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DISTRIBUTIONS AND THE BOOTSTRAP METHOD OF
SOME STATISTICS IN PRINCIPAL CANONICAL

CORRELATION ANALYSIS

Takakazu Sugiyama*, Toru Ogura*, Fumitake Sakaori** and
Tomoya Yamada***

We investigate the canonical correlation of the principal components from two
populations, and attain the limiting distribution using the perturbation expansion of
the canonical correlation estimate. We discuss the numerical accuracy of the limiting
distribution.

Key words and phrases: Canonical correlation analysis, perturbation method, prin-
cipal component.

1. Introduction

We consider two sets of variables with a joint distribution and analyze the
canonical correlations between the variables in the two sets. One of the anal-
yses used is the canonical correlation analysis, which finds linear combinations
of variables in the sets that have the maximum correlation, and these linear
combinations are the first coordinates in new systems. Then, a second linear
combination in each set is obtained such that the linear combination is uncor-
related with the first linear combination. The procedure is continued until two
new coordinate systems are specified completely. This theory was developed by
Hotelling (1935, 1936).

In this paper, we first determine the principal components of the two sets and
then calculate the canonical correlation between the two principal components.
Principal components analysis is a procedure used for analyzing multivariate
data that transforms the original variables into new ones that are uncorrelated
and account for decreasing proportions of the variance in the data. This analysis
attempts to characterize or explain the variability in a vector variable by replacing
it with a new variable with fewer components with large variance.

We know that the interpretation of principal components is easier than the
canonical variate. Therefore, comparing canonical correlation analysis with prin-
cipal component analysis, we can say that the canonical correlations of two prin-
cipal components are more useful for understanding the relationships of the given
data sets. This paper derives the limiting distribution of the canonical correlation
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of the principal components from two populations. In Section 2, we derive the
canonical correlation of the principal components from two populations. In Sec-
tion 3, we find the limiting distribution of the canonical correlation. Finally, we
compare the results of the canonical correlation using an example, a simulation
study, and bootstrapping.

2. Canonical correlation of the principal components from two pop-
ulations

2.1. Principal component canonical correlation in the population
Suppose the random vector Z of p + q components has covariance matrix

Σ, which is assumed to be positive definite. Since we are only interested in the
variance and covariance in this section, we assume E(Z) = 0 without loss of
generality. We partition Z into two subvectors of p and q components, X and
Y , such that:

Z =

(
X

Y

)
.(2.1)

Similarly, the covariance matrix is partitioned into p and q rows and columns,

Cov

(
X

Y

)
= Σ =

(
Σxx Σxy

Σyx Σyy

)
,(2.2)

where Σxx is p×p, Σxy is p×q, Σyx is q×p, and Σyy is q×q. Let λ1x ≥ · · · ≥ λpx

be the ordered latent roots of Σxx and γ1x, . . . ,γpx be the corresponding latent
vectors; similarly, let λ1y ≥ · · · ≥ λqy be the ordered latent roots of Σyy and
γ1y, . . . ,γqy be the corresponding latent vectors. For Σxx and Σyy, we may
decompose this as:

Γ′
x,pΣxxΓx,p = Λx,p, Γ′

y,qΣyyΓy,q = Λy,q,(2.3)

where Λx,p = diag(λ1x, . . . , λpx) and Λy,q = diag(λ1y, . . . , λqy) are the diagonal
matrices, and the orthogonal matrix is denoted Γx,p = (γ1x, . . . ,γpx) and Γy,q =
(γ1y, . . . ,γqy). Then, we obtain the i-th principal component of X, Ui = γ ′

ixX
and the j-th principal component of Y , Vj = γ ′

jyY . Furthermore, we obtain
Var(Ui) = λix, Cov(Ui, Uj) = 0 (i �= j), Var(Vi) = λiy, Cov(Vi, Vj) = 0 (i �= j).
Let

U =




U1

...

Up1


 , V =




V1

...

Vq1


 ,(2.4)

where p1 ≤ p, q1 ≤ q, p1 ≤ q1. The covariance matrix of (U ,V )′ is:

Cov

(
U

V

)
=

(
Σuu Σuv

Σvu Σvv

)
=

(
Γ′
xΣxxΓx Γ′

xΣxyΓy

Γ′
yΣyxΓx Γ′

yΣyyΓy

)
(2.5)

=

(
Λx Γ′

xΣxyΓy

Γ′
yΣyxΓx Λy

)
,
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where we denote the matrices as Γx = (γ1x, . . . ,γp1x), Γy = (γ1y, . . . ,γq1y),
Λx = diag(λ1x, . . . , λp1x), and Λy = diag(λ1y, . . . , λq1y). The quantities of the
canonical correlation coefficient ν2∗

1 ≥ · · · ≥ ν2∗
p1

≥ 0 satisfy:

|ΣuvΣ
−1
vv Σvu − ν2∗Σuu| = 0,(2.6)

or

|ΣvuΣ
−1
uuΣuv − ν2∗Σvv| = 0,(2.7)

and αi = (α1i · · ·αp1i)
′ and βi = (β1i · · ·βq1i)′ satisfy

ΣuvΣ
−1
vv Σvuαi = ν2∗

i Σuuαi, αiΣuuαj = δij ,(2.8)

ΣvuΣ
−1
uuΣuvβi = ν2∗

i Σvvβi, β′
iΣvvβj = δij ,(2.9)

where δij is a Kronecker’s delta. Substituting (2.6) into (2.5) gives:

|ΣuvΣ
−1
vv Σvu − ν2∗Σuu| = 0

|Σ−1/2
uu ΣuvΣ

−1
vv ΣvuΣ

−1/2
uu − ν2∗I| = 0

|Λ−1/2
x Γ′

xΣxyΓyΛ
−1
y Γ′

yΣyxΓxΛ
−1/2
x − ν2∗I| = 0,(2.10)

and therefore

O′Λ−1/2
x Γ′

xΣxyΓyΛ
−1
y Γ′

yΣyxΓxΛ
−1/2
x O =




ν2∗
1 0 · · · 0

0 ν2∗
2

. . .
...

...
. . .

. . . 0

0 · · · 0 ν2∗
p1


 ,(2.11)

where O is the orthogonalization matrix. ρ2∗ is defined:

ρ2∗ = ν2∗
1 + · · · + ν2∗

p1
.(2.12)

Then we get:

ρ2∗ = tr(Λ−1/2
x Γ′

xΣxyΓyΛ
−1
y Γ′

yΣyxΓxΛ
−1/2
x )(2.13)

=

p1∑
i=1

q1∑
j=1

(γ ′
ixΣxyγjy)

2

λixλjy
.

Above ρ2∗ means the total sum of the canonical correlations based on p1 principal
components of X and q1 principal components of Y .

2.2. Estimation of the principal canonical component correlation
Let z1, . . . ,zN be N observations from N(µ,Σ) and zι be partitioned into

two subvectors of p and q components, respectively,

zι =

(
xι

yι

)
, ι = 1, . . . , N.
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Let the sample covariance matrix S be written as:

S =

(
Sxx Sxy

Syx Syy

)
=

1

n

N∑
ι=1

(zι − z̄)(zι − z̄)′(2.14)

=
1

n

(∑N
ι=1(xι − x̄)(xι − x̄)′

∑N
ι=1(xι − x̄)(yι − ȳ)′∑N

ι=1(yι − ȳ)(xι − x̄)′
∑N

ι=1(yι − ȳ)(yι − ȳ)′

)
,

where n = N − 1. Let l1x ≥ · · · ≥ lpx be the ordered latent roots of Sxx, and
h1x, . . . ,hpx be the corresponding latent vectors; similarly, let l1y ≥ · · · ≥ lqy
be the ordered latent roots of Syy, and h1y, . . . ,hqy be the corresponding latent
vectors. For Sxx and Syy, we may decompose this as:

H ′
x,pSxxHx,p = Dx,p, H ′

y,qSyyHy,q = Dy,q,(2.15)

where Dx,p = diag(l1x, . . . , lpx) and Dy,q = diag(l1y, . . . , lqy) are the diagonal
matrices, and the orthogonal matrix is denoted by Hx,p = (h1x, . . . ,hpx) and
Hy,q = (h1y, . . . ,hqy). Let

Suu = H ′
xSxxHx, Suv = H ′

xSxyHy,

Svu = H ′
xSxyHy, Svv = H ′

ySyyHy,

where we denote the orthogonal matrix as Hx = (h1x, . . . ,hp1x) and Hy =
(h1y, . . . ,hq1y) and p1 ≤ p, q1 ≤ q and p1 ≤ q1. The estimate quantities of the
canonical correlation coefficient f2∗

1 ≥ · · · ≥ f2∗
p1

≥ 0 satisfy:

|SuvS
−1
vv Svu − f2∗Suu| = 0,(2.16)

or

|SvuS
−1
uuSuv − f2∗Svv| = 0,(2.17)

and ai = (a1i, . . . , ap1i)
′ and bi = (b1i, . . . , bq1i)

′ satisfy

SuvS
−1
vv Svuai = f2∗

i Suuai, a′
iSuuaj = δij ,(2.18)

SvuS
−1
uuSuvbi = f2∗

i Svvbi, b′iSvvbj = δij .(2.19)

Then, we may estimate ρ2∗ by:

r2∗ = f2∗
1 + · · · + f2∗

p1
(2.20)

= tr(D−1/2
x H ′

xSxyHyD
−1
y H ′

ySyxHxD
−1/2
x )

=

p1∑
i=1

q1∑
j=1

(h′
ixSxyhjy)

2

lixljy
.
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3. Limiting distributions of estimates of the sum of canonical corre-
lation coefficients based on principal components

From Appendix A, we have the following theorem.

Theorem 1. The limiting distribution of
√
n(r2∗ − ρ2∗) is normal with

mean 0 and variance σ2
∗:

σ2
∗ =

5∑
k=1

5∑
k′=1

p1∑
i=1

q1∑
j=1

p1∑
l=1

q1∑
m=1

σ∗
kijk′lm,(3.1)

where σ∗
kijk′lm = E(KkijKk′lm), k, k′ = 1, . . . , 5, i, l = 1, . . . , p1, j,m = 1, . . . , q1.

Appendix C gives σ∗
kijk′lm. This proof is in Appendix B.

4. Example

We investigate the correlations between the academic record in senior high
school and the score on the common first-stage university entrance examination.
From the academic records and scores for 147 students, we obtained the following
correlation matrix:(

Rxx Rxy

Ryx Ryy

)
(4.1)

=

English

Japanese

Mathematics

Science

Social Studies

English

Japanese

Mathematics

Science

Social Studies




1

.257 1

.330 −.200 1

.103 −.083 .474 1

.409 .337 .007 .271 1

.537 .169 .101 .083 .347 1

.375 .448 −.069 −.004 .434 .638 1

.155 −.124 .571 .437 .096 .474 .193 1

.083 −.017 .395 .496 .205 .353 .295 .612 1

.279 .365 −.015 .092 .461 .502 .631 .221 .415 1




,

where Rxx is the correlation of the common first-stage university entrance ex-
amination and Ryy is the correlation of the academic records in senior high
school. The variances of x and y are diag(554.1, 474.4, 536.4, 463.5, 459.2) and
diag(354.6, 328.3, 391.6, 452.0, 327.2), respectively. Now, we apply principal com-
ponent analysis to the covariance matrices Sxx and Syy, respectively, and obtain
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the latent roots and the corresponding latent vectors as follows:


856.1

771.6

358.8

296.1

205.0




,




0.625 0.142 −0.731 0.121 0.200

0.378 0.417 0.552 0.587 0.188

0.161 −0.712 −0.021 0.551 −0.405

0.326 −0.542 0.298 −0.312 0.643

0.578 0.078 0.267 −0.490 −0.590




,

and 


1014.7

413.4

223.9

113.0

88.8




,




0.465 0.261 0.563 0.139 −0.616

0.400 0.518 0.004 0.430 0.622

0.441 −0.536 0.442 −0.380 0.423

0.515 −0.480 −0.537 0.413 −0.213

0.406 0.381 −0.447 −0.693 −0.096




.

In this example we shall use the first and second principal components in each
group for explaining the scores of the common first-stage university entrance
examination and the academic records in senior high school. We compute the
canonical component analysis using those principal components, and obtain the
following canonical correlation coefficients:

r2∗
1 = 0.50774, r2∗

2 = 0.30770.

When we use all variables, we have the following canonical correlation coefficients:

r2
1 = 0.52547, r2

2 = 0.32277, r2
3 = 0.21834,

r2
4 = 0.05387, r2

5 = 0.00992.

In general, the sum of the all canonical correlation coefficients between x and y is
equal to that between u and v. Additionally, as given in Fujikoshi (1982), the k-th
canonical correlation coefficient of selected variables is less than or equal to that
of all variables. In our case, the two principal components have almost the same
information about the relationships between x and y as all the variables, because
the difference of the two canonical correlation coefficients is small; furthermore,
it is easier to interpret the canonical variables, as they are written using the
uncorrected principal components.

With the score on the common first-stage university entrance examination,
the first and second principal components keep 65% of the information, while
77% of the information from the academic records in senior high school is kept.

From the values of the characteristic vectors corresponding to the largest and
second largest characteristic roots, we know that the first principal component is
the factor with overall ability in five subjects, and the second principal component
is the factor with ability in science and language.

From the canonical correlation analysis based on the first and second princi-
pal components in each group, we obtain the first canonical correlation coefficient
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of 0.511, and the second canonical correlation coefficient of 0.308. In this paper
r2 is the sum of 0.508 and 0.308, namely 0.815, i.e., the total sum of the canon-
ical correlations based on the largest and second largest principal components
of X and Y respectively. By contrast, the largest and second largest canonical
correlations on all variables are 0.525 and 0.323, and their sum is 0.848. Since
the difference between 0.848 and 0.815 is small, based on the analysis proposed
here, we lose only a slight amount of information contained in the correlations.

Let two principal components be u1 and u2 on the common first-stage uni-
versity entrance examination, and v1 and v2 on the academic records in se-
nior high school. The first canonical variables given by 0.326u1 − 1.203u2 and
0.106v1 − 1.045v2 are the variables mainly concerned with the second principal
components. The second canonical variables given by 1.275u1 + 0.307u2 and
1.653v1 + 0.067v2 are the variables concerned with the first principal compo-
nents. This means that the second principal component is higher correlated than
the first principal components. We may obtain similar results in canonical cor-
relation analysis, however the canonical correlation analysis based on principal
components gives us clear results.

5. Simulation study

A simulation study is examined by generating random samples from a normal
distribution having the population covariance matrix obtained in Section 4. In
this case, σ2

∗ = 1.03713 from (3.1) by substituting the covariance matrix (4.1),
its latent roots and the corresponding latent vectors. We compare the actual
percentile point of

√
n(r2∗−ρ2∗)/σ∗ with that of the standard normal distribution.

The results of simulation studies for N = 50, 100 and 300 are listed in Table 1
by 100,000 replicates.

Table 1. Principal canonical components correlation.

Prob. percentile N = 50 100 300

0.95 1.645 1.6959 1.6776 1.6592

0.975 1.960 2.0138 1.9971 1.9722

From the results of the simulation study, we may find that actual percentile
points are close to 1.64 or 1.96.

6. Bootstrapping

Developed by Efron in 1979, the bootstrap method can estimate measures of
variability and bias. It can be used in nonparametric or parametric modes. The
basic steps in the bootstrap procedure are as follows:

Step 1. Construct an empirical probability distribution, Ω, from the sample
by setting a probability of 1/n for each point, z1, . . . , zn of the sample. This
is the empirical distribution function of the sample, which is the nonparametric
maximum likelihood estimate of the population distribution, ω; now, each sample
element has the same probability of being drawn.



246 TAKAKAZU SUGIYAMA ET AL.

Step 2. From the empirical distribution function, Ω, draw a random sample
of size n with replacement. This is a “resample”.

Step 3. Calculate the statistic of interest, z, for this resample, yielding, z∗.

Step 4. Repeat Steps 2 and 3 B times, where B is a large number, in order
to create B resamples. The practical size of B depends on the tests to be run
on the data. Typically, B is at least 1000 when an estimate of the confidence
interval around Γ is required.

Step 5. Construct the relative frequency histogram from the B number of
z∗s by placing a probability of 1/B at each point, z∗1 , . . . , z

∗
B. The distribution

obtained is the bootstrapped estimate of the sampling distribution of z.

We investigate the correlations between the academic record in senior high
school and the score on the common first-stage university entrance examination
using bootstrapping. The results of the bootstrap simulation study for N = 100,
150, and 300 are listed in Table 2 for B = 1000 replicates, where r̂2∗ = r̂2∗

1 + r̂2∗
2

is the sum of the sample canonical correlation coefficient of the sample of size
N , generated from the population having the covariance matrix (4.1), r̄2∗ is the
bootstrap mean of the sum of the sample canonical correlation coefficients, s2

∗ is
the plug-in estimator of σ2

∗, and z∗(1) ≤ · · · ≤ z∗(950) ≤ · · · ≤ z∗(1000).

Table 2. Bootstrap B = 1000 times.

N r̂2∗ r̄2∗ s2
∗ mean of z∗ variance of z∗ 0.95(z∗(950))

100 0.8230 0.8197 1.0591 −0.03140 1.2125 1.7898

150 0.8434 0.8407 1.0225 −0.03108 1.1977 1.6981

300 0.8270 0.8284 1.0373 −0.02313 1.0252 1.6236

From the bootstrap results, we find that the value using the correlation is
close to the real value.

7. Conclusion

We find that the limiting distribution of the canonical correlation of the prin-
cipal components from two populations is the normal distribution by expansion
of the correlation. From the results of a simulation study and bootstrapping,
we get a value close to the real value, and one can easily determine the mean-
ings of the principal components for both the academic records in senior high
school and the scores on the common first-stage university entrance examina-
tion. Comparing the correlation from the principal components to the canonical
correlation, it is clear that the canonical correlation is larger than the corre-
lation from the principal components, but the difference between the methods
is not large. Therefore, it is worth considering to use the correlation from the
principal components. The limiting distribution of the canonical correlation of
the principal components becomes a complex expression. Then, the bootstrap
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method is used. It is understood that we can analyze reliability, even if we do
not perform a complex calculation by using the bootstrap method. However, the
mathematical result in the first half of the paper is a result of worthy to research
the characteristic of the amount of presumption.

Appendix A: Asymptotic expansion and limiting distribution of the correla-
tion coefficient r2∗

We consider an asymptotic expansion of latent roots and vectors. The deriva-
tion is in Siotani et al. (1985). Let W be distributed as the (p + q) × (p + q)
variate Wishart distribution with p + q degrees of freedom, Wp+q(Σ, n), where

S =
1

n
W = Σ +

1√
n
G,(A.1)

and Σ is the population covariate matrix. Then, it follows that the limiting
distribution of G = (gij) is normal with mean zero and covariance:

cov(gijgkl) = σikσjl + σilσjk.(A.2)

The matrices Σ and S are partitioned in a similar to (2.2) and (2.14). Similarly,
G is partitioned into p rows and q columns:

G =

(
Gxx Gxy

Gyx Gyy

)
.(A.3)

From the perturbation method, the latent roots and vectors of Sxx and Syy are
expanded as follows:

lix = λix +
1√
n
λ

(1)
ix + Op(n

−1), hix = γix +
1√
n
γ

(1)
ix + Op(n

−1),(A.4)

ljy = λjy +
1√
n
λ

(1)
jy + Op(n

−1), hjy = γjy +
1√
n
γ

(1)
jy + Op(n

−1),(A.5)

where

λ
(1)
ix = γ ′

ixGxxγix, λ
(1)
jy = γ ′

jyGyyγjy,

γ
(1)
ix = −Σ∗

ix(Gxx − λ
(1)
ix I)γix, γ

(1)
jy = −Σ∗

jy(Gyy − λ
(1)
jy I)γjy,

Σ∗
ix = (Σxx − λixI)−, Σ∗

jy = (Σyy − λjyI)−,

and (Σxx−λixI)− and (Σyy −λjyI)− denote the generalized inverse matrixes of
Σxx−λixI and Σyy −λjyI, respectively. The sample correlation of the principal
components from the two populations is written as:

r2∗ =

p1∑
i=1

r2∗
i =

p1∑
i=1

q1∑
j=1

l−1
ix l−1

jy (h′
ixSxyhjy)

2.(A.6)
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Substituting these expansions into r2∗, we obtain the asymptotic expansion of

r2∗ = ρ2∗ +
1√
n

5∑
k=1

p1∑
i=1

q1∑
j=1

Kkij + Op(n
−1),(A.7)

where

K1ij = 2λ−1
ix λ−1

jy τijγ
′
ixΣxyγ

(1)
jy , K2ij = 2λ−1

ix λ−1
jy τijγ

′
ixGxyγjy,

K3ij = 2λ−1
ix λ−1

jy τijγ
(1)′

ix Σxyγjy, K4ij = −ρ2
ijλ

−1
jy λ

(1)
jy ,

K5ij = −ρ2
ijλ

−1
ix λ

(1)
ix

and

τij = γ ′
ixΣxyγjy, ρ2

ij = λ−1
ix λ−1

jy τ2
ij , ρ2∗ =

p1∑
i=1

q1∑
j=1

ρ2
ij .

The limiting normality of r2∗
i is assured by Theorem 2.1 of Seo et al. (1994) if

(U ,V ) has finite sixth moments. Thus the limiting distribtuion of r2∗ =
∑p1

i=1 r
2∗
i

is normal.

Appendix B: Proof of Theorem 1
We give the following Lemma before proving Theorem 1.

Lemma. The matrices G, W and Σ are defined as before. Let

G =

(
G11 G12

G21 G22

)
= (gab),(B.1)

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
= (σab).(B.2)

Then, we obtain

E(GijAGkl) = ΣikA
′Σjl + Σil tr(AΣkj),(B.3)

E(α′GijαGkl) = Σkjαα′Σil + Σkiαα′Σjl,(B.4)

where A and α are a real matrix and a real vector , respectively , and i, j, k and
l are x or y.

Proof of the Lemma. Let gijab denote (a, b)-th element of Gij , where

i and j are x or y. Then, we have gijab = ua+ci,b+cj , where cx = 0, cy = p1.
Therefore, we obtain:

E(GijAGkl) = ΣikA
′Σjl + Σil tr(AΣkj),

E(α′GijαGkl) = Σkjαα′Σil + Σkiαα′Σjl,

which gives the Lemma.
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In order to get the parameter σ∗
kijk′lm in Theorem 1, the following calculation

is convenient:

E(λ
(1)
ix λ

(1)
lx ) = 2δ2

x,(B.5)

E(λ
(1)
ix λ

(1)
jy ) = 2τ2

ij ,(B.6)

E(λ
(1)
ix γ

(1)
lx ) = −2δxΣ

∗
lx(Σxxγix − δxγlx),(B.7)

E(λ
(1)
ix γ

(1)
jy ) = −2τijΣ

∗
jy(Σyxγix − τijγjy),(B.8)

E(γ
(1)
ix γ

(1)′

lx ) = Σ∗
ix(Σxxγlxγ

′
ixΣxx + δxΣxx − 2δxΣxxγlxγ

′
lx(B.9)

− 2δxγixγ
′
ixΣxx + 2δ2

xγixγ
′
lx)Σ

∗
lx,

E(γ
(1)
ix γ

(1)′

jy ) = Σ∗
ix(Σxyγjyγ

′
ixΣxy + τijΣxy − 2τijΣxyγjyγ

′
jy(B.10)

− 2τijγixγ
′
ixΣxy + 2τ2

ijγixγ
′
jy)Σ

∗
jy

where

δx = γ ′
ixΣxxγlx, δy = γ ′

jyΣyyγmy.

The limiting distribution of Kkij in Theorem 1 is normal because Kkij is a linear
function of Gij , and the limiting distribution of G is normal. The variance of√
n(r2∗ − ρ2∗) is given by:

Var(
√
n(r2∗ − ρ2∗)) = Var


 5∑

k=1

p1∑
i=1

q1∑
j=1

Kkij + Op(n
−1/2)




=

5∑
k=1

5∑
k′=1

p1∑
i=1

q1∑
j=1

p1∑
l=1

q1∑
m=1

E(KkijKk′lm) + Op(n
−1/2),

where

E(Kkij) = 0,

E(K1ijK1lm) = 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmE(γ ′
ixΣxyγ

(1)
jy γ

(1)′
my Σyxγlx)

= 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ixΣxyΣ

∗
jy

× (Σyyγmyγ
′
jyΣyy + δyΣyy − 2δyΣyyγmyγ

′
my

− 2δyγjyγ
′
jyΣyy + 2δ2

yγjyγ
′
my)Σ

∗
myΣyxγlx,

E(K2ijK2lm) = 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmE(γ ′
ixGxyγjyγ

′
lxGxyγmy)

= 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ix = 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlmγ ′

ix

× E(Gxyγjyγ
′
lxGxy)γmy

× (Σxxγlxγ
′
jyΣyy + Σxy tr(γjyγ

′
lxΣxy))γmy

= 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlm(δxδy + τimτlj),

E(K4ijK4lm) = λ−1
jy λ−1

myρ
2
ijρ

2
lmE(λ

(1)
jy λ(1)

my) = 2λ−1
jy λ−1

myρ
2
ijρ

2
lmδ2

y ,
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E(K1ijK2lm) = 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmE(γ ′
ixΣxyγ

(1)
jy γ

′
lxGxyγmy)

= −4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ixΣxyΣ

∗
jy

× (E(Gyyγjyγ
′
lxGxy) − γjyγ

′
lxE(λ

(1)
jy Gxy))γmy

= −4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ixΣxyΣ

∗
jy

× ((Σyxγlxγ
′
jyΣyy + Σyy tr(γjyγ

′
lxΣxy))

− γjyγ
′
lxE(γ ′

jyGyyγjyGxy))γmy

= −4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ixΣxyΣ

∗
jy

× (δyΣyxγlx + τljΣyyγmy − 2τljδyγjy),

E(K1ijK3lm) = 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmE(γ ′
ixΣxyγ

(1)
jy γ

(1)′

lx Σxyγmy)

= 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ixΣxyE(γ

(1)
jy γ

(1)′

lx )Σxyγmy

= 4λ−1
ix λ−1

lx λ−1
jy λ−1

myτijτlmγ ′
ixΣxyΣ

∗
jy

× (Σyxγlxγ
′
jyΣyx + τljΣyx − 2τljΣyxγlxγ

′
lx

− 2τljγjyγ
′
jyΣyx + 2τ2

ljγjyγ
′
lx)Σ

∗
lxΣxyγmy,

E(K1ijK4lm) = −2λ−1
ix λ−1

jy λ−1
myρlmτijγ

′
ixΣxyE(λ(1)

myγ
(1)
jy )

= 4λ−1
ix λ−1

jy λ−1
myρlmτijδyγ

′
ixΣxyΣ

∗
jy(Σyyγmy − δyγjy),

E(K2ijK4lm) = −2λ−1
ix λ−1

jy λ−1
myρ

2
lmτijγ

′
ixE(Gxyγjyλ

(1)
my)

= −2λ−1
ix λ−1

jy λ−1
myρ

2
lmτijγ

′
ixE(Gxyγjyγ

′
myGyy)γmy

= −4λ−1
ix λ−1

jy λ−1
myρ

2
lmτijτimδy,

E(K4ijK5lm) = λ−1
jy λ−1

lx ρ2
ijρ

2
lmE(λ

(1)
lx λ

(1)
jy ) = 2λ−1

jy λ−1
lx ρijρlmτ2

lj ,

and the others are obtained using the same calculation.

Appendix C: We may obtain the parameter σ∗
kijk′lm = E(KkijKk′lm) in The-

orem 1 from Appendix B as follows:

σ∗
1ij1lm = 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlmγ ′

ixΣxyΣ
∗
jy

× (Σyyγmyγ
′
jyΣyy + δyΣyy − 2δyΣyyγmyγ

′
my

− 2δyγjyγ
′
jyΣyy + 2δ2

yγjyγ
′
my)Σ

∗
myΣyxγlx,

σ∗
2ij2lm = 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlm(δxδy + τimτlj),

σ∗
3ij3lm = 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlmγ ′

jyΣyxΣ
∗
ix

× (Σxxγlxγ
′
ixΣxx + δxΣxx − 2δxΣxxγlxγ

′
lx

− 2δxγixγ
′
ixΣxx + 2δ2

xγixγ
′
lx)Σ

∗
lxΣxyγmy,

σ∗
4ij4lm = 2λ−1

jy λ−1
myρ

2
ijρ

2
lmδ2

y ,

σ∗
5ij5lm = 2λ−1

ix λ−1
lx ρ2

ijρ
2
lmδ2

x,
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σ∗
1ij2lm = − 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlmγ ′

ixΣxyΣ
∗
jy

× (δyΣyxγlx + τljΣyyγmy − 2τljδyγjy),

σ∗
1ij3lm = 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlmγ ′

ixΣxyΣ
∗
jy(Σyxγlxγ

′
jyΣyx + τljΣyx

− 2τljΣyxγlxγ
′
lx − 2τljγjyγ

′
jyΣyx + 2τ2

ljγjyγ
′
lx)Σ

∗
lxΣxyγmy,

σ∗
1ij4lm = 4λ−1

ix λ−1
jy λ−1

myρ
2
lmτijδyγ

′
ixΣxyΣ

∗
jy(Σyyγmy − δyγjy),

σ∗
1ij5lm = 4λ−1

ix λ−1
jy λ−1

lx ρ2
lmτijτljγ

′
ixΣxyΣ

∗
jy(Σyxγlx − τljγjy),

σ∗
2ij3lm = 4λ−1

ix λ−1
lx λ−1

jy λ−1
myτijτlmγ ′

ix

× (Σxxγlxγ
′
jyΣyx + τljΣxx − 2τljΣxxγlxγ

′
lx)Σ

∗
lxΣxyγmy,

σ∗
2ij4lm = − 4λ−1

ix λ−1
jy λ−1

myρ
2
lmτijτimδy,

σ∗
2ij5lm = − 4λ−1

ix λ−1
lx λ−1

jy ρ2
lmτijτljδx,

σ∗
3ij4lm = 4λ−1

ix λ−1
jy λ−1

myρ
2
lmτijτimγ ′

jyΣyxΣ
∗
ix(Σxyγmy − τimγix),

σ∗
3ij5lm = 4λ−1

ix λ−1
lx λ−1

jy ρ2
lmδxτijγ

′
jyΣyxΣ

∗
ix(Σxxγlx − δxγix),

σ∗
4ij5lm = 2λ−1

jy λ−1
lx ρ2

ijρ
2
lmτ2

lj .
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