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DISTRIBUTIONS AND THE BOOTSTRAP METHOD OF
SOME STATISTICS IN PRINCIPAL CANONICAL
CORRELATION ANALYSIS

Takakazu Sugiyama*, Toru Ogura*, Fumitake Sakaori** and
Tomoya Yamada***

We investigate the canonical correlation of the principal components from two
populations, and attain the limiting distribution using the perturbation expansion of
the canonical correlation estimate. We discuss the numerical accuracy of the limiting
distribution.

Key words and phrases: Canonical correlation analysis, perturbation method, prin-
cipal component.

1. Introduction

We consider two sets of variables with a joint distribution and analyze the
canonical correlations between the variables in the two sets. One of the anal-
yses used is the canonical correlation analysis, which finds linear combinations
of variables in the sets that have the maximum correlation, and these linear
combinations are the first coordinates in new systems. Then, a second linear
combination in each set is obtained such that the linear combination is uncor-
related with the first linear combination. The procedure is continued until two
new coordinate systems are specified completely. This theory was developed by
Hotelling (1935, 1936).

In this paper, we first determine the principal components of the two sets and
then calculate the canonical correlation between the two principal components.
Principal components analysis is a procedure used for analyzing multivariate
data that transforms the original variables into new ones that are uncorrelated
and account for decreasing proportions of the variance in the data. This analysis
attempts to characterize or explain the variability in a vector variable by replacing
it with a new variable with fewer components with large variance.

We know that the interpretation of principal components is easier than the
canonical variate. Therefore, comparing canonical correlation analysis with prin-
cipal component analysis, we can say that the canonical correlations of two prin-
cipal components are more useful for understanding the relationships of the given
data sets. This paper derives the limiting distribution of the canonical correlation
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of the principal components from two populations. In Section 2, we derive the
canonical correlation of the principal components from two populations. In Sec-
tion 3, we find the limiting distribution of the canonical correlation. Finally, we
compare the results of the canonical correlation using an example, a simulation
study, and bootstrapping.

2. Canonical correlation of the principal components from two pop-
ulations

2.1. Principal component canonical correlation in the population
Suppose the random vector Z of p + ¢ components has covariance matrix

3, which is assumed to be positive definite. Since we are only interested in the

variance and covariance in this section, we assume E(Z) = 0 without loss of

generality. We partition Z into two subvectors of p and ¢ components, X and

Y, such that:

X
o o (%)

Similarly, the covariance matrix is partitioned into p and ¢ rows and columns,

X Yow X
(2.2) Cov =X = Y,
Y Yy yy

where 3, is pxp, Xy is pxq, By, is gxp, and Xy, is ¢xq. Let Az > -+ > A,
be the ordered latent roots of ¥, and 74, ... ,7,, be the corresponding latent
vectors; similarly, let Ay, > --- > )4y be the ordered latent roots of ¥, and
Yiys- -+ »Vqy D€ the corresponding latent vectors. For ¥, and 3,,, we may
decompose this as:

(2.3) F;,pzmrm,p = Az p, I‘;;,qzyyry,q = Ay,q’

where A, ), = diag(Aig, ... , Ape) and Ay 4 = diag(Aiy, ..., Agy) are the diagonal
matrices, and the orthogonal matrix is denoted 'y = (V145 -- - ,¥pg) and T'y g =
(Y1ys - -+ +Ygy)- Then, we obtain the i-th principal component of X, U; = v;, X
and the j-th principal component of Y, V; = 'y;»yY. Furthermore, we obtain
Var(U;) = Aiz, Cov(U;,Uj) =0 (i # j), Var(V;) = Ay, Cov(V;, V) =0 (i # j).
Let

Ur Vi
(2.4) U= : , V = : ,
Upl Vlh

where p1 < p, ¢1 < ¢, p1 < ¢1. The covariance matrix of (U, V')’ is:
(2.5) cov [U) = [ B Buo | _ [ ToXeoTo ToZy Ty
\% zvu Evv I‘;nyrm F{yzyyry

:< A, r;zmyry>
s, A,
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where we denote the matrices as Ty = (V14 »Ypyz)s Ty = (Yigs -+ Yary)>
A, = diag(Mg, ... s Apia), and Ay = diag(A1y, ..., Agy). The quantities of the
canonical correlation coefficient U%* > > ugf > 0 satisfy:

(2.6) 1Z e Bl B — v =0,
or
(2‘7) |Evu2 Euv - Vz*zvv‘ =0,

and o = (Oéh' s apli)/ and ﬂz = (ﬁh .. '/8111i), satisfy

(2.8) EUUE;}EUuai = V?*zuuai, aiEuuaj = (Sij,
Evuzq:ulzuvﬂz = V?*Evvﬁi) Bgzvvﬂj = 6ij7

where 6;; is a Kronecker’s delta. Substituting (2.6) into (2.5) gives:

1B Bt B — v =0
‘2 1/22 2 12 2 1/2 2*1" =0
(2.10) AT E,, Ty A, 1I‘;2y$I‘mA;1/2 — ¥ =0,

and therefore

v 0 -0 0
0 1/2*

(2.11) O'A;YT, 3, T A ' T2, T AP0 =| 7 72 :
. S ... O
0 0 1/3;"

where O is the orthogonalization matrix. p?* is defined:

(2.12) P =

Then we get:

(2.13) P = tr(AVPTLE,, T A, T 8, T ALY ?)

B SR,
i=1 j=1 iz Ajy

Above p?* means the total sum of the canonical correlations based on p; principal
components of X and ¢; principal components of Y.

2.2. Estimation of the principal canonical component correlation
Let z1,...,zn be N observations from N(u,Y) and z, be partitioned into
two subvectors of p and ¢ components, respectively,

z, = T , t=1,...,N.
Y,



242 TAKAKAZU SUGIYAMA ET AL.

Let the sample covariance matrix .S be written as:

N
(2.14) S = (S“ Smy) . (zL —z)(z, — 2)
Syz Syy n

:1(271(% #)(@, - 2) zivlm—o-c)(yb—@)')
P\ -9 @ —2) SNy, -y, - )

where n = N — 1. Let l1; > --- > [, be the ordered latent roots of S;, and
hiz,...,hp: be the corresponding latent vectors; similarly, let Iy, > - > [y
be the ordered latent roots of Sy, and hyy, ..., hy be the corresponding latent
vectors. For S, and Sy, we may decompose this as:

(2.15) H,,S:.H,p,=D,, H, S, H,,=D,,,

where D, = diag(lig,... ,lps) and Dy, = diag(liy,... ,lq) are the diagonal
matrices, and the orthogonal matrix is denoted by H,, = (hig,... ,hy,) and
Hy, = (hiy, ... hg). Let

Suu = H;;Sxxﬂxv Suv = H;S;tyng
Seu= H.,Sy H,, S, —H.S, H,,

where we denote the orthogonal matrix as H, = (higz,... ,hp,,) and H, =
(hiy,--. ,hgy) and p1 < p, 1 < ¢ and p; < ¢1. The estimate quantities of the
canonical correlation coefficient f2* > ... > fgl* > 0 satisfy:

(2.16) 1SuwSey Sou — 2* Sun| =0,

or

(2.17) |SuuS oy Suv — f*Suw| =0,

and a; = (aij, ... ,ap;;) and b; = (bis, ... ,by,) satisfy

(2.18) SuwSyy Soui = f7*Suuai,  ajSuua; = 6;j,

(2.19) SvuSuiSuwbi = ¥ Subi,  blS,ub; = ).

Then, we may estimate p?* by:
(220) 7’2* — 12* o4 f2*
= tr(D V2H SzyH D,'H,S,H,D;?

i (h.,Szyhj,
=ZZ

i=1 j=1 lmljy
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3. Limiting distributions of estimates of the sum of canonical corre-
lation coefficients based on principal components

From Appendix A, we have the following theorem.

THEOREM 1. The limiting distribution of /n(r** — p**) is normal with
mean 0 and variance o2:

P @1 p1 q1

5 5
(3.1) o} = Z Z ZZ Z Ohijh/Im>

k=1k'=1i=1 j=1 |=1 m=1

where UZijk’lm = E(Kk’ink’lm)v k7k/ = 17 s a57 Zal = 1a -5 P1, jam = 17 <41
Appendiz C gives O'Zijk/lm. This proof is in Appendiz B.

4. Example

We investigate the correlations between the academic record in senior high
school and the score on the common first-stage university entrance examination.
From the academic records and scores for 147 students, we obtained the following
correlation matrix:

Rxw R:L'
(4.1) ( v )
Ryﬂf Ryy

English 1

Japanese 257 1
Mathematics 330 —.200 1
Science 103 —.083 474 1

Social Studies 409 337 .007 271 1

English 537 .169 101 .083 .347 1

Japanese 375 448 —.069 —.004 434 .638 1
Mathematics 155 —.124 571 437 .096 .474 .193 1

Science .083 —.017 .395 .496 .205 .353 .295 .612 1

Social Studies \ .279 .365 —.015 .092 .461 .502 .631 .221 .415 1

where R, is the correlation of the common first-stage university entrance ex-
amination and R,, is the correlation of the academic records in senior high
school. The variances of & and y are diag(b54.1,474.4,536.4,463.5,459.2) and
diag(354.6, 328.3,391.6,452.0, 327.2), respectively. Now, we apply principal com-
ponent analysis to the covariance matrices S, and Sy, respectively, and obtain



244 TAKAKAZU SUGIYAMA ET AL.

the latent roots and the corresponding latent vectors as follows:

856.1 0.625 0.142 —0.731 0.121 0.200
771.6 0.378 0.417 0.552 0.587 0.188
358.8 |, 0.161 —0.712 —0.021  0.551 —0.405 |,
296.1 0.326 —0.542 0.298 —0.312 0.643
205.0 0.578 0.078 0.267 —0.490 —0.590
and
1014.7 0.465 0.261 0.563 0.139 —0.616
413.4 0.400 0.518 0.004 0.430 0.622
2239 |, 0.441 —0.536 0.442 —0.380 0.423
113.0 0.515 —0.480 —0.537 0.413 —0.213
88.8 0.406 0.381 —0.447 —0.693 —0.096

In this example we shall use the first and second principal components in each
group for explaining the scores of the common first-stage university entrance
examination and the academic records in senior high school. We compute the
canonical component analysis using those principal components, and obtain the
following canonical correlation coefficients:

r2* =0.50774,  r2* =0.30770.
When we use all variables, we have the following canonical correlation coefficients:

r? =0.52547, r3=0.32277, r2=0.21834,
r2 =0.05387, 7% =0.00992.

In general, the sum of the all canonical correlation coefficients between @ and y is
equal to that between u and v. Additionally, as given in Fujikoshi (1982), the k-th
canonical correlation coefficient of selected variables is less than or equal to that
of all variables. In our case, the two principal components have almost the same
information about the relationships between & and y as all the variables, because
the difference of the two canonical correlation coefficients is small; furthermore,
it is easier to interpret the canonical variables, as they are written using the
uncorrected principal components.

With the score on the common first-stage university entrance examination,
the first and second principal components keep 65% of the information, while
77% of the information from the academic records in senior high school is kept.

From the values of the characteristic vectors corresponding to the largest and
second largest characteristic roots, we know that the first principal component is
the factor with overall ability in five subjects, and the second principal component
is the factor with ability in science and language.

From the canonical correlation analysis based on the first and second princi-
pal components in each group, we obtain the first canonical correlation coefficient
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of 0.511, and the second canonical correlation coefficient of 0.308. In this paper
r? is the sum of 0.508 and 0.308, namely 0.815, i.e., the total sum of the canon-
ical correlations based on the largest and second largest principal components
of X and Y respectively. By contrast, the largest and second largest canonical
correlations on all variables are 0.525 and 0.323, and their sum is 0.848. Since
the difference between 0.848 and 0.815 is small, based on the analysis proposed
here, we lose only a slight amount of information contained in the correlations.

Let two principal components be u; and us on the common first-stage uni-
versity entrance examination, and v; and vo on the academic records in se-
nior high school. The first canonical variables given by 0.326u; — 1.203us and
0.106v; — 1.045v5 are the variables mainly concerned with the second principal
components. The second canonical variables given by 1.275u; + 0.307ug and
1.653v; + 0.067v2 are the variables concerned with the first principal compo-
nents. This means that the second principal component is higher correlated than
the first principal components. We may obtain similar results in canonical cor-
relation analysis, however the canonical correlation analysis based on principal
components gives us clear results.

5. Simulation study

A simulation study is examined by generating random samples from a normal
distribution having the population covariance matrix obtained in Section 4. In
this case, 02 = 1.03713 from (3.1) by substituting the covariance matrix (4.1),
its latent roots and the corresponding latent vectors. We compare the actual
percentile point of \/n(r?*—p?*) /o, with that of the standard normal distribution.
The results of simulation studies for N = 50,100 and 300 are listed in Table 1
by 100,000 replicates.

Table 1. Principal canonical components correlation.

Prob. | percentile | N =50 100 300
0.95 1.645 1.6959 | 1.6776 | 1.6592
0.975 1.960 2.0138 | 1.9971 | 1.9722

From the results of the simulation study, we may find that actual percentile
points are close to 1.64 or 1.96.

6. Bootstrapping

Developed by Efron in 1979, the bootstrap method can estimate measures of
variability and bias. It can be used in nonparametric or parametric modes. The
basic steps in the bootstrap procedure are as follows:

Step 1. Construct an empirical probability distribution, €2, from the sample
by setting a probability of 1/n for each point, z1,...,z, of the sample. This
is the empirical distribution function of the sample, which is the nonparametric
maximum likelihood estimate of the population distribution, w; now, each sample
element has the same probability of being drawn.
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Step 2. From the empirical distribution function, €2, draw a random sample
of size n with replacement. This is a “resample”.

Step 3. Calculate the statistic of interest, z, for this resample, yielding, z*.

Step 4. Repeat Steps 2 and 3 B times, where B is a large number, in order
to create B resamples. The practical size of B depends on the tests to be run
on the data. Typically, B is at least 1000 when an estimate of the confidence
interval around I' is required.

Step 5. Construct the relative frequency histogram from the B number of
z*s by placing a probability of 1/B at each point, z],...,z5. The distribution
obtained is the bootstrapped estimate of the sampling distribution of z.

We investigate the correlations between the academic record in senior high
school and the score on the common first-stage university entrance examination
using bootstrapping. The results of the bootstrap simulation study for N = 100,
150, and 300 are listed in Table 2 for B = 1000 replicates, where 72* = 7#3* 4 72*
is the sum of the sample canonical correlation coefficient of the sample of size
N, generated from the population having the covariance matrix (4.1), #2* is the
bootstrap mean of the sum of the sample canonical correlation coefficients, s2 is

the plug-in estimator of af, and zz“l) <. < 2?950) <. < z?looo)'

Table 2. Bootstrap B = 1000 times.

N 72 72* 52 mean of z* | variance of 2" | 0.95(2(g50))
100 | 0.8230 | 0.8197 | 1.0591 —0.03140 1.2125 1.7898
150 | 0.8434 | 0.8407 | 1.0225 | —0.03108 1.1977 1.6981
300 | 0.8270 | 0.8284 | 1.0373 | —0.02313 1.0252 1.6236

From the bootstrap results, we find that the value using the correlation is
close to the real value.

7. Conclusion

We find that the limiting distribution of the canonical correlation of the prin-
cipal components from two populations is the normal distribution by expansion
of the correlation. From the results of a simulation study and bootstrapping,
we get a value close to the real value, and one can easily determine the mean-
ings of the principal components for both the academic records in senior high
school and the scores on the common first-stage university entrance examina-
tion. Comparing the correlation from the principal components to the canonical
correlation, it is clear that the canonical correlation is larger than the corre-
lation from the principal components, but the difference between the methods
is not large. Therefore, it is worth considering to use the correlation from the
principal components. The limiting distribution of the canonical correlation of
the principal components becomes a complex expression. Then, the bootstrap
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method is used. It is understood that we can analyze reliability, even if we do
not perform a complex calculation by using the bootstrap method. However, the
mathematical result in the first half of the paper is a result of worthy to research
the characteristic of the amount of presumption.

Appendix A: Asymptotic expansion and limiting distribution of the correla-
tion coefficient r2*
We consider an asymptotic expansion of latent roots and vectors. The deriva-
tion is in Siotani et al. (1985). Let W be distributed as the (p + q) X (p + q)
variate Wishart distribution with p + g degrees of freedom, W, 14(%, n), where

1 1
Al = W=x4+ —
(A.1) S nW + \/EG’

and X is the population covariate matrix. Then, it follows that the limiting
distribution of G' = (g;;) is normal with mean zero and covariance:
(A.2) cov(gijgrl) = Oik0ji + 0i0 k.

The matrices 3 and S are partitioned in a similar to (2.2) and (2.14). Similarly,
G is partitioned into p rows and ¢ columns:

GQ?(E G{L’
(A.3) G = < y) :
ny ny

From the perturbation method, the latent roots and vectors of S, and S, are
expanded as follows:

1
(A.4) m:Am+7ﬂ$+0Amﬂ, R Fm+57%3+%m*x

1« _
(A5) Ly = Ayt =X+ 07 gy =+ =)+ Oy
where
1 1
)\Ex) = ’Y{L$G$$7@za )\‘gy) = ’ijny’y_jy?

1 * 1 , 1
,-ng) - _ZZ:IJ(GI$ - AELE) )72&:7 7§y) - _ij(ny - )‘g'y)I)’ij?
= (B — D), X = (B - AyI)7,
and (X2 — Xi)” and (2yy — Aj, )~ denote the generalized inverse matrixes of

Ypr — Nipd and Xy, — \j, I, respectively. The sample correlation of the principal
components from the two populations is written as:

P q1

p
(A.6) 2 :irf* SN 1 (B Sayhyy)?.
=1

i=1 j=1
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Substituting these expansions into r?*, we obtain the asymptotic expansion of

q1

5 P1
Z Z Z Kyij + Op(nfl),

k=1 i=1 j=1

(A7) r2* =

%\H

where

_ _ 1 _ _
Kiij = 20,05 77 By Kaij = 205 A 075 Gy

K?n] 2>\ 1)\]y 7—1]7590) Exy'ijv K4ij ,0”)\”1)\5;7
1
Ksij = —pi A\
and
pLoq
Tij = 7;':r2$y7jy7 pzzj = >‘ 1)‘ zgv pQ* = ZZPZQ]
i=1 j=1
The limiting normality of r2* is assured by Theorem 2.1 of Seo et al. (1994) if
(U, V) has finite sixth moments. Thus the limiting distribtuion of r#* = Y"P* r2*
is normal.

Appendix B: Proof of Theorem 1
We give the following Lemma before proving Theorem 1.

LEMMA. The matrices G, W and ¥ are defined as before. Let

(B.1) G- (G“ G”) — (g,

G2 Gao
i X
(B.2) n=( 2127 = (ow)
Yo1 Yoo
Then, we obtain
(B3) E(GUAGM) = EikA,Ejl + X tI‘(AEkj),
(B.4> E(O/Gijale) = Ekjao/Eil + Ekiaa’Eﬂ,

where A and o are a real matrix and a real vector, respectively, and i, j, k and
l are T ory.

PROOF OF THE LEMMA. Let 92{) denote (a,b)-th element of G;j, where
i and j are z or y. Then, we have g} = Uate; pre;, Where ¢z = 0, ¢, = p1.
Therefore, we obtain:

E(GijAle) = Eik;A/Ejl + X tr(Aij),
E(a/Gi]’ale) = Ekjaa’Eil + Zkiao/Eﬂ,

which gives the Lemma.
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In order to get the parameter o} k/im, 1 Theorem 1, the following calculation
is convenient:

(B5)  EQGA) =262,

B.6)  EOWAD) =22

B.7) B = 26,50 (Saevie — 61,

B8)  BOYYY) = =213, (Syevic — i)

(B.9) E(%(»i)%(i),) = Eiz(zm’}’zx%xzm + 6200 — 2050212Vl

1 *
(B.10) E(’yl(»x)’ygy) ) = 25 (Bay Yy Vie Bay + TijBay — 2715 Bay Yy Vjy
- 2Tij’7ix7;a:2$y + 27—]’7290737;)2;1/

where
5:E = ’Y;xszﬂﬁnw 51/ = ’Y;'yzyy’me-

The limiting distribution of Kj;; in Theorem 1 is normal because Kj;; is a linear
function of G, and the limiting distribution of G is normal. The variance of

Vn(r?* — p?*) is given by:

q1

5 m
Var(vn(r® — p?)) = Var [ > Y ) " Kpj + Op(n™/?)
k=1 1i=1

= j:l
5 5 P11 @1 p1 Q1
=2 2020 > EKuijKuim) + Op(n~ ),
k=1k'=1i=1 j=1 I=1 m=1
where
E(ka) =0,
E(Klinllm) - 4)‘ 1)‘ 1>‘]y1)‘myszTlmE('Y;xzxy')’g'ly)V%g;2yz7l:p)
= AN AL A My i T Y By 5y

(Eyy’)’my'yjyzyy + 0y3yy — 25y2yy’7my7;ny
- 26?/7]’3/7;'3;291/ + 26§7jy7lmy)2:nyzyl”ylx’
E(Koij Kopm) = 40\, 1)\]yl)\myszTlmE(7;xGwy7jy72xny’7my)
= AN AL A A T Vi = AN AL A A T Tim Vi
X E(Gzy'yjy'leny)'me
(E:va:’le’Y;yzyy + Xy tr(’ij’Ygg;E:cy))’)’my
= AN NN T T (620, + Tim i),

Jjy T my
E(K4Z]K4lm) - )‘ Amypz]plm ()‘(y))‘grng);) 27, 1)‘myp1jplm(52
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_ 1
E(K1ijKaim) = A5 A0 N A 7371 B (Vi Sy Y 5o Vi Gy Yomy)
= — AN AN A T T Y ey 2,
1
X (E(ny‘ij’)’le y) - 7jy7;xE(>‘§y)Gl“y))7my

= —4\;, 1>\ 1)\ yl)\mynjnm’y;xzxyzj‘y

X ((Eyz’le’ijEyy + Xy tr(')’jy’)’;:pzwy))
- ijVEmE(ﬂyzyny’ijGmy))Fme

= =N N A T Tim Vi By B

(6y2ym’)’lx + lezyy'me - 27—lj6y7jy)7

E(K1i;Ksim) = 4A5 A0 N A 7 m1m E (Vi By Y Ve Sy Ymy)

=4\, 1)\]; AmyszTlm’YéxzxyE('Yg‘gl;)'Yl(i)l)ny'me
= AN LA A T T Y Sy 5y

X (ByaY12Yjy Byz + 15 Bye — 271 By Y1a Ve

= 271 iy Y iy B+ 275 jy Y1) B Sy Vg

E(Klin4lm) = —2>\ 1)\ 1)\myplm7-217m2$yE(/\( )753/))

my
= 4)\ 1)\ 1)\myplm7—2j6y’7m21y2]y(zyy7my B 5yﬁyjy)’
E(KQin4lm) = _2)‘ 1A 1)‘myplmTZJ’YmE(Gl’y’ijA(l))

my
= _2)‘ 1>‘ 1)\myplmsz’YmE(G:Cy’ij’}/;nyny)’me
= —4)\ 1)\ 1)\myplm7'zﬂ'zm6y7

1
E(Kuij Ksim) = Ay, Ay 030t B E(\, )>\( )) =205 A i i T
and the others are obtained using the same calculation.

Appendix C: We may obtain the parameter O’Zijk/lm = E(KyijKpim) in The-
orem 1 from Appendix B as follows:

OTijiim = Mg A NSy Ay Tid T Vi By 25

X (ByyYmyVjy By + 6y Byy — 28y DyyYimy Yy

- 25y7jy7;‘y2yy + 2627jy7;71y)2:ny29$7lx7
Odijorm = 4Nig o lAjyl)\myszTlm((sx(Sy + TimTij),
Taigaim = g gt Ay A Tig Tim Yy Sy S

X (BaaViaVizZar + 6 Bae — 200 D02 Y12V is

— 262712 Viw Ber + 262710V in) Eiie Sy Vimy
UZij4lm 2), 1)\myp7,]plm62

052]5lm - 2)‘ 1)\11‘ pljplm62
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Oligm = — AN AL Ay Ay Tid T Vi By 2

X (0yZyaYie + 15 8yy Ymy — 271047 jy)
O-Tij3lm = 4)‘1';1)‘ 1>‘ Sy )‘myleTlm%mzxyz;y(ny'Yl:p'Y;‘yzyx + 7By

- 2le2yx’7lx’71x - 271j7jy7;‘y2y96 + QTl%'ij'Ygac)E?xzxyVmw
Uﬂ‘jum =4\, 1)‘ 1>‘myplm7-l]5y7zm2 2* (Eyy’me - ‘5y'7jy)a
Olijsim = 4\ 1>\ 1)‘193 leTzJTlﬂwzzyEJy(Eyﬂlz = T Vjy)>
O5ijsim = 4)%1)\ o A5 A Tid Tl Vi

X (Zm’)’l;c’ijzyx + 71 3p0 — 275 Exx’Yl:c’Y;x)z?way’mea
O';ij4lm = —4\; 1/\ lkmyplmnjnméy,
Ohijsim = — 4A;; 1)\lx1>\jy PP Tii T 0
J;ij4lm =4\, 1)‘ 1/\myplmTzJsz’ijEwa;kx(Ezy’me — TimYix)s
U§z‘j5zm =4\, 1)‘11;1/\]'3,, sz5 Tij’)’jyzywzfx(zm’m —62%iz),

* _ 1 2
O4ij5im = 2)‘ )\laz Pmﬂzm%
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