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Abstract Among the processing conditions of injection molding, temperature of the melt entering the mold plays
a significant role in determining the quality of molded parts. In our previous research, a neural network was
developed to predict the melt temperature in the barrel during the plastication phase. In this paper, a neural
network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two-
layer neural network with back propagation learning rules is used to model the relationship between input and
output in the injection phase. The preliminary results show that the network works well and may be used for
on-line optimization and control of injection molding processes.
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1 INTRODUCTION

Injection molding is a widely used plastics processing
method, and plays an important role in the plastics
industry due to its high production rates, cost effec-
tiveness and ability to produce complex articles with
high precision. It is estimated that approximately
32% by weight of all plastic materials are processed
with injection molding machines(*'2. A typical mod-
ern reciprocating screw injection molding machine is
schematically shown in Fig. 1(1:3], It consists of three
main units: an injection unit, a clamping unit and a
hydraulic unit. The injection unit combines plastica-
tion and injection into a single unit (barrel) in which a
reciprocating screw is used to plasticize the material
and then inject the melt into the mold. The func-
tion of the clamping unit is to close, hold and open
the mold, and the function of the hydraulic unit is to
supply the high pressure during operation. The ap-
plication of computer in injection molding is mainly
focused on mold design and simulation of the melt flow
in the mold cavity, while our research interests are in
the injection unit.

In a reciprocating screw injection unit as shown
in Fig.1, the plastic is fed to the hopper and then
melted in the barrel of the injection molding machine.
The melt is transferred to the nozzle of the machine
by a rotating screw. The accumulation of the melt
at the screw tip forces the screw to retract until a
given amount of melt is collected for a shot. The
screw is then driven forward to inject the melt into the
mold. The melt temperature, to a degree, determines
whether a qualified molded part can be produced. The
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temperature is influenced by the processing conditions
such as screw rotation speed, back pressure, and ex-
ternally applied heat (from barrel heaters). In the
plastics industry, the control of melt temperature is
indirectly achieved via setting of these operating con-
ditions.
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Figure 1 A simplified schematic of a modern
reciprocating screw injection molding machine

Melt temperature measured at the cavity gate, as
shown in Fig. 1, is an ideal representation of the melt
temperature entering the mold cavity. In practice, it
is difficult and, in some cases even undesirable, to in-
stall a temperature transducer at the cavity gate for
each mold. A temperature transducer installed at the
nozzle exit can approximately represent the melt tem-
perature into the mold cavity, as there is only a short
distance between the nozzle exit and the cavity gate.
In this research, the melt temperature measured at
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the nozzle exit is used to represent the desired melt
temperature, which in turn determines the melt vis-
cosity and quality of the molded parts. The exact ef-
fect of this temperature is dependent on three factors:
(1) the melt temperature distribution in the barrel
of the injection molding machine at the plastication
phase; (2) the heat conduction between the melt in
the barrel and the surrounding at the dwell phase, and
(3) the shear heating effect at the injection phasel4].
These three factors are related to the three consecutive
phases of the injection molding process: plastication,
dwell and injection. The effect of the first two fac-
tors (plastication and dwell) on melt temperature was
investigated in the previous research using artificial
neural networks/4®). In the current research, the effect
of the injection phase on melt temperature is investi-
gated and some results are presented in this paper.
The effect of injection phase on melt temperature is
carried out using a commercial software, FIDAP, and
the neural network for the on-line prediction of melt
temperature is developed on the basis of simulation
results.

2 EXPERIMENTAL FACILITY AND PRE-
VIOUS WORK
A ChenHsong JMS8SMKII (88 ton) reciprocating
screw injection molding machine was used in this
project with an infra-red melt temperature transducer
(Dynisco MTX 935) installed at the nozzle exit. The
injection barrel has six barrel heaters (H1 to H6) and
one nozzle heater (Hn), and the six barrel heaters are
grouped into four heating zones (zone 1 to zone 4)
as shown in Fig.2. The temperature of the nozzle
heater is represented by T, and the temperature of
the four heating zones is represented by 131, T2, T3
and T,4 respectively. The influence of each individ-
ual heating zone on the melt temperature was studied
by fractional factorial experimental design®l. The re-
sults showed that the effect of the heating zone 4 on
melt temperature is not significant and thus it was not
further investigated!). Therefore, the operating con-
ditions that affect the melt temperature during the
plastication phase are the following seven process pa-
rameters: the nozzle heater temperature (T},), barrel
heater temperatures (71, T32 and T3), the screw ro-
tating speed (Rs), back pressure (P;) and the specified
stroke length (SL).

1t is difficult to measure the melt temperature dis-
tribution in the barrel. However, if the melt is in-
jected at very low injection velocity, then the shear
heating effect due to injection on the melt can be ig-
nored and the melt temperature at the nozzle exit can
approximately represent the melt temperature distri-

bution in the barrel reservoir. It is also difficult to
establish an accurate mathematical relationship be-
tween the plastication conditions and the melt tem-
perature based on the fundamental principles. The
input to and the output from the process can, how-
ever, be measured. With sufficient input and output
data, neural networks can be trained to capture the
relationship between the plastication conditions and
the melt temperature. With this in mind, air shot
experiments at low injection velocity were carried out
to measure the melt temperature profile at the nozzle
exit.

Heaters: Hn HI H2 H3 H4 H5 H6

Zones: Zonel Zone2 Zone3 Zoned

Figure 2 Barrel heaters arrangement

During experiments, the melt temperature (mea-
sured at the nozzle exit) and the displacement of the
stroke at any given time were recorded, and then the
relationship between the melt temperature and the
stroke displacement can be established. The temper-
ature profile measured in low injection velocity air
shot experiments can be characterized with 7 points
as shown in Fig. 3. The horizontal axis represents the
stroke displacement and the vertical axis represents
the melt temperature measured at the nozzle exit.
Points (53, T1) and (S, T7) denote the temperatures
when the stroke displacements are zero and 100% of
the full stroke length (Sy) respectively. The point
(S3, T3) represents the maximum temperature and
the corresponding stroke displacement. The point (S2,
T;) denotes the temperature when the stroke displace-
ment equals the average value of S; and S3. Points
(Ss, Ts) and (Se, Ts) represent the temperatures when
the stroke displacements are 75% and 90% of the full
stroke length respectively. While the point (Sa, Ta)
represents the stroke displacement when the temper-
ature is the average value of T3 and Ts. Therefore,
when the six temperatures (T1, T2, T3, Ts, Te, and
T;) and two stroke displacements (S3 and Sy) are de-
termined, the 7 points can be obtained and then the
temperature profile can be established.

In the previous work[4?l, eight feedforward artifi-
cial neural networks (ANNs) have been developed as
shown in Fig.4. Each of the them has two layers:
a log-sigmoid hidden layer and a linear output layer..
The log-sigmoid neurons (12 to 16) in the hidden layer
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of the neural network receives inputs and then trans-
fer their outputs to the output layer of linear neurons
which compute the network output. Each network
has 7 inputs (Ty, Ty, Tu2, Tus, Rs, P and Si) and
one of the 8 outputs, Ty, Ty, T3, T5, T6, T7, S3 and
S4. The proposed neural networks were trained with
64 sets of experimental data and tested with 10 sets
of unused experimental data. The 7 points as shown
in Fig.3 were obtained by use of the 8 outputs from
the neural networks and then the temperature profile
was fitted by use of cubic spline interpolation. Three
sets of experimental data and the corresponding pre-
diction results are shown in Fig. 5. These results show
that the neural networks work well, confirming that
the melt temperature profile at the plastication phase
can be predicted using the neural networks.
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Figure 3 Melt temperature profile representation
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Figure 5 ANN prediction results at the plastication
phase
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3 FIDAP SIMULATION

With the results from ANNSs prediction, the melt tem-
perature during the injection phase can be calculated
by use of commercial software FIDAP which is an in-
tegrated environment for the simulation of fluid flow
problems. The software used in this research is the
latest version FIDAP8.0 for PC). It can be exe-
cuted with or without a graphical user interface and
be viewed as an integrated set of components and pro-
gram modules designed to perform all aspects of the
model generation, problem setup, post-processing and
solution phases of flow analysis.

The simulation of the injection phase is treated as
a fluid mechanics problem coupled with heat transfer,
and the screw is considered as a piston with an equiv-
alent cross sectional area. During injection, the screw
moves forward and pushes the melt in the barrel into
the mold through the nozzle exit. It can be treated as
a free boundary problem with a predetermined injec-
tion velocity. Although details of the simulation will
not be discussed in this paper, the basic inputs and
output of the simulation process are shown in Fig. 6.

Initial temperature \

Free

Velocity profile —
boundary -p| Temperature
model at nozzle exit
in FIDAP

Pressure profile |—

Viscosity model /

Figure 8 Model structure of FIDAP simulation

The basic inputs to FIDAP are the initial tempera-
ture profile, injection velocity as well as pressure. The
initial temperature profile is predicted by the ANNs
mentioned in Section 2, and the injection velocity is a
known operating condition and its corresponding in-
jection pressure profile is taken as the values measured
experimentally. The free boundary model is used to
simulate the melt flow during injection. The simula-
tion results are processed to obtain the melt tempera-
ture profile at the nozzle exit. A typical temperature
profile is shown in Fig. 7 and the bulk temperature is
taken as the melt temperature during injection.

4 NEURAL NETWORK DEVELOPMENT

As discussed in Section 1, the melt temperature at the
nozzle exit plays an important role in determining the
product quality and the accurate prediction, and
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Figure 7 Melt temperature profile at nozzle exit

control of this temperature is a key issue in the plas-
tics industry. Although the melt temperature can be
calculated with the help of FIDAP, the calculation
process is time-consuming and cannot be used as a
model for on-line melt temperature control. Thus, it
is necessary to develop an on-line prediction model for
real-time optimization and control of injection mold-
ing processes. If sufficient input and output data are
available by running FIDAP, then a neural network
may be built to capture the relationship between in-
put and output and finally it can be used to replace
FIDAP for on-line melt temperature prediction and
control.

A feed-forward neural network is developed using
the typical 2-layer architecture as shown in Fig. 8. The
log-sigmoid neurons in the hidden layer of the neural
network receive inputs and then send their outputs to
the linear output layer which calculates the network
output. The 2-layer sigmoid/linear network has been
proven to be able to represent any functional relation-
ship between inputs and outputs if the sigmoid layer
has enough neurcnsl®. The results presented in Sec-
tion 2 also confirm this point.

Input Hiddent layer Qutput layer

Figure 8 Typical two-layer architecture of neural
network

The number of inputs to the network is determined
by the problem to be solved. In this circumstance, it
is determined by the initial temperature profile, the
injection velocity and the corresponding pressure. As
discussed in Section 2, the initial temperature profile
is determined by the seven operating conditions of the
injection molding machine: nozzle heater temperature

(Tw), barrel heater temperatures (T31, Tz2 and T3),
the screw rotation speed (Rg), back pressure (F,), the
specified stroke length (S). Therefore, the inputs to
the neural network are: Ty, Ty, Tu2, Tia, Rs, P, Su
and V (injection velocity). The only one output of the
neural network is the bulk melt temperature (Tyy,)-

It is believed that the trained backpropagation net-
works tend to give reasonable answers when they are
deal with unused inputs. This generalization capabil-
ity makes it possible to train a network on a repre-
sentative set of input/output pairs and get good re-
sults for new inputs without training the network on
all possible input/output pairs. The proposed neural
network was trained with 70 sets of simulation data
and tested with 4 sets of unused data. There are 12
log-sigmoid neurons in the hidden layer and only one
linear neuron in the output layer. The ANN training
input data are listed in the first eight columns of Ta-
ble 1, while the ANN training output data are listed
in the last column. The 4 sets of testing data and the
results are shown in Table 2. Tey, represents the bulk
melt temperature measured experimentally and Tynn
represents the bulk melt temperature predicted by the
neural network. For the 4 sets of testing data, the
maximum prediction error is less than 2°C. It shows
that the proposed neural network works well and can
be used to replace FIDAP for on-line melt tempera-
ture prediction in the injection molding process.

5 CONCLUTIONS

In this paper, a neural network is proposed to predict
the bulk melt temperature at the nozzle exit during
the injection phase. The neural network is trained
with simulation results from FIDAP and tested with
experimental data. The preliminary results show that
the network works well and the bulk melt temperature
can be determined in real-time. It seems that such
a system has good potential in implementing on-line
prediction, optimization and control of melt tempera-
ture in injection molding processes.
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NOMENCLATURE

B, back pressure, Pa

Rs  screw rotating speed, min~?!
s stroke displacement, mm
SL  specified stroke length, mm
T temperature, °C

Tm  bulk melt temperature, °C
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Table 1 ANN training data
No. Ta T Ta Tus Rs B, x 1078 S 14 Tm
°C °C °C °C min~ Pa mm mm-s~? °C
1 200 190 175 155 110 5 80 30 219.8
2 200 190 175 160 100 4.5 70 30 220
3 200 190 175 165 90 4 60 20 221.3
4 200 190 175 165 90 4 60 30 221.7
5 200 190 175 170 80 35 50 40 223
6 200 197 187 167 80 4.5 60 20 223.4
7 200 197 187 167 80 4.5 60 40 224.2
8 200 197 187 172 90 5 50 20 225
9 200 197 187 177 100 3.5 80 30 223
10 200 197 187 182 110 4 70 30 223.3
11 200 194 194 174 90 3.5 70 20 221.8
12 200 194 194 179 80 4 80 40 222.7
13 200 194 194 184 110 4.5 50 40 225.8
14 200 194 194 189 100 5 60 20 224.4
15 200 194 194 189 100 5 60 30 224.8
16 200 200 195 175 100 4 50 30 225.8
17 200 200 195 180 110 3.5 60 30 225.6
18 200 200 195 185 80 5 70 40 226.3
19 200 200 195 190 90 4.5 80 20 225.2
20 210 200 195 175 90 3.5 70 20 230
21 210 200 195 180 80 4 80 30 229.6
22 210 200 195 185 110 4.5 50 20 234.3
23 210 200 195 190 100 5 60 40 235.1
24 210 200 195 190 100 5 60 20 234.3
25 210 204 194 174 110 5 80 20 231.6
26 210 204 194 179 100 4.5 70 40 233.3
27 210 204 194 184 90 4 60 30 234.5
28 210 204 194 184 90 4 60 40 235
29 210 204 194 189 80 3.5 50 30 236.5
30 210 207 207 187 100 4 50 40 241.1
31 210 207 207 192 110 3.5 60 20 239.1
32 210 207 207 192 110 3.5 60 30 240.1
33 210 207 207 197 80 5 70 30 23.5
34 210 207 207 202 90 4.5 80 30 239.7
35 210 210 195 175 80 4.5 60 30 234.4
36 210 210 195 180 90 5 50 20 234.3
37 210 210 195 185 100 3.5 80 20 231.9
38 210 210 195 185 100 3.5 B0 40 232.8
39 210 210 195 190 110 4 70 20 232.8
40 220 214 199 184 110 3.5 60 40 240.1
41 220 214 199 189 80 5 70 30 240.1
42 220 214 199 194 90 4.5 80 30 2339
43 220 210 210 190 80 4.5 60 20 246.2
44 220 210 210 195 90 5 50 30 245.7
45 220 210 210 200 100 35 80 20 242.2
46 220 210 210 205 110 4 70 40 2447
47 220 220 210 190 90 3.5 70 30 243.7
48 220 220 210 195 80 4 80 20 243.1
49 220 220 210 200 110 4.5 50 40 246.7
50 220 220 210 205 100 5 60 20 245
51 220 217 212 192 110 5 80 40 243.5
52 220 217 212 197 100 4.5 70 20 243.8
53 220 217 212 202 a0 4 60 30 246.5
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Table 1 (continued)

No. Tn Tz T2 Tes Rs B, x 105 Sy, Vv T
°C °C °C °C min~1 Pa mm mm-s~! °C
54 220 217 212 207 80 3.5 50 30 248.1
55 230 220 210 190 100 4 50 20 253
56 230 220 210 195 110 3.5 60 30 252.7
57 230 220 210 200 80 5 70 20 252.4
58 230 220 210 205 90 4.5 80 40 252.2
59 230 227 212 192 90 3.5 70 40 252.5
60 230 227 212 197 80 4 80 20 251.7
61 230 227 212 202 110 4.5 50 30 255.7
62 230 227 212 207 100 5 60 40 255.3
63 230 224 219 199 80 4.5 60 20 253.5
64 230 224 219 204 90 5 50 40 257.1
65 230 224 219 209 100 35 80 30 254.6
66 230 224 219 214 110 4 70 30 254.9
67 230 230 230 210 110 5 80 30 258.6
68 230 230 230 215 100 4.5 T0 20 259.9
69 230 230 230 220 90 4 60 40 262.7
70 230 230 230 225 80 3.5 50 20 263.4

Table 2 ANN prediction results

No. Tn Ty Taz Tea Rg B, x 10~% S, v Texp Teon Error
°C °C °C °C min~—?! Pa mm mm-s~ 1 °C °C “C
1 200 200 195 180 110 3.5 60 20 225.1 224.6 0.5
2 210 200 195 190 100 5 60 30 234.6 234.3 0.3
3 210 207 207 192 110 3.5 60 40 240.8 242.4 -1.6
4 220 210 210 190 80 4.5 60 30 245.2 245.7 -0.5
Ta nozzle heater temperature, °C 3 Yang, Y., Adaptive control of injection molding process, M.
Ta1 barrel heater temperature of heating zone 1, °C Phil. Thesis, Hong Kong University of Science & Technol-
Tua barrel heater temperature of heating zone 2, °C ogy, Hong Kong (1998).
Tya barrel heater temperature of heating zone 3, °C 4 Zha.::), Ch. H:, Experimental analysis and svimuIatio.n on in-
Tann bulk melt temperature predicted by the neural Jection m?ld:ng melt teFrlperature, M. Phil. Thesis, Hong
Kong University of Science & Technology, Hong Kong
network, °C (1998).
Texp bulk melt temperature measured experimentally, 5 Wang, B. G., Gao, F., Yue, P., “Neural network prediction
°C of melt temperature at plastication phase”, Proceeding of
t time, ms the 2nd East Asia Polymer Conference (EAPC-2), 353—
v injection velocity, mm-s~1 354, Hong Kong University of Science & Technology, Hong
Kong (1999).
. 6 Taguchi, G., System of Experimental Design, White
REFERENCES Planins, New York (1992).
1 Rosato, D., Plastics Processing Data Handbook, 2nd edi- 7 FIDAP 8.0 User’s manual, Fluid Dynamics International,
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2 Rosato, D. V., Rosato, D. V., Injection Molding Handbook, 8 Demuth, H., Beale M., Neural Network Toolbox-User’s
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