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Abstract

The density functional theory, simplified by the local density approximation and mean-field approxi-

mation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is
adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for
the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used
as the perturbation term. Three parameters, €/k, d and mg, are regressed from the vapor-liquid equilibria, and
the surface properties, including density profile, surface tension and local surface tension profile are predicted with

these parameters.
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1 INTRODUCTION

The density functional theory (DFT)%2 and the
molecular simulation are the most popular approaches
to statistical mechanics of the inhomogeneous fluid.
The results from the DFT are not as accurate as
that from the simulation methods yet, but the DFT
is much more convenient for the investigation of the
chain molecules.

The DFT is a systematic method for statistical
thermodynamic study. In its frame, the rigorous
proofs of the Ornstein-Zernike integral equation and
the perturbation theory can be given concisely, which
were presented by Evans et all!! Since some approx-
imations need to be introduced for numerical com-
putation for inhomogeneous systems, the DFT falls
mainly into two categories®: (1) the weighted (non-
perturbative) density functional theories (WDFT),
and (2) the perturbative density functional theories
(PDFT). In the former, the excess free energy of an
inhomogeneous system is approximately treated as a
homogeneous system with an effective or weighted
density. In the latter case, the excess free energy is
functionally expanded about that of the uniform sys-
tem. The local density approximation (LDA) is one
of the PDFT. Because the short-range correlations of
molecules in the fluid are neglected in it, the LDA
does not befit to investigate the behavior of the fluid
in contact with walls24. Nevertheless, this method
is a reasonable approach in the study for the vapor-
liquid surface.

Winkelmann et all®~7 did a systematic investi-
gation on density functional theory of simple liquids
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and their mixtures. They used the mean field approx-
imation (MFA), WCA perturbation theory and LDA
to correlate both the saturated liquid density and sur-
face tension for spherical fluids and used the hard con-
vex body equation of state for chainlike molecules!®.
Using the density profile across the vapor-liquid sur-
face, they made prediction of ellipsometric parame-
ters of pure fluids/®/. Winklemann also made compar-
isons among different LDA approximations and MD
molecular simulation”). According to their descrip-
tion, the intermolecular potential in their work is cut-
off and shifted, which means the long-range interac-
tion is truncated and a tiny modification is made.

Fu et al'¥ established a new method for the study
of the Lennard-Jones fluid surface by assuming that
the density profile can be described as a hyperbolic
tangent curve. In their work, the molecular parame-
ters are regressed from the PVT experimental data,
and were used to predict the surface tension.

In the present paper, a DFT method for the hard-
core Yukawa potential is established to study the sur-
face properties and microscopic structure for the pure
non-polar fluids. The free energy is divided into two
parts. One is the contribution from the reference fluid,
and the other is from the perturbation term for the
Yukawa potential. In our work, the intermolecular
potential is not cut-off and a rigorous long range cor-
rection is applied. The solution for the vapor-liquid
equilibrium is used to obtain the molecular parame-
ters and the unique chemical potential in the inho-
mogeneous system. In this approach, the macroscopic
surface tensions of some real pure fluids are predicted
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from the molecular parameters.

2 THEORIES
2.1 Intermolecular potential energy

The intermolecular potential used in this work is
a hard sphere potential coupled with an attractive
Yukawa potential.

oo r<d
¢(r)=9 __epl=avu(r~-d)/d (1)
- r/d ~

where 7 is the distance between two molecules, ¢ is
the energy parameter representing the minimum en-
ergy between two molecules, d is the hard sphere di-
ameter, and zy, is the Yukawa range parameter that
attributes the rate of potential decay.

The advantage of the hard-core Yukawa potential
function is that the range of interaction can be varied
easily by changing the parameter zy,, which can be
used to model many different interactions including
dispersion and electrostatic repulsion. There is an ex-
tra convenience that the exponential form makes the
solution of the integral equation more easily with the
mean sphere approximation (MSA). Liu et al'® used
an explicit EOS with one-Yukawa potential to corre-
late the PVT data for pure real fluids with success,
and Lin et al1% proposed an EOS with two-Yukawa
potential to study the osmotic pressure for the charged
colloidal systems. Meanwhile, the Yukawa potential is
convenient to make a perturbation expansion without
any adjustment of the hard sphere diameter.

2.2 Density functional theory

The system considered in our work is a grand
canonic ensemble. Based on such a ensemble, the den-
sity functional theory begins with the grand potential
functional £2[p(r)], which can be expressed as!'}

2p(r)] = L [K(r) + Uit (7) + Usea (r)+
TS(r) - p(r)ﬂ]d?"

= Fdlp(r) + f P ttexs (7) — il o
I 2

where 7 is a vector that refers to a position in the
system, dr is the integration volume element, I" is
the phase space, p(r) is the local number density of
molecules, K(r) is the local kinetic energy, Uiy (r)
is the local “intrinsic” potential energy from the in-
teraction in the system, U (r) is the local external
potential energy from the steady external potential
field, wext (1) = Uexs (r)/p(r) is the field strength, S(r)
is the entropy per volume in the volume element dr,
and Fi[p(r)] is the “intrinsic” Helmholtz free energy
function.

The perturbation expansion of Fi[p(r)] can be
expressed as

Fudlo) =F<ip(r) + 3 [ da [[am [ ars

[p(r1,r2) — ¢ (1, 72)]p P (Ga; 71, 72)
=F™[p(r)] + FP*[p()] (3)

where ¢ is the real potential function, F*f[p(r)] cor-
responds to an initial reference system in which the
pairwise potential is ¢*f and the distribution of den-
sity is p(r), p'?)(¢a;r1,72) is the pairwise distribu-
tion function for a system of density p(r) in which
the molecules interact via a pairwise potential ¢, =
ref + (@ — Prer), and a is a variable in the region
[0,1). If pB(¢e;r1,72) = p'?(ry,72), which means
that p(2) is independent of a, the perturbation term
FPer in Eq. (3) can be expressed as

FPe [ p(r)) =%[dr1fdr2[¢(rl,rg)—

1
(plrEf(rl‘r'Z)] d&p(zl(fh'f‘z)
0

-2 f[ drydrop(ry)p(r2)g(r1,72)
[o(r1,m2) — 67 (71, 72)] (4)

where g(ry,72) = pP(r1,72)/[p(r1)p(r2)] is the ra-
dial distribution function that is independent of the in-
termolecular action. Therefore, it equals to the radial
distribution function of the reference fluid: g(rq,72) =
gt (ry,72)

Ignoring the short-range correlation contribution
to free energy of reference fluid according to the LDA
method, the reference term F'f can be expressed with
the local density.

F*lp(r)] ~ [ ar™ipr) ®)

where f™[p(r)] is the free energy density of the ho-
mogeneous reference liquid whose density is p(r).

In this work, the reference fluid is hard-core chain
fluid, so the Helmholtz free energy density is as follows

frele(m)] = F49%(r)] + Flp(r)] + " [p(r)]  (6)

where fi4 is the free energy density of the ideal gas
with the same density and temperature as the sys-
tem, f is the free energy density of a hard-sphere
fluids relative to the ideal gas and is expressed by
Carnahan-Starling equation!'!), and fh#i® is the free
energy density change when chains are formed from
hard spheres!12].

Considering that the intermolecular interaction
can be expressed as the sum of the interactions be-
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tween segments, from Eq. (4) it follows

FPp(r)] :% // drydram?p(ry)p(re)g "
(r1,72)9%(r12) ()

where r15 = |r; — 73| is the distance between the two
space positions, ¢°*(ri2) is the perturbation poten-
tial between segments, and equals to the attractive
Yukawa potential tail here.

g"f(r12) can be obtained approximately by being
treated as a function of radial distribution function in
the homogeneous fluid g"*(p,712). This method will
cause a great difficulty that a term from the density
derivative of ¢"*(p,r12) will be included in the pres-
sure and the chemical potential expression. Tang et
al!'¥! proposed a nonlocal density functional pertur-
bation theory with this method, but they omitted the
derivative term without overcoming this problem. The
mean field approximation is the simplest method in
this case. Similar to Hu et al.') we adopt a method
to modify the mean field approximation, in which the
radial distribution function g(r) is as follows, and is
illustrated in Fig. 1.
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Figure 1 Comparison between the accurate RDF

of the hard sphere fluid and the approximate
RDF in this study
- - - = accurate RDF for hard sphere fluid;
——— approximate RDF for hard sphere fluid

0 r<d
g (r) =1 w(r)i(r—d) r=d (8)
1 r>d

1 [~
where é(z) = —/ e ***dk is Dirac Delta func-
™

27 J_
tion, w(r) is a wcightofounction which has a dimension
of length and is presumed to be position (r) depen-
dent. The Delta function used here is to describe the
maximum peak appeared on the hard sphere surface.
The function w(r) is established from the com-
pressibility equation, which is shown as

kT (%)T =1+ p[[g(r) - 1])dr (9)

April, 2004

As a usual choice, w(r) should make the com-
pressibility coefficient equal to that of the idea gas
kT(8p/0p)r = 1. Thus, we obtain

/w(‘r)&(r —d)dr = f dr (10)
r<d
and then Eq. (7) becomes
)
:%mf [// ., p(r1)p(r2)é(d)drdre+
J[_ prontreapnan )
ri2 >

For a plain surface, the liquid density is only depen-
dent on the z direction perpendicular to the surface,
which means that p(r) = p(z). In this case, it is more
convenient by use of the cylindrical coordinates. The

dr =

cates the distance from a specified point to the 2 axis.
When ¢* is substituted by Eq. (1), it follows

integral is rpdedr,dz, where 7, indi-

FPo(2)
1
=— EA'frs“mf
+oo  pd o2
; 2d
{/ / p(z1)p(z2) [(d2 - zfz) + T-*]dz.dz-z-'r
—_00 _d’ ~\_r“

26(1—:12/&1‘)2\\-
f/I A dzP(ZI]P(Zz)dzldzz}
z12|> ~Tu

where A is the sectional area, and z;» = |z — 22| is the
distance between two planes. The external potential
field is zero for the free surface, then Eq. (2) becomes

(12)

2lp(e)) = a{ [ 190Nz [ oe1as b+ £
(13)
At equilibrium in the grand canonical ensemble,
the grand potential function 2[p(r)] has a minimum.
The density distribution py(r) can be obtained by
minimizing Eq. (13). The necessary condition for func-
tion £2[p(r)] attaining its minimum value is §£2 = 0,
which is the so-called Euler-Lagrange equation. Thus
the chemical potential expression is

6-'Fin Kl r0 §Frer
(),
T

dp ap dp

(%), (%),

(8f<:hain ) S Fper
+
ap Jr dp
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ref

Assuming that g™ is independent of p(r), we will
have that §¢g"f/dp = 0. Then the following expression
can be obtained after differentiating Eq. (11)

a‘Fl){\r
op

= m? f 0 p(ri) ¢ (ra)drs (15)
Vv

Using the cylindrical coordinates as in Eq.(12),
Eq.(15) can be converted as

JFPCI'
5p
2
=_ Aﬂs"smf{ / pl22) [(d2 -2+ &] dzo+
z12€8d “Yu
2e(l—z12/d)zvu
/ p(zz)(d2dz2} (16)
z12>d #Yu

Then the chemical potential y in the system is ob-
tained. And the density distribution in an equilib-
rium system can be calculated by solving the equa-
tions pi[p(21)] = p[p(z2)].

For a system with the plain surface, the grand po-
tential functional {2 can be expressed as

2 =~A—-pV (17)

where p is the bulk phase pressure, which equals to
the normal part of the pressure tensor in the surface,
and V is the total volume of the system. The “local”
surface tension ¥(z) is defined as!!®]

v(z) = flp(2)] = pp(2) +p (18)

In this case, Eq. (17) and (18) yield the result

oo
v= [ s (19)
When g and p are obtained, both the profile of the
density and local surface tension can be computed.
These two parameters are solved from the vapor-liquid
phase equilibrium.
2.3 Equation of state

The expression of Helmholtz free energy F for the
uniform phase is obtained with the similar procedure
from Eq. (3). It is clear that ™! is the same as Eq. (6).
Substituting p(r) = p = const into Eq. (11), FP*' can
be written as

1 [™ 5 5o .
Frrp) = 5V /.;. dmrm2p2g™ (p,)¢™ (r)dr (20)

When substituting Egs. (1) and (8) into Eq. (20), we
obtain

. 1 1
FPer(p) = =27V [sd‘imfpz (# + —)] (21)
z“ru 3

The dispersion contribution to chemical potential

P__E er 4o

Ye 1 aFI]cr 2.3 l + ZY“ 1
prer = v ( 3 )T = —dmmid’ep a + 3

(22)
Similarly, the compressibility factor Z of the fluid
can be given by

g P _P %)
pkT  V \ dp Tz,

=Zru.l' + Zper — Zid + Zhs + Zchain + zper

(23)
From Eq. (21) the term of ZP*' is obtained as
er 3.2 2(1+2ve 1
ZP"(p) = Amed’mp® | —5— + 3 (24)
zYu 3

For a plain surface, the pressures in the two bulk
phases are the same, so that we have the following
equations at vapor-liquid phase equilibrium.

pb=pV=p .
L,V _ (20)
pl=pY =p

where the superscripts represent the phases. From
these equations, the fluid phase equilibrium can be
solved.

3 CALCULATION
3.1 Methodology

The vapor-liquid region with thickness of 60d
along the z direction, in which there is a plain sur-
face, is divided into N layers, where d is the diameter
of segment. With this treatment, the Adams-Moulton
method is adopted to calculate the numerical integra-
tion.

The ranges of integration in Egs.(12), (16), and
(19) are (—o0, 4+00), and the integration in the region
out of the identification must be calculated addition-
ally as a long-range correction (LRC). The thickness
of surface region is only several times of molecular di-
ameter at normal temperature. In our calculation, the
range of 60 d is enough for holding a complete surface
region. In this way, the surface region is located in the
middle. Thus, it is reasonable that the density out of
the range is invariant.

p=p"

p=p"

Substituting Eq. (26) into Eq. (16) and dividing the
integrating range into three parts, [—o0, 29}, (20, 2]

and (z)v, +00|, we obtain the long-range correction as
the integration out of the range [zg, zn].

z < Zpy
26
zZ >IN ( )
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5 [+ 2d® — 32,d*>  2d*(d — 2z) N 2

- {Aﬂs“* pm2d

5Fper LRC
( 5p ) -

where p“ represents the numerical density in the
bulk phase a, and 2y, is the distance from the specified
layer to the boundary.

EERN L
—Ame®p*mid )
“Yu

— 29 OF 2, =2N—2 (28)

(2]

Zh =

The density profile, which makes the calculated
chemical potential in every layer equal to one another,
can be obtained with the above equations. In the com-
putation process the criterion is that the maximum
relative deviation of the calculated chemical potentials
between two layers are less than 0.001%.

Three molecular parameters, hard sphere diameter
d, minimum potential £ and segment number my, are
needed for the pure non-polar fluid in this method.
In this work, they are regressed from the vapor-liquid
equilibria data during the respective temperature.

For convenience, some reduced thermodynamic
quantities are used as T* = kT /e, z* = z/d, p* = pd®,
and 7* = vyd?*/s. It means that the d and = are treated
as the unit of the length and the energy, respectively.
3.2 Results and discussions

The reduced surface tensions for pure non-polar
fluids with different segment number are computed,
and the results are shown in Fig.2. From this figure,
it can be found that at the same reduced temperature
T*, the larger my is, the larger v* will be. As mg in-
creases, the decreasing rate of 4* with the increase of
T* will be reduced. It is because the attractive inter-
action is more affected by m, than the repulsion, and
the surface tension is derived from the intermolecular
attraction directly. This figure also shows that the
surface tension ¥* reaches zero at the critical temper-
ature. The profiles of the reduced density and the

Figure 2 Reduced surface tension vs. reduced
temperature and molecular segment
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(27)

reduced chemical potential of one-segment molecule
are given in Fig. 3. The density profile shows that the
region of the surface is expanded when the tempera-
ture rises, and it will tend to be infinite near the criti-
cal temperature. The chemical potential profile repre-
sents that the chemical potential does not depend on
the space position in a thermodynamic equilibrium,
which is the prime criterion for judging whether the
iteration has finished successfully.

-3.44

~3.46

-3.50

-3.52r

L I L 1 ! I L
=30 =20 -0 0 10 200 30

=354
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Figure 3 Reduced density and chemical potential
profile at different temperatures for one segment
molecule
T*: 1—0.5; 2—0.6; 3-—0.7; 4—0.8;

5—0.9; 6—1.0; 7—1.1; 8—1.2
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Table 1 Regressed parameters for pure
non-polar fluids

, Temperature Segment parameters
Compound K e dom _ ¢/k K
methane 91-—-101 1.000 0.3803 159.38
argon B7—116 1.000  0.3422 125.45
oxygen 90—140 1.185  0.3093 116.67
chlorine 239—283 1.550 0.3323  270.50
Mo ane | 319—195  2.000  0.3827  318.51
ethane 129—183 1.738  0.3420 183.91
propane 167—300 1.884 0.3577 218.80
n-butane 217—288 2.074 0.3768 240.74
n-pentane 269—306 2.332 0.3815  252.02
n-hexane 341—430 2.454 0.3866  264.28
n-heptane 280-—402 2,567 0.4081  284.54
n-octane 312—416 2.654 0.4206  297.86
n-nonane 344—424 2.680 0.4360 313.16
cyclohexane 279—347 1.871 0.4218 337.96
benzene 284-—355 2.021 0.3833  326.70
toluene 320442 2.241  0.3889 32747

Note: Experimental data are taken from the references [16] and
[17).

The methane is chosen as the standard one-
segment molecule, and then the best range parameter
Zyy is obtained from the regression of the methane
vapour-liquid equilibrium (VLE), which equals to
1.985. In the regression of methane, the average rela-
tive deviation (ARD) for the saturated vapor pressure
p” is 0.72%, and ARD for the saturated liquid density
is 5.21%. For other compounds, only the molecular
parameters d, € and m, are needed, which are also ob-
tained by regressing the VLE experimental datal!6:17],
The regressed parameters are listed in Table 1. In
the regression, the average value of ARD is 6.69% for
p°, and 3.29% for p. These parameters are used to
predict the respective surface property of the same
compound with a corresponding method. Using these
parameters, the respective surface tensions of the real
compounds are predicted as shown in Figs.4 and 5.
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-~ O015¢
£
z N5
£ 0010}
al
0.005F

0 100 150
T. K
Figure 4 Comparison of calculated surface tension
with experimental data at different temperatures
for one segment molecules
A Methane; B Argon

Figure 4 shows the calculating results of the sur-
face tension and the experimental data for the one-

segment molecules. In Fig.5 the surface tension of

the multi-segment molecules at different temperatures
predicted from this work is compared with the experi-
mental values!'®~2%. The predictive results are agree-
able with the experimental data for the alkanes and
the aromatics etc.

The ARD for all compounds are listed in Table 2,
The total average ARD is 3.87%, and the largest ARD

is 7.97%. As a predicted result from the molecular pa-
rameters, it is satisfactory.
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Figure 5 Comparison of calculated surface tension
with experimental data at different temperatures for
multi-segment molecules
(Solid line-calculated results; points-experimental data)

B ethane; ® propane; A n-butane;
¥ n-pentane; 4 n-hexane; [ n-heptane;

O n-octane; A n-nonane; V tetra-chloromethane;
¢{» cyclohexane; + benzene; x toluene

Table 2 Deviations of prediction for surface tension
of pure fluids

Temperature

Compound K ARD of v, %  Data source

methane 90—115 7.97 [20]
argon 84-—141 4.78 [18], [19]
oxygen 90—140 3.75 (18]
chlorine 193—283 9.10 18]
chlorL:rtggghanc 288—495 4.54 (18]
ethane 133184 4.70 [18]
propane 231292 6.93 [18]
n-butane 203—305 2.86 [18)
n-pentane 309—330 3.74 (18]
n-hexane 283—430 4.67 (18]
n-heptane 283—400 1.08 (18]
n-octane 303—394 1.13 [18]
n-nonane 344—424 1.12 (18]
cyclohexane 283—394 1.12 [18]
benzene 283-—354 1.53 [18]
toluene 323—444 0.88 [18]
average 3.87
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4 CONCLUSIONS

The density functional theory, simplified by LDA
and MFA, is applied to study the surface properties
for 16 pure non-polar fluids. Then the expression of
the chemical potential for the inhomogeneous fluid is
deduced, which is reasonable because the chemical po-
tential is the function of the molecular interaction and
the density distribution only. The intermolecular po-
tential is not truncated with a reasonable long range
correction. Base on above, the fluid phase equation
is gotten as a special condition of the inhomogeneous
fluid. Then the fluid phase equilibrium and the sur-
face properties can be studied in one uniform method.
Three parameters are needed at most, which are re-
gressed by the phase equilibrium for the pure fluid.
The calculated surface tensions are in good agreement
with the experimental data and the total average re-
lation deviation is 4.5%.

NOMENCLATURE
A surface area, nm?
d hard-sphere diameter, nm
F Helmholtz free energy, J
k Boltzmann constant, J- K~ 1
i number of segments for one molecule
p pressure, Pa
r distance to the center of hard sphere
dr infinitesimal, m*
T thermodynamic temperature, K
i potential, J
Vv volume, m*®
Z compressibility factor
z coordinate, nm
Z¥u range parameter of Yukawa potential
a bulk phase
r phase space
¥ surface tension, mN-m™!
& dispersion energy parameter, J
I chemical potential, J-mol—?!
P number density, m~3
£0 equilibrium number density, m—3
& pairwise potential
2 grand potential, J
Superscripts
* reduced values, dimensionless
chain  hard-sphere chain
hs hard sphere
id ideal
per perturbation term
ref reference term
L liquid
v vapor
Subscripts
1,2 specified molecule
ext external
int intrinsic
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