-rejection/Metropolis-Hastings algorithm
Mitsui and Watanabe (2003) developed a Taylored approach based on the

acceptance-rejection Metropolis-Hastings (ARMH) algorithm proposed by
Tierney (1994); see also Chib and Greenberg (1995) for details of ARMH al-
gorithm. The method of Mitsui and Watanabe (2003) can work with any kind
of parametric ARCH-type models. In the first step, the method maximizes the
sum of the log-prior plus the log-likelihood with respect to all parameters. The
second step is sampling all parameters by ARMH algorithm from a multivariate
Student-t distribution with the mean that maximizes the objective function and
the dispersion that is the inverse of negative hessian matrix at the mode. In this
step, the proportional constant of the candidate generating density to the full
conditional distribution is specified so that the former evaluated at θ∗ is equal to
the latter at θ∗. It repeats the second step and retains outputs after the Markov
chains converge.

The advantage of this method is that it is free to functional form as the
GGS and the ARMS. In addition to this, the computational requirement of the
ARMH is very small since it is irrelevent to the shape of the full conditional
density. The disadvantage of this method is that it may be inefficient when θ∗

does not take the global maxima but the local one. This is due to the irrelevance
of the full conditional distribution.

2.5. Illustration with simulated data
To illustrate the differences between the estimates of the four MCMC meth-

ods previously described, we fit the GARCH(1, 1) model with a normal con-
ditional distribution to simulated series with (ω, α1, β1) = (0.1, 0.1, 0.85) and
T = 500. All computations reported in this article were carried out using the Ox
language of Doornik (1998).

Since it is important to restrict the parameter space for using the GGS
method, we use uniform priors as in Bauwens and Lubrano (1998):

ω ∼ U(0, 0.2), α1 ∼ U(0, 0.5), β1 ∼ U(0.35, 0.95).

These priors are also used in other MCMC methods. In the four methods, com-
mon random numbers are used to keep conditions fair. We used 33 grids following
Bauwens and Lubrano (1998). In connection to the endpoint restriction of the
GGS, the same restrictions are imposed on the ARMS.

For each method, M draws reported above are used for calculating the pos-
terior means, 95% intervals, and the convergence diagnostic statistics and the
inverse of the efficiency factors proposed by Geweke (1992). The posterior means
are computed by averaging the simulated draws. The 95% intervals are calcu-
lated using the 2.5th and 97.5th percentiles of the simulated draws. Geweke
(1992) suggests assessing the convergence of the MCMC by comparing values
early in the sequence with those late in the sequence. Let θ(i) be the i-th draw
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of a parameter in the recorded 10000 draws, and let θ̄A = 1
nA

∑nA
i=1 θ

(i) and

θ̄B = 1
nB

∑10000
i=10001−nB

θ(i). Using these values, Geweke (1992) proposes the fol-
lowing statistic called convergence diagnostics (CD).

CD =
θ̄A − θ̄B√

σ̂2
A/nA + σ̂2

B/nB

,(2.1)

where
√

σ̂2
A/nA and

√
σ̂2
B/nB are standard errors of θ̄A and θ̄B. If the sequence

of θ(i) is stationary, it converges in distribution to the standard normal. We set
nA = 0.1M and nB = 0.5M and compute σ̂2

A and σ̂2
B using a Parzen window

with bandwidths of 0.01M and 0.05M , respectively.
We select size of the retained and discarded sample (M and N) as follows.

First of all, we consider M = {2000, 3000, . . . , 10000} and N = {1000, 2000}
except for the GGS. For the GGS method, we also consider M = 1000 since it
is enough to deal with the shape of posteriors. Secondly, we choose the pair M
and N such that M + N is the smallest among the pairs on which the MCMC
converge.

As stated above, desirable properties for sampling methods in MCMC are
efficiency and well mixing, which yield fast convergence. While mixing is mea-
sured by the autocorrelation time, the efficiency is compared by a ratio of the
efficiency factors introduced by Geweke (1992). The idea of Geweke’s (1992)
efficiency factor is based on the fact that a true posterior density has its unique
variance whichever methods are used to estimate them. The efficiency factor is
estimated as the variance of the posterior divided by the variance of the sample
mean from the MCMC sampling scheme (M times the square of the numerical
standard error). The numerical standard errors are computed using a Parzen
window; see Geweke (1992) for details. The inverse of the efficiency factor is
called inefficiency factor, which is more used in the literature. It should be noted
that the inefficiency factor is not affected by M , while the numerical standard
error is Op(M

−1/2).
Figures 1 and 2 show correlograms of the MH and ARMH simulations, re-

spectively. Those of the GGS and ARMS are omitted, since the MH and ARMH
provide two extreme cases. The correlograms for the MH indicate that important
autocorrelations for all parameters at large lag lengths, while those of the ARMH
vanish at sixth lag. This result implies that, compared to the ARMH, the length
of the MH chain will be very large to estimate parameters as accurately as the
ARMH.

Table 1 shows the MCMC estimation results along with maximum likeli-
hood (ML) estimates and their asymptotic 95% intervals. The second and third
columns of Table 1(a) report the number of iterations. The smallest number for
M is specified as 2000 for the MH, ARMS, and ARMH since M ≥ 2000 is desir-
able to draw histograms. But for the GGS, it is not the case. The MH method
requires larger M than others due to large number of lags of autocorrelation. The
fourth column presents geometric averages of inefficiency factors of each method



MCMC METHODS FOR ESTIMATING GARCH 205

0 20 40 60 80 100 120 140 160 180 200

0.5

1.0
ω|y 

0 20 40 60 80 100 120 140 160 180 200

0

1      
α |y 

0 20 40 60 80 100 120 140 160 180 200

0.5

1.0      
β|y 

Figure 1. Correlograms of MH simulation for GARCH(1, 1).
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Figure 2. Correlograms of ARMH simulation for GARCH(1, 1).

shown in Table 1(b), and indicates that the ARMH is the most efficient and the
MH is the worst, in the sense that the method needs short Markov chains to
derive precise results. Although the GGS is less efficient than the ARMS, the
former only needs M = 1000 to guarantee the convergence of Markov chains.
This is an effect of conditioning which reduces variability of Markov chains. The
far right column shows CPU time on a Pentium(R) 4 (with Ox 3.30), including
discarded and rejected draws. The ARMH method (15 seconds) overwhelms oth-
ers, and the GGS needs shorter time than MH and ARMS. The reason for the
short time requirement of the GGS is that the dimension of parameter vector
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Table 1. MCMC estimates of GARCH(1, 1) for simulated data (T = 500).

(a) Speeds of convergence

Method N M Ave. INEF Time

GGS 2000 1000 19.9 0:38.70

MH 2000 4000 73.3 7:44.76

ARMS 2000 3000 33.9 6:06.17

ARMH 1000 2000 2.0 0:14.81

Note. The MCMC simulation is conducted with M + N iterations. The first N samples

are discarded and next M draws are recorded. ‘Ave. INEF’ denotes a geometric average

of inefficacy factors (reported below) for each method. ‘Time’ denotes CPU time on a

Pentium(R) 4 (with Ox 3.30), including discarded and rejected draws.

(b) Parameter estimates

Method Parameter Mean 95% Interval CD INEF

MLE ω 0.087 [−0.007, 0.180]

α 0.075 [0.022, 0.129]

β 0.878 [0.793, 0.963]

GGS ω 0.104 [0.014, 0.184] −0.37 18.9

α 0.090 [0.037, 0.166] 0.28 18.4

β 0.858 [0.760, 0.933] 0.16 22.5

MH ω 0.104 [0.032, 0.193] 0.92 60.8

α 0.085 [0.038, 0.149] 0.80 71.8

β 0.861 [0.770, 0.927] −0.88 90.1

ARMS ω 0.120 [0.040, 0.195] −0.96 34.5

α 0.096 [0.046, 0.170] −0.34 26.6

β 0.843 [0.754, 0.917] 0.60 42.5

ARMH ω 0.118 [0.039, 0.193] −0.70 1.9

α 0.091 [0.046, 0.142] 1.00 2.1

β 0.847 [0.771, 0.919] −0.62 2.0

Note. True parameter vector is (0.10, 0.10, 0.85). MLE presents maximum likelihood es-

timates with asymptotic 95% intervals. For each method without MLE, M draws reported

above are used for calculating the posterior means, 95% intervals, and the convergence di-

agnostic (CD) statistics and the inverse of the efficiency factors (inefficiency factor, INEF)

proposed by Geweke (1992). The posterior means are computed by averaging the simu-

lated draws. The 95% intervals are calculated using the 2.5th and 97.5th percentiles of the

simulated draws. The CD is computed using equation (2.1), where we set nA = 0.1M and

nB = 0.5M and compute σ̂2
A and σ̂2

B using a Parzen window with bandwidths of 0.01M

and 0.05M , respectively.

is only 3. Table 1(b) shows detailed results, indicating that the four methods
produce similar results except for inefficiency factors.

Posterior means and 95% intervals are different from the ML results, since
the posterior densities are skewed and the ML evaluation of the standard error
does not take the restriction into account.

Figure 3 shows the posterior densities for the GGS and ARMH. Even though
both GGS and ARMH chains need to set larger M to draw more smoothed
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Figure 3. Posterior densities for GARCH(1, 1).

graphs, the histograms of the GGS seem to be preferable to the ARMH in the
sense that the latter does not explore enough the tails of the distribution. In
addition, the number of M of the GGS is half that of the ARMH. It should be
noted that the computational requirement of the ARMH is still smaller than that
of the GGS, even if M = 10000 is used for the former. One of the drawbacks of
the GGS is that increasing the number of parameters leads to large increase in
the computational burden, which will be shown in the next section.

3. Empirical example

We illustrate comparison of MCMC methods using daily data of the Tokyo
stock price index (TOPIX) from January 4, 2000 to June 28, 2002 (T = 615).
We define the return as rt = 100 × {logPt − logPt−1} where Pt is the closing
value on day t.

Table 2 shows estimation results for the GARCH(1, 1) model. Although their
parameter estimates resemble each other, the ARMH is most efficient and least
time-demanding of the four methods.

Table 3 presents estimation results for the GARCH-t(1, 1) model. As noted
before, the MH methods of Nakatsuma (2000) is extended for the GARCH-t, by
incorporating the MCMC technique of Watanabe (2001). The prior distribution
for ν is specified as a truncated exponential with probability density function,

f(ν) =

{
cλ exp(−λν), ν > 4,

0, otherwise,

where c = exp(4λ). Specifically, we set λ equal to 0.1. The extreme increase
of computational requirements for the GGS and ARMS shown in Table 3(a)
indicates that both methods need much time for an additional parameter. Table 3
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Table 2. MCMC estimates of GARCH(1, 1) for TOPIX (T = 614).

(a) Speeds of convergence

Method N M Ave. INEF Time

GGS 2000 1000 17.8 0:47.35

MH 2000 5000 97.9 12:22.25

ARMS 2000 3000 11.3 7:55.43

ARMH 1000 2000 1.8 0:14.73

Note. The MCMC simulation is conducted with M + N iterations. The first N samples

are discarded and next M draws are recorded. ‘Ave. INEF’ denotes a geometric average

of inefficacy factors (reported below) for each method. ‘Time’ denotes CPU time on a

Pentium(R) 4 (with Ox 3.30), including discarded and rejected draws.

(b) Parameter estimates

Method Parameter Mean 95% Interval CD INEF

MLE ω 0.116 [0.016, 0.215]

α 0.078 [0.031, 0.125]

β 0.867 [0.800, 0.934]

GGS ω 0.111 [0.019, 0.187] 0.54 16.4

α 0.083 [0.034, 0.149] 1.66 16.6

β 0.868 [0.791, 0.931] −1.18 20.8

MH ω 0.138 [0.066, 0.196] 0.46 74.9

α 0.082 [0.041, 0.135] 0.41 101.9

β 0.852 [0.786, 0.914] −0.35 123.1

ARMS ω 0.127 [0.053, 0.194] 1.68 14.4

α 0.091 [0.046, 0.147] 1.15 7.1

β 0.852 [0.794, 0.909] −1.62 14.1

ARMH ω 0.130 [0.055, 0.194] −0.13 1.5

α 0.087 [0.045, 0.132] 0.16 1.6

β 0.854 [0.798, 0.905] −0.15 2.4

Note. MLE presents maximum likelihood estimates with asymptotic 95% intervals. For

each method without MLE, M draws reported above are used for calculating the posterior

means, 95% intervals, and the convergence diagnostic (CD) statistics and the inverse of

the efficiency factors (inefficiency factor, INEF) proposed by Geweke (1992). The posterior

means are computed by averaging the simulated draws. The 95% intervals are calculated

using the 2.5th and 97.5th percentiles of the simulated draws. The CD is computed using

equation (2.1), where we set nA = 0.1M and nB = 0.5M and compute σ̂2
A and σ̂2

B using

a Parzen window with bandwidths of 0.01M and 0.05M , respectively.

also shows that the ARMH is the most efficient and the least time-demanding of
the four methods.

Table 4 reports estimation results for the GJR-t(1, 1) model. The MH
method of Nakatsuma (2000) does not apply to this model. Table 4(a) shows
that differences of averaged inefficiencies of three methods are smaller than those
for GARCH and GARCH-t, although the ARMH is the most efficient. Table 4(a)
also reports that the effects of an additional parameter yields large increases in
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Table 3. MCMC estimates of GARCH-t(1, 1) for TOPIX (T = 614).

(a) Speeds of convergence

Method N M Ave. INEF Time

GGS 2000 1000 11.2 2:48.62

MH 2000 6000 80.7 16:09.62

ARMS 2000 3000 7.2 13:31.64

ARMH 1000 2000 2.0 0:31.26

Note. The MCMC simulation is conducted with M + N iterations. The first N samples

are discarded and next M draws are recorded. ‘Ave. INEF’ denotes a geometric average

of inefficacy factors (reported below) for each method. ‘Time’ denotes CPU time on a

Pentium(R) 4 (with Ox 3.30), including discarded and rejected draws.

(b) Parameter estimates

Method Parameter Mean 95% Interval CD INEF

MLE ω 0.127 [0.008, 0.245]

α 0.068 [0.019, 0.117]

β 0.870 [0.790, 0.950]

ν 10.20 [3.424, 16.98]

GGS ω 0.126 [0.038, 0.188] −1.95 19.9

α 0.081 [0.029, 0.148] −1.73 18.8

β 0.862 [0.788, 0.932] 1.92 24.6

ν 11.12 [6.742, 13.19] −0.74 1.7

MH ω 0.126 [0.047, 0.195] −0.42 69.9

α 0.068 [0.029, 0.117] 0.42 55.4

β 0.870 [0.809, 0.934] 0.05 97.2

ν 11.83 [5.971, 23.41] −1.11 112.6

ARMS ω 0.134 [0.060, 0.196] 1.11 12.5

α 0.080 [0.035, 0.142] 1.21 9.2

β 0.858 [0.795, 0.915] −1.67 14.2

ν 11.36 [6.020, 21.48] 1.62 1.6

ARMH ω 0.136 [0.056, 0.196] −1.50 1.9

α 0.079 [0.033, 0.129] 1.80 1.7

β 0.856 [0.785, 0.914] 0.03 1.9

ν 10.43 [6.068, 15.87] 0.43 2.5

Note. MLE presents maximum likelihood estimates with asymptotic 95% intervals. For

each method without MLE, M draws reported above are used for calculating the posterior

means, 95% intervals, and the convergence diagnostic (CD) statistics and the inverse of

the efficiency factors (inefficiency factor, INEF) proposed by Geweke (1992). The posterior

means are computed by averaging the simulated draws. The 95% intervals are calculated

using the 2.5th and 97.5th percentiles of the simulated draws. The CD is computed using

equation (2.1), where we set nA = 0.1M and nB = 0.5M and compute σ̂2
A and σ̂2

B using

a Parzen window with bandwidths of 0.01M and 0.05M , respectively.
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Table 4. MCMC estimates of GJR-GARCH-t(1, 1) for TOPIX (T = 614).

(a) Speeds of convergence

Method N M Ave. INEF Time

GGS 2000 1000 5.0 3:27.73

ARMS 2500 3000 7.1 19:43.28

ARMH 1000 2000 3.6 0:34.71

Note. The MCMC simulation is conducted with M + N iterations. The first N samples

are discarded and next M draws are recorded. ‘Ave. INEF’ denotes a geometric average

of inefficacy factors (reported below) for each method. ‘Time’ denotes CPU time on a

Pentium(R) 4 (with Ox 3.30), including discarded and rejected draws.

(b) Parameter estimates

Method Parameter Mean 95% Interval CD INEF

MLE ω 0.097 [−0.001, 0.195]

α+ 0.024 [−0.016, 0.065]

α− 0.123 [0.046, 0.200]

β 0.881 [0.810, 0.951]

ν 10.91 [3.143, 18.67]

GGS ω 0.114 [0.031, 0.185] 0.94 7.9

α+ 0.038 [0.011, 0.080] −1.01 5.4

α− 0.145 [0.072, 0.235] −1.58 7.6

β 0.861 [0.796, 0.930] 0.47 9.4

ν 11.69 [7.135, 13.98] −1.18 1.0

ARMS ω 0.127 [0.048, 0.195] −0.02 10.6

α+ 0.040 [0.004, 0.098] 0.01 5.4

α− 0.150 [0.070, 0.247] −1.43 12.6

β 0.850 [0.786, 0.912] 0.46 18.0

ν 11.84 [6.103, 23.11] 0.10 1.4

ARMH ω 0.123 [0.044, 0.192] 1.14 2.0

α+ 0.034 [0.004, 0.069] 0.29 4.2

α− 0.142 [0.073, 0.236] −0.25 4.8

β 0.857 [0.807, 0.916] −0.30 2.9

ν 11.32 [6.206, 18.79] 0.97 5.7

Note. MLE presents maximum likelihood estimates with asymptotic 95% intervals. For

each method without MLE, M draws reported above are used for calculating the posterior

means, 95% intervals, and the convergence diagnostic (CD) statistics and the inverse of

the efficiency factors (inefficiency factor, INEF) proposed by Geweke (1992). The posterior

means are computed by averaging the simulated draws. The 95% intervals are calculated

using the 2.5th and 97.5th percentiles of the simulated draws. The CD is computed using

equation (2.1), where we set nA = 0.1M and nB = 0.5M and compute σ̂2
A and σ̂2

B using

a Parzen window with bandwidths of 0.01M and 0.05M , respectively.

the computational burden of the GGS and ARMS.
The time requirement of the ARMS can be reduced, for instance, by using

the following strategy. By using ARMS method to draw first, say, 400 samples
(discarding the first 100 samples), posterior mean and covariance are calculated.
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The mean and covariance is used to form a multivariate Student-t proposal dis-
tribution for the MH algorithm. This strategy, however, will blur the feature of
the ARMS method.

4. Concluding remarks

In this paper, the MCMC estimation procedures of the class of ARCH models
have been reviewed. For each method, we describe the main advantages and
drawbacks. As for the flexibility to model extensions, the GGS, ARMS and
ARMH give easy black-box samplings. With respect to the mixing, efficiency
and computational requirement of the MCMC, this paper found the ARMH is
the best method.

Acknowledgements
This research is partially supported by the Grant-in-Aid for the 21st Century

COE program “Microstructure and Mechanism Design in Financial Markets”
from the Ministry of Education, Culture, Sports, Science and Technology of
Japan.

References

Asai, M. and Watanabe, T. (2004). Comparison of MCMC methods for estimating GARCH
models, COE discussion paper series, No. 18, Tokyo Metropolitan University.

Bauwens, L. and Lubrano, M. (1998). Bayesian inference on GARCH models using the Gibbs
sampler, Econometrics Journal , 1, c23–c46.

Bauwens, L., Lubrano, M. and Richard, J.-F. (1999). Bayesian Inference in Dynamic Econo-
metric Models, Oxford University Press.

Black, F. (1976). Studies of stock market volatility changes, 1976 Proceedings of the Ameri-
can Statistical Association Bisiness and Economic Statistics Section, American Statistical
Association, 177–181.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of
Econometrics, 31, 307–327.

Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and
rates of return, Review of Economics and Statistics, 69, 542–547.

Bollerslev, T., Engle, R. F. and Nelson, D. B. (1994). ARCH models, The Handbook of Econo-
metrics (eds. R. F. Engle and D. McFadden), 4, North-Holland, Amsterdam.

Chib, S. and Greenberg, E. (1994). Bayes inference for regression models with ARMA(p, q)
errors, Journal of Econometrics, 64, 183–206.

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hasting algorithm, The
American Statistician, 49, 327–335.

Christie, A. A. (1982). The stochastic behavior of common stock variances: value, leverage and
interest rate effects, Journal of Financial Economics, 10, 407–432.

Doornik, J. A. (1998). Object-Oriented Matrix Programming using Ox 2.0 , London, Timberlake
Consultants Press.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance
of U.K. inflation, Ecnometrica, 50, 987–1008.

Gelfand, A. E., Smith, A. F. M. and Lee, T. M. (1992). Bayesian analysis of constrained
parameter and truncated data problem using Gibbs sampling, Journal of the American
Statistical Association, 87, 523–532.

Geweke, J. (1989). Exact predictive density for linear models with ARCH disturbances, Journal
of Econometrics, 40, 63–86.



212 MANABU ASAI

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of
posterior moments, Bayesian Statistics 4 (eds. J. M. Bernardo, J. O. Berger, A. P. David
and A. F. M. Smith), Oxford University Press, Oxford, U.K., 169–193.

Geweke, J. (1993). Bayesian treatment of the student-t linear model, Journal of Applied Econo-
metrics, 8, S19–S40.

Geweke, J. (2001). Getting it right: Checking for errors in likelihood based inference, unpub-
lished manuscript, University of Iowa.

Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling
within Gibbs sampling, Applied Statistics, 44, 455–473.

Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1992). On the relation between the expected
value and the volatility of the nominal excess return on stocks, Journal of Finance, 48,
1779–1801.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination, Biometrika, 82, 711–732.

Kim, S., Shephard, N. and Chib, S. (1998). Stochastic volatility: Likelihood inference and
comparison with ARCH models, Review of Economic Studies, 65, 361–393.

Mitsui, H. and Watanabe, T. (2003). Bayesian analysis of GARCH option pricing models, the
Journal of the Japan Statistical Society (Japanese Issue), 33, 307–324 (in Japanese).

Müller, P. and Pole, A. (1995). Monte Carlo posterior integration in GARCH models, unpub-
lished manuscript, Duke University.

Nakatsuma, T. (2000). Bayesian analysis of ARMA-GARCH models: A Markov chain sampling
approach, Journal of Econometrics, 95, 57–69.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econo-
metrica, 59, 347–370.

Ritter, C. and Tanner, M. A. (1992). The Gibbs stopper and the Griddy Gibbs sampler, Journal
of the American Statistical Association, 87, 861–868.

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods, Springer-Verlag.
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion), Annals

of Statistics, 21, 1701–1762.
Vrontos, I. D., Dellaportas, P. and Politis, D. (2000). Full Bayesian inference for GARCH and

EGARCH models, Journal of Business and Economic Statistics, 18, 187–198.
Watanabe, T. (2001). On sampling the degree-of-freedom of student-t disturbances, Statistics

and Probability Letters, 52, 177–181.


