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A GENERAL METHOD FOR CONSTRUCTING
PSEUDO-GAUSSIAN TESTS

Marc Hallin*† and Davy Paindaveine*

A general method for constructing pseudo-Gaussian tests—reducing to tradi-
tional Gaussian tests under Gaussian densities but remaining valid under non-
Gaussian ones—is proposed. This method provides a solution to several open prob-
lems in classical multivariate analysis. One of them is the test of the homogeneity of
covariance matrices, an assumption that plays a crucial role in multivariate analysis of
variance, under elliptical, and possibly heterokurtic densities with finite fourth-order
moments.
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1. Introduction

1.1. Gaussian and pseudo-Gaussian procedures
Classical statistical inference has been shaped under the influence of explicit

or implicit Gaussian assumptions, and much of everyday practice is still deeply
rooted in that traditional Gaussian vision. Such areas as multivariate analysis,
time series or spatial statistics, where least squares, Gaussian maximum likeli-
hood estimators and Gaussian likelihood ratio tests, periodograms, variograms,
correlograms, or covariance-based methods are present at each step, are partic-
ularly marked. Robust and distribution-free methods have been introduced as a
reaction to the pervasiveness of Gaussian influences but, despite their develop-
ments, and despite a widespread consensus that Gaussian assumptions are hardly
realistic, most practitioners still adhere to traditional Gaussian methods.

This unfailing popularity is not just a symptom of scientific conservatism:
Gaussian methods, with all their drawbacks, also yield quite attractive features
which, to a large extent, account for their maintained success. The main reason
for the success of Gaussian methods in multivariate analysis is probably due to
the strong relation between the geometry of multinormal distributions and classi-
cal Euclidean linear structures, which provide simple and easily understandable
geometric interpretations of orthogonality, linear projections, sums of squares,
and analysis of variance tables. In the time series context, the Hilbert-space-
based Cramér-Wold theory, which yields the simple, complete and fully coherent
theoretical framework of classical forecasting, and constitutes the cornerstone
of everyday time series practice, is also tailor-made for Gaussian processes. A
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more subtle and less visible argument is that, among all “regular” densities, the
Gaussian ones are those for which inference for location is “most difficult”, in the
sense that Fisher information for location or regression, under given scale, reaches
a minimum at the Gaussian—meaning that Gaussian methods may be an opti-
mal choice, in a maximin sense, in the presence of observations with unspecified
densities.

Since everybody nevertheless does agree that Gaussian assumptions are
unrealistic, both arguments very strongly plead in favor of pseudo-Gaussian
methods—namely, methods that remain (asymptotically) valid under a “broad
class” of densities, while being (asymptotically) equivalent, in case the actual
density happens to be Gaussian, to the “standard Gaussian procedure”.

This definition of a pseudo-Gaussian method is rather vague, and provides
little hint on how such methods should be constructed. Sometimes Gaussian
methods themselves ne varietur can be considered as pseudo-Gaussian ones. For
instance (denoting by tn−1;α the (1−α)-quantile of the Student distribution with
(n− 1) degrees of freedom), the classical one-sided Student test for location

ϕ
(n)
Student := I[S

(n)
Student > tn−1;α], with S

(n)
Student :=

√
n− 1(X̄ − µ0)/s(1.1)

where X̄ := n−1
∑n

i=1 Xi and s2 := n−1
∑n

i=1(Xi − X̄)2, remains asymptotically
valid (for H0 : µ := E[X1] = µ0, at asymptotic level α) under any i.i.d. n-tuple
X1, . . . , Xn with finite variance, and is most powerful against H1 : X1, . . . , Xn

i.i.d. normal, with µ > µ0.
It also often happens that turning a Gaussian procedure into a pseudo-

Gaussian only requires a very simple and obvious modification of the test statistic.

For instance, the Gaussian large-sample test ϕ
(n)
scale of H0 : σ2 := Var[X1] = σ2

0

against H1 : σ2 > σ2
0 is based on the asymptotic standard normal distribution,

under H0 and i.i.d. Gaussian observations X1, . . . , Xn, of

S
(n)
scale :=

√
n/2(s2 − σ2

0)/σ
2
0.

This test under non-Gaussian Xi’s is not valid anymore, as the asymptotic vari-
ance of s2 then involves the kurtosis parameter κ := (µ4/3σ

4) − 1 of the Xi’s
which, under Gaussian conditions, is zero. More precisely, under the assumption
that X1, . . . , Xn are i.i.d. with variance σ2 and finite fourth-order moment µ4,√
n(s2 − σ2) is asymptotically normal, with mean zero and variance σ4(3κ + 2).

An obvious pseudo-Gaussian version of ϕ
(n)
scale is then

ϕ
(n)
† := I

[√
n(s2 − σ2

0) > zασ
2
0

√
3κ̂(n) + 2

]
,(1.2)

where zα denotes the (1 − α) standard normal quantile and κ̂(n) is an arbitrary
consistent (under H0) estimator of κ; see Shapiro and Browne (1987) for a much
more general instance of the same phenomenon.

Under our purposely vague definition, pseudo-Gaussian methods for a given
problem cannot be expected to be unique, and several distinct pseudo-Gaussian
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versions of the same Gaussian method may exist, even in the very simple case of

the Student test for location. Denoting by R
(n)
+ (µ0) the rank of |Xi − µ0| among

|X1−µ0|, . . . , |Xn−µ0|, the van der Waerden or normal-score signed rank version

of ϕ
(n)
Student is ϕ

(n)
rank := I[S

(n)
rank > zα], with

S
(n)
rank :=

1√
n

n∑
i=1

sign(Xi − µ0)Φ
−1

(
1

2
+

R
(n)
+ (µ0)

2(n + 1)

)
.(1.3)

This test is valid (for H0 : µ = µ0, at asymptotic level α) under any i.i.d.
n-tuple X1, . . . , Xn with density f such that f(µ − x) = f(µ + x) (note that
µ = E[X1] as soon as f has finite first-order moments); under Gaussian f , it

is asymptotically equivalent to ϕ
(n)
Student, and hence inherits, asymptotically, the

Gaussian optimality properties of the latter. This van der Waerden test ϕ
(n)
rank

thus qualifies, in the sense of our general definition, as a pseudo-Gaussian version

of ϕ
(n)
Student.

A third variant of the same Student test is the permutation t-test

ϕ
(n)
permutation := I[S

(n)
Student > t

(n)
1−α(|X1 − µ0|, . . . , |Xn − µ0|)],(1.4)

(see, e.g., Lehmann and Casella (1998), or Efron (1969)) obtained by comparing

S
(n)
Student with the (1−α)-quantile t

(n)
1−α(|X1−µ0|, . . . , |Xn−µ0|) of its conditional

(on the n-tuple of absolute values |X1−µ0|, . . . , |Xn−µ0|) distribution. This test,

which is valid under the same conditions as the van der Waerden test ϕ
(n)
rank, is also

asymptotically equivalent to ϕ
(n)
Student under Gaussian assumptions—hence also

qualifies, under the above definition, as a pseudo-Gaussian version of the Student
test. More generally, normal-score rank test statistics are obtained (under exact
score form: see Hájek et al. (1999)) by conditioning a Gaussian test statistic on
some appropriate maximal invariant (residual ranks or signed ranks, or some
adequate generalization thereof), while Gaussian permutation tests consist in
comparing the original Gaussian test statistic with its (1−α)-quantile conditional
on some H0-sufficient and -complete statistic (provided, of course, that such a
statistic exists).

Similar definitions also apply to point estimation. Validity then is to be
understood as root-n consistency; the analogues of normal-score rank tests are
R-estimators based on normal-score objective functions, those of the Gaussian
permutation tests are the U-statistics resulting from the Rao-Blackwellisation,
based on the same sufficient and complete statistic as the corresponding permu-
tation test, of standard Gaussian estimates.

In the sequel, we exclusively focus on testing, and concentrate on pseudo-
Gaussian tests of type (1.1) or (1.2) that directly result from the “validity-
robustification” of some original Gaussian test statistic.

1.2. Pseudo-Gaussian tests
Transforming a Gaussian test into a pseudo-Gaussian one is not always as

easy and straightforward as it is for examples (1.1) or (1.2). First of all, such a
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transformation is not always possible, as it requires a form of adaptivity of the
underlying model. Indeed, the fact that the same (asymptotic) performance can
be attained, under Gaussian densities, whether Gaussianity is assumed or not,
is an indication that the Gaussian semiparametric efficiency bounds (obtained
in the semiparametric model where densities remain unspecified within some
“broad class” F of densities) are the same as the parametric ones (obtained in
the parametric model where densities are assumed to be Gaussian): call this
F-adaptivity at the Gaussian. Even in such favorable cases, the construction of
pseudo-Gaussian tests may be all but obvious. In a classical reference, Muirhead
and Waternaux (1980) provide an insightful study of the problem of turning
standard Gaussian tests of hypotheses involving covariance matrices into pseudo-
Gaussian ones remaining valid under elliptical densities with finite fourth-order
moments. They clearly distinguish some “easy” problems—tests of sphericity,
tests of the equality of a subset of the characteristic roots of the covariance
matrix (i.e., subspace sphericity), tests of block-diagonality—and some “harder”
ones, among which the (apparently simpler) one-sample test of the hypothesis
that the covariance matrix Σ takes some given value Σ0, the two-sample test of
equality of covariance matrices, and the corresponding m-sample test of covari-
ance homogeneity. Another “hard” case is the test of the hypothesis of common
principal components treated in Hallin et al. (2007). For those “hard” problems,
Muirhead and Waternaux (1980) conclude that “it is not possible in the more
general elliptical case to adjust the (Gaussian likelihood ratio) test so that its
limiting distribution agrees with that obtained under the normality assumption”;
see also Section 3 of Tyler (1983) and Shapiro and Browne (1987).

The objective of this paper is to show how the Le Cam approach, which
is now quite standard in the modern treatment of asymptotic inference (see
Le Cam and Yang (2000), or Taniguchi and Kakizawa (2000) in the time series
context), provides a general method for transforming a Gaussian test (typically,
of the likelihood ratio or Lagrange multiplier type) into a pseudo-Gaussian one.
This method, which considerably extends the Shapiro and Browne (1987) one,
can handle—without any tangent space computation—most of Muirhead and
Waternaux’s “hard cases”.

The problem of covariance homogeneity is treated as an illustration.

2. A general method

2.1. Assumptions
Throughout, we are considering sequences of statistical models or experi-

ments, that is, sequences of triples of the form (X (n),A(n),P(n)
g ), n ∈ N, where

P(n)
g := {P(n)

ϑϑϑ;g | ϑ ∈ Θ} denotes a family of probability measures over (X (n),

A(n)), indexed by a parameter ϑ ∈ Θ ⊆ R
p and characterized (typically, in

m-sample problems) by some m-tuple g := (g1, . . . , gm), m ∈ N, of standard-
ized probability densities gi defined over (R�,B�), � ∈ N. Standardization here
can be based on any choice of location and scale parameters—which in turn can

be included in ϑ. The (X (n),A(n))-measurable observation described by P
(n)
ϑϑϑ;g is
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denoted by X (n).

Let Λ
(n)
ϑϑϑ+ννν(n)τττ/ϑϑϑ;g := log(dP

(n)
ϑϑϑ+ννν(n)τττ ;g/dP

(n)
ϑϑϑ;g (X (n))), where ν(n) is a sequence

of full-rank matrices such that limn→∞ ν(n) = 0; in the traditional case of root-
n contiguity, ν(n) takes the simple form ν(n) = n−1/2Ip, where Ip denotes the

p-dimensional identity matrix. We say that the family P(n)
g is ULAN, with con-

tiguity rate ν(n), central sequence ∆
(n)
ϑϑϑ;g , and positive definite information matrix

Γϑϑϑ;g if, for any bounded sequence τ (n) and any ϑ(n) such that ν−1(n)(ϑ(n) −ϑ)

is O(1) for some ϑ ∈ Θ, we have, under P
(n)

ϑϑϑ(n);g
, as n → ∞,

(i) Λ
(n)

ϑϑϑ(n)+ννν(n)τττ (n)/ϑϑϑ(n);g
= τ (n)′∆(n)

ϑϑϑ(n);g
− 1

2τ
(n)′Γϑϑϑ;gτ

(n) + oP(1), and

(ii) ∆
(n)

ϑϑϑ(n);g
is asymptotically N (0,Γϑϑϑ;g ).

In our definition of ULAN, we moreover include the following convenient conti-
nuity requirement:
(iii) ϑ �→ Γϑϑϑ;g is continuous.

Focusing on the Gaussian case, denote by P(n)
φφφ = {P(n)

ϑϑϑ;φφφ | ϑ ∈ Θ} the fam-
ily associated with the m-tuple g = φ := (φ, . . . , φ) of standardized Gaussian
densities (where standardization does not necessarily imply zero mean and unit
variance). We assume the following.

Assumption (A1). The Gaussian family P(n)
φφφ is ULAN, with contiguity

rate ν(n), central sequence ∆
(n)
ϑϑϑ;φφφ, and information matrix Γϑϑϑ;φφφ.

Consider the problem of testing the null hypothesis H0 under which

ϑ ∈ ϑ0 + M(Υ) := {ϑ0 + Υ� | � ∈ R
q},

where Υ is a p × q matrix of full rank 0 ≤ q < p, and ϑ0 ∈ Θ (for q = 0, put
M(Υ) := {0}; H0 then reduces to ϑ = ϑ0). The null hypothesis H0 thus places
(p − q) independent linear constraints on ϑ − ϑ0 (for the sake of simplicity, we
avoid writing H0 : ϑ ∈ (ϑ0 +M(Υ))

⋂
Θ, as we should). Denote by F† the class

of all m-tuples g such that, for any ϑ ∈ ϑ0 + M(Υ),

(i) for some positive definite Γg
ϑϑϑ;φφφ, ∆

(n)
ϑϑϑ;φφφ is asymptotically N (0,Γg

ϑϑϑ;φφφ) under

P
(n)
ϑϑϑ;g as n → ∞;

(ii) ∆
(n)
ϑϑϑ;φφφ is asymptotically linear under P

(n)
ϑϑϑ;g , that is, there exist p× p matrices

Γg
ϑϑϑ;φφφ,g such that

∆
(n)

ϑϑϑ(n);φφφ
− ∆

(n)
ϑϑϑ;φφφ = −Γg

ϑϑϑ;φφφ,gν
−1(n)(ϑ(n) − ϑ) + oP(1),(2.1)

under P
(n)
ϑϑϑ;g , for any sequence ϑ(n) such that ν−1(n)(ϑ(n) − ϑ) = O(1);

(iii) the mappings ϑ �→ Γg
ϑϑϑ;φφφ and ϑ �→ Γg

ϑϑϑ;φφφ,g are continuous.

Note that, in case the family P(n)
g itself is ULAN, with central sequence ∆

(n)
ϑϑϑ;g ,

Le Cam’s third Lemma implies that Γg
ϑϑϑ;φφφ,g is the asymptotic covariance, un-

der P
(n)
ϑϑϑ;g , of ∆

(n)
ϑϑϑ;φφφ and ∆

(n)
ϑϑϑ;g . The Gaussian m-tuple φ under Assumption (A1)
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automatically belongs to F†. Indeed, under g = φ, conditions (i) and (iii) re-
spectively coincide with parts (ii) and (iii) of the definition of ULAN, of which

condition (ii) is a direct consequence (with Γφφφ
ϑϑϑ;φφφ = Γφφφ

ϑϑϑ;φφφ,φφφ = Γϑϑϑ;φφφ). As we shall

see, the sequence of semiparametric experiments (X (n),A(n),
⋃

g∈F†
P(n)

g ) is F†-

adaptive at g = φ, in the sense defined in Subsection 1.2—provided of course
that the following assumption is satisfied.

Assumption (A2). The class F† does not reduce to {φ}.

2.2. The proposed pseudo-Gaussian test
Recall that the matrix of the projection (in R

p) onto M(A), where A is
p× q, with rank 0 < q ≤ p, is proj(A) := A(A′A)−1A′; this definition naturally
extends to q = 0 by putting proj(A) := 0 for A with rank q = 0. An opti-
mal (namely, locally and asymptotically most stringent if q > 0, and locally and
asymptotically maximin if q = 0: see Section 11.9 of Le Cam (1986)) Gaussian

test for H0 is based on the asymptotically (under P
(n)
ϑϑϑ;φφφ, with ϑ ∈ ϑ0 + M(Υ))

chi-squared (with p−q degrees of freedom) null distribution of Q
(n)
φφφ (ϑ̂

(n)
), where

Q
(n)
φφφ (ϑ) := ‖[I − proj(Γ

1/2
ϑϑϑ;φφφν

−1(n)Υ)]Γ
−1/2
ϑϑϑ;φφφ ∆

(n)
ϑϑϑ;φφφ‖

2,(2.2)

and ϑ̂
(n)

is a sequence of estimators satisfying the following assumption.

Assumption (B1). For all ϑ ∈ ϑ0 + M(Υ),

(i) ϑ̂
(n) ∈ ϑ0 + M(Υ) with P

(n)
ϑϑϑ;φφφ-probability one for all n;

(ii) ‖ν−1(n)(ϑ̂
(n) −ϑ)‖ is OP(1) as n → ∞ under P

(n)
ϑϑϑ;φφφ for all ϑ ∈ ϑ0 +M(Υ);

(iii) the number of distinct values of ϑ̂
(n)

in balls of the form {t ∈ R
p |

‖ν−1(n)(t − ϑ)‖ ≤ C}, C ∈ R
+ fixed, is bounded as n → ∞.

In the sequel, we often simply write ϑ̂ for ϑ̂
(n)

. Part (iii) of Assumption (B1)

is easily met by discretizing each component of any estimator ϑ̃
(n)

satisfying
parts (i) and (ii), that is, by letting

ϑ̂
(n)

:= c−1
0 ν(n)(sign((ν−1(n)ϑ̃

(n)
)1)�c0|(ν−1(n)ϑ̃

(n)
)1|�, . . . ,

. . . , c−1
0 ν(n)(sign((ν−1(n)ϑ̃

(n)
)p)�c0|(ν−1(n)ϑ̃

(n)
)p|�),

where c0 is an arbitrary positive constant. Such discretized estimators indeed
trivially satisfy part (iii) of Assumption (B1). Discretization is standard in the
context (see page 125 of Le Cam and Yang (2000)), and allows for replacing
in (2.1) the deterministic quantity ϑ(n) with the estimator ϑ̂ (see, e.g., Lemma 4.4
in Kreiss (1987)). In practice (where n = n0 is fixed), however, the importance of
discretization should not be overemphasized: indeed, c0 can be chosen arbitrarily
large, and one always can pretend to start discretizing from n = n0 + 1 on.
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Moreover, in view of the strong regularity features of Gaussian estimators, one
often can dispense with part (iii) of Assumption (B1) (see Hallin and Paindaveine
(2007)).

The matrix in brackets in (2.2) is the matrix of the projection onto the linear

space M⊥
(Γ

1/2
ϑϑϑ;φφφν

−1(n)Υ) orthogonal to M(Γ
1/2
ϑϑϑ;φφφ(ϑ)ν−1(n)Υ). In view of (2.1),

the continuity of ϑ �→ Γϑϑϑ;φφφ, and Assumption (B1), this projection, under P
(n)
ϑϑϑ;φφφ

with ϑ ∈ ϑ0 +M(Υ), maps Γ
−1/2

ϑ̂ϑϑ;φφφ
(∆

(n)

ϑ̂ϑϑ;φφφ
−∆

(n)
ϑϑϑ;φφφ) to a oP(1) quantity. As a conse-

quence, the effect (still under P
(n)
ϑϑϑ;φφφ, ϑ ∈ ϑ0 +M(Υ)) of substituting an estimator

ϑ̂ satisfying (B1) (such as the discretized null Gaussian MLE) for ϑ in Q
(n)
φφφ (ϑ)

is asymptotically nil (in probability). In practice, Q
(n)
φφφ (ϑ̂

(n)
) corresponds, up to

oP’s, to the likelihood ratio, Wald, or Lagrange Multipliers test statistics.

If such tests are to remain (asymptotically) valid under P
(n)
ϑϑϑ;g with g �= φ,

(i) the matrix of the quadratic form should remain a projection matrix “neu-

tralizing” (asymptotically, under P
(n)
ϑϑϑ;g , with ϑ ∈ ϑ0 +M(Υ)) the substitu-

tion of ϑ̂ for ϑ, and
(ii) the argument of the quadratic form should remain asymptotically standard

multinormal.
This latter argument thus should be of the form (Γg

ϑϑϑ;φφφ)
−1/2∆

(n)
ϑϑϑ;φφφ rather than

Γ
−1/2
ϑϑϑ;φφφ ∆

(n)
ϑϑϑ;φφφ. Now, under P

(n)
ϑϑϑ;g , ϑ ∈ ϑ0 + M(Υ), (Γg

ϑ̂ϑϑ;φφφ
)−1/2(∆

(n)

ϑ̂ϑϑ;φφφ
− ∆

(n)
ϑϑϑ;φφφ), still

in view of the asymptotic linearity property holding for g ∈ F†, belongs (up
to oP’s) to M((Γg

ϑϑϑ;φφφ)
−1/2Γg

ϑϑϑ;φφφ,gν
−1(n)Υ). Hence, the projection should be onto

M⊥
((Γg

ϑϑϑ;φφφ)
−1/2Γg

ϑϑϑ;φφφ,gν
−1(n)Υ) rather than M⊥

(Γ
1/2
ϑϑϑ;φφφν

−1(n)Υ), which leads to

Q
(n)
† (ϑ) := ‖[I − proj((Γg

ϑϑϑ;φφφ)
−1/2Γg

ϑϑϑ;φφφ,gν
−1(n)Υ)](Γg

ϑϑϑ;φφφ)
−1/2∆

(n)
ϑϑϑ;φφφ‖

2,

still to be computed at some ϑ̂. This estimator ϑ̂ however is to satisfy Assump-
tion (B1) under any g ∈ F†: denote by (B1†) this reinforcement of (B1).

Note that for g = φ, we retrieve the Gaussian statistic: Q
(n)
† (ϑ̂) = Q

(n)
φφφ (ϑ̂).

Contrary to Q
(n)
φφφ (ϑ̂), however, Q

(n)
† (ϑ̂) is asymptotically chi-square under P

(n)
ϑϑϑ;g ,

ϑ ∈ ϑ0 +M(Υ), for any g ∈ F†. Finally, let us assume that Γg
ϑϑϑ;φφφ and Γg

ϑϑϑ;φφφ,g can
be consistently estimated (under the null):

Assumption (B2). There exists a couple of estimators Γ̂Var and Γ̂Cov that,

for any ϑ ∈ ϑ0 +M(Υ) and any g ∈ F†, converge in P
(n)
ϑϑϑ;g -probability, as n → ∞,

to Γg
ϑϑϑ;φφφ and Γg

ϑϑϑ;φφφ,g , respectively.

One would expect Γg
ϑϑϑ;φφφ,g to involve “functional covariance coefficients”, that

would typically be difficult to estimate. Actually, in most cases (as in the
application in Section 3 below), Γg

ϑϑϑ;φφφ,g does not depend on g at all, so that

Γg
ϑϑϑ;φφφ,g = Γφφφ

ϑϑϑ;φφφ,φφφ = Γϑϑϑ;φφφ. The continuity of the mapping ϑ �→ Γϑϑϑ;φφφ then implies

that Γ
ϑ̂ϑϑ;φφφ

is an admissible choice for Γ̂Cov. As for Γg
ϑϑϑ;φφφ, it does in general depend
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on g , but in a way that makes consistent estimation (relying on a law of large
numbers argument) quite straightforward.

Summing this up, we can state the following result.

Theorem. Let Assumptions (A1), (A2), (B1†), and (B2) hold , and denote
by χ2

p−q;1−α the (1−α)-quantile of the chi-square distribution with (p−q) degrees

of freedom. Then, the test ϕ
(n)
† := I[Q

(n)
† (ϑ̂) > χ2

p−q;1−α], with

Q
(n)
† (ϑ̂) := ‖[I − proj(Γ̂

−1/2
Var Γ̂Covν

−1(n)Υ)]Γ̂
−1/2
Var ∆

(n)

ϑ̂ϑϑ;φφφ
‖2,

is a pseudo-Gaussian version, valid under any g ∈ F†, of the locally and asymp-

totically optimal Gaussian test ϕ
(n)
φφφ := I[Q

(n)
φφφ (ϑ̂) > χ2

p−q;1−α].

Proof. Throughout this proof, statements are made under P
(n)
ϑϑϑ;g , for arbi-

trary ϑ ∈ ϑ0 + M(Υ) and g ∈ F†. Assumption (B2) implies that

[I − proj(Γ̂
−1/2
Var Γ̂Covν

−1(n)Υ)]Γ̂
−1/2
Var ∆

(n)

ϑ̂ϑϑ;φφφ

= [I − proj((Γg
ϑϑϑ;φφφ)

−1/2Γg
ϑϑϑ;φφφ,gν

−1(n)Υ)](Γg
ϑϑϑ;φφφ)

−1/2∆
(n)

ϑ̂ϑϑ;φφφ
+ oP(1).(2.3)

It further follows from Assumption (B1†) that the effect of substituting ∆
(n)
ϑϑϑ;φφφ

for ∆
(n)

ϑ̂ϑϑ;φφφ
in (2.3) also is oP(1). The asymptotically chi-square distribution,

with p − q degrees of freedom, of Q
(n)
† then readily follows from the asymp-

totically standard multinormal distribution of (Γg
ϑϑϑ;φφφ)

−1/2∆
(n)
ϑϑϑ;φφφ and the fact that

[I−proj((Γg
ϑϑϑ;φφφ)

−1/2Γg
ϑϑϑ;φφφ,gν

−1(n)Υ)] is symmetric and idempotent with rank p−q.

Validity of ϕ
(n)
† under any g ∈ F† follows. Its asymptotic equivalence, under P

(n)
ϑϑϑ;φφφ,

with ϕ
(n)
φφφ is a direct consequence of the fact that Γ̂Var and Γ̂Cov both converge to

Γϑϑϑ;φφφ, yielding [I − proj(Γ
1/2
ϑϑϑ;φφφν

−1(n)Υ)]Γ
−1/2
ϑϑϑ;φφφ ∆

(n)
ϑϑϑ;φφφ in (2.3) and the Gaussian test

statistic (2.2). The test ϕ
(n)
† is thus the pseudo-Gaussian test we are looking for.

Noncentrality parameters under local alternatives are easily derived via

Le Cam’s third Lemma: under P
(n)
ϑϑϑ+ννν(n)τττ ;g , where ν(n)τ /∈ M(Υ) and g ∈ F†

is such that the family P(n)
g is ULAN, the pseudo-Gaussian test statistic Q

(n)
† is

asymptotically noncentral chi-square, with (p − q) degrees of freedom and non-
centrality parameter

‖[I − proj((Γg
ϑϑϑ;φφφ)

−1/2Γg
ϑϑϑ;φφφ,gν

−1(n)Υ)](Γg
ϑϑϑ;φφφ)

−1/2Γg
ϑϑϑ;φφφ,gτ‖

2.

3. An application: Testing for covariance homogeneity

As an illustration, let us consider the problem of testing for covariance ho-
mogeneity in a k-dimensional m-sample location-scale and possibly heterokurtic
model. This problem, which belongs to Muirhead and Waternaux (1980)’s list of
“hard problems”, has remained unsolved for about half a century. The classical
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Gaussian solution is Bartlett’s modified likelihood ratio test, and is notoriously
sensitive to violations of the Gaussian assumptions. We refer to Hallin and
Paindaveine (2007) for a complete pseudo-Gaussian solution and a bibliography
of the subject.

The observation in that problem consists of an m-tuple of mutually indepen-
dent samples (Xi1, . . . ,Xini), i = 1, . . . ,m, of i.i.d. k-dimensional observations.
Instead of the classical assumption of multinormality, we assume that these ob-
servations are elliptical with finite fourth-order moments. More precisely, con-
sidering the class F0 of all functions h : R

+
0 → R

+ such that
(i) µk+3;h < ∞ and µk+1;h/µk−1;h = k, where µ�;h :=

∫∞
0 r�h(r)dr,

(ii) h is absolutely continuous, with a.e. derivative ḣ, and
(iii) the integrals Ik(h) :=

∫∞
0 ϕ2

h(r)r
k−1h(r)dr and Jk(h) :=

∫∞
0 ϕ2

h(r)r
k+1

h(r)dz, where ϕh := −ḣ/h, are finite,
we assume that Xij , j = 1, . . . , ni are mutually independent, with probability
density function of the form

x �→ ck,gi |Σi|−1/2gi(((x − θi)
′Σ−1

i (x − θi))
1/2), i = 1, . . . ,m,(3.1)

for some k-dimensional location vector θi, some positive definite (k×k) covariance
matrix Σi, and some gi ∈ F0 (ck,gi is a norming constant).

The functions gi are not, stricto sensu, probability density functions. How-
ever, defining (throughout, Σ1/2 stands for the symmetric root of Σ) the elliptical
coordinates

Uij(θi,Σi) :=
Σ

−1/2
i (Xij − θi)

‖Σ−1/2
i (Xij − θi)‖

and

dij(θi,Σi) := ‖Σ−1/2
i (Xij − θi)‖,

(3.2)

the radial distances dij have density g̃i(r) := (µk−1;gi)
−1rk−1gi(r). Condition (i)

therefore implies that dij has finite fourth-order moments, and is standardized in
such a way that E[d2

ij(θi,Σi)] = k—so that Σi indeed is the covariance matrix
Var(Xij) in population i.

Write diag(B1,B2, . . . ,Bm) for the block-diagonal matrix with diagonal
blocks B1,B2, . . . ,Bm. Conditions (ii) and (iii), along with the additional as-

sumption that λ
(n)
i := n

(n)
i /n → λi ∈ (0, 1), as n → ∞, for all i = 1, . . . ,m,

entail (see Proposition 4.1 of Hallin and Paindaveine (2007)) ULAN under any
m-tuple g := (g1, . . . , gm) ∈ Fm

0 (:= F0 ×· · ·×F0, m times), with contiguity rate

ν(n) := diag(νI(n),νII(n),νIII(n))(3.3)

:= n−1/2 diag(Λ(n) ⊗ Ik,Λ
(n),Λ(n) ⊗ Ik0),

where k0 := k(k+1)/2−1 and Λ(n) := diag((λ
(n)
1 )−1/2, . . . , (λ

(n)
m )−1/2) (⊗ stands

for the Kronecker product).
Before proceeding further, some clarification about the parametrization is

necessary (which, in particular, will make the partitioned contiguity rate in (3.3)
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less mysterious), and some additional notation is needed. For given radial densi-
ties g ∈ Fm

0 , the parameters of the model are the m location vectors θi and the
m covariance matrices Σi, i = 1, . . . ,m. Decomposing the latter into Σi = σ2

i Vi,
where σi := |Σi|1/2k is a scale and Vi a shape matrix (that is, a k× k symmetric
positive definite matrix such that |Vi| = 1), this parameter takes the form of a
L-dimensional vector

ϑ := (ϑ′
I ,ϑ

′
II ,ϑ

′
III)

′ := (θ′
1, . . . ,θ

′
m, σ2

1, . . . , σ
2
m, (

◦
vechV1)

′, . . . , (
◦

vechVm)′)′,

where L = mk(k + 3)/2 and
◦

vech(V ) is defined by vech(V ) =: ((V )11,

(
◦

vechV )′)′: Σi indeed is entirely determined by σ2
i and

◦
vech(Vi) (see Hallin and

Paindaveine (2007)). Write Θ for the set of admissible ϑ values, and P
(n)
ϑϑϑ;g (instead

of P
(n)
ϑϑϑ;g̃ with g̃ := (g̃1, . . . , g̃m)) for the joint distribution of the n :=

∑m
i=1 ni ob-

servations under parameter value ϑ and the m-tuple of radial densities g ∈ Fm
0 ;

the notation P
(n)
ϑϑϑ;φφφ however will be maintained in the Gaussian case.

The null hypothesis H0 : σ2
1V1 = · · · = σ2

mVm of covariance homogeneity
then can be written as H0 : ϑ ∈ M(Υ), with

Υ := diag(ΥI ,ΥII ,ΥIII) := diag(Imk,1m,1m ⊗ Ik0),(3.4)

where 1m := (1, . . . , 1)′ ∈ R
m.

The following notation will be used in the sequel. Denoting by e� the �-
th vector of the canonical basis of R

k, let Kk :=
∑k

i,j=1(eie
′
j) ⊗ (eje

′
i) be

the k2 × k2 commutation matrix . Define Mk(V ) as the (k0 × k2) matrix such

that (Mk(V ))′(
◦

vech v) = (vec v) for any symmetric k × k matrix v such that
tr(V −1v) = 0. Let further V ⊗2 := V ⊗V , Ek(g) := diag(Ek(g1), . . . , Ek(gm)),
with Ek(gi) :=

∫∞
0 r4g̃i(r)dr, Ck(g) := diag(Ek(g1) − k2, . . . , Ek(gm) − k2),

V := diag(V1, . . . ,Vm), σ := diag(σ1, . . . , σm), and

Hk(V ) :=
1

4k(k + 2)
Mk(V )[Ik2 + Kk](V

⊗2)−1(Mk(V ))′.

It then follows from Proposition 4.1 of Hallin and Paindaveine (2007) that

Assumption (A1) is satisfied: the Gaussian family P(n)
φφφ := {P(n)

ϑϑϑ;φφφ | ϑ ∈ Θ} is
ULAN, with contiguity rate ν(n), central sequence

∆ϑϑϑ;φφφ = ∆
(n)
ϑϑϑ;φφφ :=




∆I
ϑϑϑ;φφφ

∆II
ϑϑϑ;φφφ

∆III
ϑϑϑ;φφφ


 , ∆I

ϑϑϑ;φφφ =




∆I,1
ϑϑϑ;φφφ
...

∆I,m
ϑϑϑ;φφφ


 ,

∆II
ϑϑϑ;φφφ =




∆II,1
ϑϑϑ;φφφ
...

∆II,m
ϑϑϑ;φφφ


 , ∆III

ϑϑϑ;φφφ =




∆III,1
ϑϑϑ;φφφ
...

∆III,m
ϑϑϑ;φφφ


 ,
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where (letting dij := dij(θi,Σi) and Uij := Uij(θi,Σi))

∆I,i
ϑϑϑ;φφφ :=

n
−1/2
i

σi

ni∑
j=1

dijV
−1/2
i Uij , ∆II,i

ϑϑϑ;φφφ :=
n
−1/2
i

2σ2
i

ni∑
j=1

(d2
ij − k),

∆III,i
ϑϑϑ;φφφ :=

n
−1/2
i

2
Mk(Vi)(V

⊗2
i )−1/2

ni∑
j=1

d2
ij vec(UijU

′
ij) i = 1, . . . ,m,

and full-rank block-diagonal information matrix Γϑϑϑ;φφφ := diag(ΓI
ϑϑϑ;φφφ,Γ

II
ϑϑϑ;φφφ,Γ

III
ϑϑϑ;φφφ),

where ΓI
ϑϑϑ;φφφ := (σ−2 ⊗ Ik)V

−1, ΓII
ϑϑϑ;φφφ := (k/2)σ−4, and

ΓIII
ϑϑϑ;φφφ := k(k + 2)diag(Hk(V1), . . . ,Hk(Vm))

(see Proposition 4.1 of Hallin and Paindaveine (2007), with Ik(φ) = k, Jk(φ) =
k(k + 2), and Lk(φ) := Jk(φ) − k2 = 2k), reducing, for σ1 = · · · = σm = σ and
V1 = · · · = Vm = V , to

ΓI
ϑϑϑ;φφφ := σ−2(Im ⊗V −1), ΓII

ϑϑϑ;φφφ :=
k

2σ4
Im, and

ΓIII
ϑϑϑ;φφφ := k(k + 2)(Im ⊗Hk(V )).

(3.5)

Assumption (A1) thus is satisfied. Turning to Assumption (A2), Lemmas 5.1

and 5.2 of Hallin and Paindaveine (2007) imply that, for any g ∈ Fm
0 , under P

(n)
ϑϑϑ;g ,

(i) ∆
(n)
ϑϑϑ;φφφ is asymptotically normal with mean 0 and covariance matrix Γg

ϑϑϑ;φφφ =

diag(Γg ,I
ϑϑϑ;φφφ,Γ

g ,II
ϑϑϑ;φφφ ,Γg ,III

ϑϑϑ;φφφ ), where

Γg ,I
ϑϑϑ;φφφ = (σ−2 ⊗ Ik)V

−1, Γg ,II
ϑϑϑ;φφφ =

1

4
Ck(g)σ−4,

and
Γg ,III
ϑϑϑ;φφφ = (Ek(g) ⊗ Ik0)diag(Hk(V1), . . . ,Hk(Vm)),

reducing, for σ1 = · · · = σm = σ and V1 = · · · = Vm = V , to

Γg ,I
ϑϑϑ;φφφ = σ−2(Im ⊗V −1), Γg ,II

ϑϑϑ;φφφ =
1

4σ4
Ck(g), and

Γg ,III
ϑϑϑ;φφφ = Ek(g) ⊗Hk(V );

(3.6)

(ii) ∆
(n)
ϑϑϑ;φφφ is asymptotically linear (see (2.1)), with Γg

ϑϑϑ;φφφ,g = Γϑϑϑ;φφφ given in (3.5).
Assumption (A2) thus is also satisfied, with F† = Fm

0 , and the main result
of Section 2 applies, provided that estimators satisfying Assumption (B2) are
available. Clearly, Γ̂Cov := Γ

ϑ̂ϑϑ;φφφ
is such an estimator for Γg

ϑϑϑ;φφφ,g = Γϑϑϑ;φφφ, while the

matrix Γ̂Var =: Γ̂ obtained by replacing, in Γg

ϑ̂ϑϑ;φφφ
, with Γg

ϑϑϑ;φφφ given in (3.6), the

Ek(gi)’s with their empirical counterparts, is another one for Γg
ϑϑϑ,φφφ.

The pseudo-Gaussian test ϕ
(n)
HP;† proposed in Section 5.2 of Hallin and

Paindaveine (2007) is based on the asymptotically chi-squared distribution of

Q
(n)
HP;† := ‖[I − proj(Γ̂−1/2ν−1(n)Υ)]Γ̂−1/2∆

(n)

ϑ̂ϑϑ;φφφ
‖2.
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Clearly, under P
(n)
ϑϑϑ;g , with ϑ ∈ M(Υ), g ∈ Fm

0 , the projection in this quadratic

form, up to a oP(1) quantity, is onto M((Γg
ϑϑϑ;φφφ)

−1/2ν−1(n)Υ). Now, a robustifi-
cation of the Gaussian quadratic form (2.2) would rather have been expected to
be based on

‖[I − proj(Γ̂1/2ν−1(n)Υ)]Γ̂−1/2∆
(n)

ϑ̂ϑϑ;φφφ
‖2,

in which the projection—still up to oP(1) quantities, under P
(n)
ϑϑϑ;g , with ϑ ∈ M(Υ),

g ∈ Fm
0 —is onto M((Γg

ϑϑϑ;φφφ)
1/2ν−1(n)Υ), hence not onto M((Γg

ϑϑϑ;φφφ)
−1/2ν−1(n)Υ)

as in Q
(n)
HP;†. This structural difference between these two projections is all but

intuitive, and even somewhat puzzling. A technical proof that ϕ
(n)
HP;† indeed

produces a valid pseudo-Gaussian test is given in Hallin and Paindaveine (2007),
but no intuitive justification is provided.

The results of Section 2 allow for solving that puzzle, by showing that ϕ
(n)
HP;†

actually coincides with the test ϕ
(n)
† resulting from applying the theorem of Sec-

tion 2. All the matrices involved being block-diagonal, the quadratic forms con-
sidered decompose into a sum of three separate ones, in ∆I

ϑϑϑ;φφφ, ∆II
ϑϑϑ;φφφ, and ∆III

ϑϑϑ;φφφ,
respectively. Each of those three quadratic forms involves a matrix of the form

[I − proj(. . .)]: [I − projIHP;†], [I − projIIHP;†], and [I − projIIIHP;†] for Q
(n)
HP;† and

[I − projI† ], [I − projII† ], and [I − projIII† ] for Q
(n)
† , say.

Clearly, projI† = Imk = projIHP;†. Since ΓII
ϑϑϑ;φφφ is proportional to the identity

matrix,

projII† = proj((Γg ,II
ϑϑϑ;φφφ )−1/2ΓII

ϑϑϑ;φφφν
−1
II (n)ΥII)

= proj((Γg ,II
ϑϑϑ;φφφ )−1/2ν−1

II (n)ΥII) = projIIHP;†.

Finally,

projIII† = proj((Γg ,III
ϑϑϑ;φφφ )−1/2ΓIII

ϑϑϑ;φφφν
−1
III (n)ΥIII)

= proj((Ek(g) ⊗Hk(V ))−1/2(Im ⊗Hk(V ))ν−1
III (n)ΥIII)

= proj((Ek(g) ⊗Hk(V ))−1/2(Im ⊗Hk(V ))(Λ(n) ⊗ Ik0)
−1(1m ⊗ Ik0))

= proj([(Ek(g))−1/2(Λ(n))−11m] ⊗ (Hk(V ))1/2),

which, since proj(A) = A(A′A)−1A′, and since Hk(V ) has full rank, yields

projIII† = proj([(Ek(g))−1/2(Λ(n))−11m] ⊗ (Hk(V ))−1/2)

= proj((Ek(g) ⊗Hk(V ))−1/2(Λ(n) ⊗ Ik0)
−1(1m ⊗ Ik0))

= proj((Γg ,III
ϑϑϑ;φφφ )−1/2ν−1

III (n)ΥIII) = projIIIHP;†,

which establishes the desired result.
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