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Abstract

We prove that a law of large numbers and a central limit theorem hold for the excited random
walk model in every dimension d ≥ 2.

1 Introduction

An excited random walk with bias parameter p ∈ (1/2, 1] is a discrete time nearest neighbor
random walk (Xn)n≥0 on the lattice Z

d obeying the following rule: when at time n the walk
is at a site it has already visited before time n, it jumps uniformly at random to one of the 2d
neighboring sites. On the other hand, when the walk is at a site it has not visited before time
n, it jumps with probability p/d to the right, probability (1− p)/d to the left, and probability
1/(2d) to the other nearest neighbor sites.

The excited random walk was introduced in 2003 by Benjamini and Wilson [1], motivated by
previous works of [5, 4] and [10] on self-interacting Brownian motions. Variations on this model
have also been introduced. The excited random walk on a tree was studied by Volkov [15]. The
so called multi-excited random walk, where the walk gets pushed towards a specific direction
upon its first Mx visits to a site x, with Mx possibly being random, was introduced by Zerner
in [16] (see also [17] and [9]).
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In [1], Benjamini and Wilson proved that for every value of p ∈ (1/2, 1] and d ≥ 2, excited
random walks are transient. Furthermore, they proved that for d ≥ 4,

lim inf
n→∞

n−1Xn · e1 > 0 a.s., (1)

where (ei : 1 ≤ i ≤ d) denote the canonical generators of the group Z
d. Subsequently, Kozma

extended (1) in [7] and [8] to dimensions d = 3 and d = 2. In this paper, we prove that the
biased coordinate of the excited random walk satisfies a law of large numbers and a central
limit theorem for every d ≥ 2 and p ∈ (1/2, 1].

Theorem 1. Let p ∈ (1/2, 1] and d ≥ 2.

(i) (Law of large numbers). There exists v = v(p, d), 0 < v < +∞ such that a.s.

lim
n→∞

n−1Xn · e1 = v.

(ii) (Central limit theorem). There exists σ = σ(p, d), 0 < σ < +∞, such that

t 7→ n−1/2(X⌊nt⌋ · e1 − v⌊nt⌋),

converges in law as n → +∞ to a Brownian motion with variance σ2, with respect to the
Skorohod topology on the space of càdlàg functions.

In the recent preprint [14], relying on the lace expansion technique, van der Hofstad and Holmes
proved that a weak law of large numbers holds when d > 5 and p is close enough (depending
on d) to 1/2, and that a central limit theorem holds when d > 8 and and p is close enough
(depending on d) to 1/2.
Our proof is based on the well-known construction of regeneration times for the random walk,
the key issue being to obtain good tail estimates for these regeneration times. Indeed, using
estimates for the so-called tan points of the simple random walk, introduced in [1] and subse-
quently used in [7, 8], it is possible to prove that, when d ≥ 2, the number of distinct points
visited by the excited random walk after n steps is, with large probability, of order n3/4 at
least. Since the excited random walk performs a biased random step at each time it visits a
site it has not previously visited, the e1-coordinate of the walk should typically be at least
of order n3/4 after n steps. Since this number is o(n), this estimate is not good enough to
provide a direct proof that the walk has linear speed. However, such an estimate is sufficient
to prove that, while performing n steps, the walk must have many independent opportunities
to perform a regeneration. A tail estimate on the regeneration times follows, and in turn,
this yields the law of large numbers and the central limit theorem, allowing for a full use of
the spatial homogeneity properties of the model. When d ≥ 3, it is possible to replace, in
our argument, estimates on the number of tan points by estimates on the number of distinct
points visited by the projection of the random walk on the (e2, . . . , ed) coordinates – which
is essentially a simple random walk on Z

d−1. Such an observation was used in [1] to prove
that (1) holds when d ≥ 4. Plugging the estimates of [6] in our argument, we can rederive
the law of large numbers and the central limit theorem when d ≥ 4 without considering tan
points. Furthermore, a translation of the results in [2] and [11] about the volume of the Wiener
sausage to the random walk situation considered here, would allow us to rederive our results
when d = 3, and to improve the tail estimates for any d ≥ 3.
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The regeneration time methods used to prove Theorem 1 could also be used to describe the
asymptotic behavior of the configuration of the vertices as seen from the excited random walk.

Let Ξ := {0, 1}Z
d\{0}, equipped with the product topology and σ−algebra. For each time n

and site x 6= Xn, define β(x, n) := 1 if the site x was visited before time n by the random
walk, while β(x, n) := 0 otherwise. Let ζ(x, n) := β(x − Xn, n) and define

ζ(n) := (ζ(x, n); x ∈ Z
d \ {0}) ∈ Ξ.

We call the process (ζ(n))n∈N the environment seen from the excited random walk. It is then
possible to show that if ρ(n) is the law of ζ(n), there exists a probability measure ρ defined
on Ξ such that

lim
n→∞

ρ(n) = ρ,

weakly.
In the following section of the paper we introduce the basic notation that will be used through-
out. In Section 3, we define the regeneration times and formulate the key facts satisfied by
them. In Section 4 we obtain the tail estimates for the regeneration times via a good control on
the number of tan points. Finally, in Section 5, we present the results of numerical simulations
in dimension d = 2 which suggest that, as a function of the bias parameter p, the speed v(p, 2)
is an increasing convex function of p, whereas the variance σ(p, 2) is a concave function which
attains its maximum at some point strictly between 1/2 and 1.

2 Notations

Let b := {e1, . . . , ed,−e1, . . . ,−ed}. Let µ be the distribution on b defined by µ(+e1) = p/d,
µ(−e1) = (1− p)/d, µ(± ej) = 1/2d for j 6= 1. Let ν be the uniform distribution on b. Let S0

denote the sample space of the trajectories of the excited random walk starting at the origin:

S0 :=
{

(zi)i≥0 ∈ (Zd)N; z0 = 0, zi+1 − zi ∈ b for all i ≥ 0
}

.

For all k ≥ 0, let Xk denote the coordinate map defined on S0 by Xk((zi)i≥0) := zk. We will
sometimes use the notation X to denote the sequence (Xk)k≥0. We let F be the σ−algebra
on S0 generated by the maps (Xk)k≥0. For k ∈ N, the sub-σ−algebra of F generated by
X0, . . . ,Xk is denoted by Fk. And we let θk denote the transformation on S0 defined by
(zi)i≥0 7→ (zk+i − zk)i≥0. For the sake of definiteness, we let θ+∞((zi)i≥0) := (zi)i≥0. For all
n ≥ 0, define the following two random variables on (S0,F):

rn := max{Xi · e1; 0 ≤ i ≤ n},

Jn = Jn(X) := number of indices 0 ≤ k ≤ n such that Xk /∈ {Xi; 0 ≤ i ≤ k − 1}.

(Note that, with this definition, J0 = 1.)
We now call P0 the law of the excited random walk, which is formally defined as the unique
probability measure on (S0,F) satisfying the following conditions: for every k ≥ 0,

• on Xk /∈ {Xi; 0 ≤ i ≤ k − 1}, the conditional distribution of Xk+1 − Xk with respect to
Fk is µ;

• on Xk ∈ {Xi; 0 ≤ i ≤ k − 1}, the conditional distribution of Xk+1 − Xk with respect to
Fk is ν.
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3 The renewal structure

We now define the regeneration times for the excited random walk (see [13] for the same
definition in the context of random walks in random environment). Define on (S0,F) the
following (Fk)k≥0-stopping times: T (h) := inf{k ≥ 1; Xk · e1 > h}, and D := inf{k ≥ 1; Xk ·
e1 = 0}. Then define recursively the sequences (Si)i≥0 and (Di)i≥0 as follows: S0 := T (0),
D0 := S0 + D ◦ θS0

, and Si+1 := T (rDi
), Di+1 := Si+1 + D ◦ θSi+1

for i ≥ 0, with the
convention that Si+1 = +∞ if Di = +∞, and, similarly, Di+1 = +∞ if Si+1 = +∞. Then
define K := inf{i ≥ 0; Di = +∞} and κ := SK (with the convention that κ = +∞ when
K = +∞).
The key estimate for proving our results is stated in the following proposition.

Proposition 1. As n goes to infinity,

P0(κ ≥ n) ≤ exp

(

−n
1
19 + o(1)

)

.

A consequence of the above proposition is that, under P0, κ has finite moments of all or-
ders, and also Xκ, since the walk performs nearest-neighbor steps. We postpone the proof of
Proposition 1 to Section 4.

Lemma 1. There exists a δ > 0 such that P0(D = +∞) > δ.

Proof. This is a simple consequence of two facts. Firstly, in [1] it is established that P0-a.s,
limk→+∞ X(k) · e1 = +∞. On the other hand, a general lemma (Lemma 9 of [17]) shows that,
given the first fact, an excited random walk satisfies P0(D = +∞) > 0.

Lemma 2. For all h ≥ 0, P0(T (h) < +∞) = 1.

Proof. This is immediate from the fact that P0-a.s., limk→+∞ X(k) · e1 = +∞.

Now define the sequence of regeneration times (κn)n≥1 by κ1 := κ and κn+1 := κn + κ ◦ θκn
,

with the convention that κn+1 = +∞ if κn = +∞. For all n ≥ 0, we denote by Fκn
the

completion with respect to P0−negligible sets of the σ−algebra generated by the events of the
form {κn = t} ∩ A, for all t ∈ N, and A ∈ Ft.
The following two propositions are analogous respectively to Theorem 1.4 and Corollary 1.5
of [13]. Given Lemma 1 and Lemma 2, the proofs are completely similar to those presented
in [13], noting that the process (β(n),Xn)n∈N is strongly Markov, so we omit them, and refer
the reader to [13].

Proposition 2. For every n ≥ 1, P0(κn < +∞) = 1. Moreover, for every A ∈ F , the
following equality holds P0−a.s.

P0 (X ◦ θκn
∈ A|Fκn

) = P0 (X ∈ A|D = +∞) . (2)

Proposition 3. With respect to P0, the random variables κ1, κ2 − κ1, κ3 − κ2, . . . are inde-
pendent, and, for all k ≥ 1, the distribution of κk+1 − κk with respect to P0 is that of κ with
respect to P0 conditional upon D = +∞. Similarly, the random variables Xκ1

, Xκ2
− Xκ1

,
Xκ3

−Xκ2
, . . . are independent, and, for all k ≥ 1, the distribution of Xκk+1

−Xκk
with respect

to P0 is that of Xκ with respect to P0 conditional upon D = +∞.
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For future reference, we state the following result.

Lemma 3. On Sk < +∞, the conditional distribution of the sequence (Xi − XSk
)Sk≤i<Dk

with respect to FSk
is the same as the distribution of (Xi)0≤i<D with respect to P0.

Proof. Observe that between times Sk and Dk, the walk never visits any site that it has visited
before time Sk. Therefore, applying the strong Markov property to the process (β(n),Xn)n∈N

and spatial translation invariance, we conclude the proof.

A consequence of Proposition 1 is that E0(κ|D = +∞) < +∞ and E0(|Xκ||D = +∞) < +∞.
Since P0(κ ≥ 1) = 1 and P0(Xκ·e1 ≥ 1) = 1, E0(κ|D = +∞) > 0 and E0(Xκ·e1|D = +∞) > 0.

Letting v(p, d) := E0(Xκ·e1|D=+∞)
E0(κ|D=+∞) , we see that 0 < v(p, d) < +∞.

The following law of large numbers can then be proved, using Proposition 3, exactly as Propo-
sition 2.1 in [13], to which we refer for the proof.

Theorem 2. Under P0, the following limit holds almost surely:

lim
n→+∞

n−1Xn · e1 = v(p, d).

Another consequence of Proposition 1 is that E0(κ
2|D = +∞) < +∞ and E0(|Xκ|

2|D =

+∞) < +∞. Letting σ2(p, d) := E0([Xκ·e1−v(p,d)κ]2|D=+∞)
E0(κ|D=+∞) , we see that σ(p, d) < +∞. That

σ(p, d) > 0 is explained in Remark 1 below.
The following functional central limit theorem can then be proved, using Proposition 3, exactly
as Theorem 4.1 in [12], to which we refer for the proof.

Theorem 3. Under P0, the following convergence in distribution holds: as n goes to infinity,

t 7→ n−1/2(X⌊nt⌋ · e1 − v⌊nt⌋),

converges to a Brownian motion with variance σ2(p, d), with respect to the Skorohod topology
on the space of càdlàg functions.

Remark 1. The fact that σ(p, d) > 0 is easy to check. Indeed, we will prove that the probability
of the event Xκ · e1 6= vκ is positive. There is a positive probability that the first step of the
walk is +e1, and that Xn · e1 > 1 for all n afterwards. In this situation, κ = 1 and Xκ · e1 = 1.
Now, there is a positive probability that the walk first performs the following sequence of steps:
+e2,−e2,+e1, and that then Xn · e1 > 1 for all n afterwards. In this situation, κ = 3 and
Xκ · e1 = 1.

4 Estimate on the tail of κ

4.1 Coupling with a simple random walk and tan points

We use the coupling of the excited random walk with a simple random walk that was introduced
in [1], and subsequently used in [7, 8].
To define this coupling, let (αi)i≥1 be a sequence of i.i.d. random variables with uniform
distribution on the set {1, . . . , d}. Let also (Ui)i≥1 be an i.i.d. family of random variables
with uniform distribution on [0, 1], independent from (αi)i≥1. Call (Ω,G, P ) the probability
space on which these variables are defined. Define the sequences of random variables Y =
(Yi)i≥0 and Z = (Zi)i≥0 taking values in Z

d, as follows. First, Y0 := 0 and Z0 := 0. Then
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consider n ≥ 0, and assume that Y0, . . . , Yn and Z0, . . . , Zn have already been defined. Let
Zn+1 := Zn + (1(Un+1 ≤ 1/2) − 1(Un+1 > 1/2))eαn+1

. Then, if Yn ∈ {Yi; 0 ≤ i ≤ n − 1}
or αn+1 6= 1, let Yn+1 := Yn + (1(Un+1 ≤ 1/2) − 1(Un+1 > 1/2))eαn+1

. Otherwise, let
Yn+1 := Yn + (1(Un+1 ≤ p) − 1(Un+1 > p))e1.
The following properties are then immediate:

• (Zi)i≥0 is a simple random walk on Z
d;

• (Yi)i≥0 is an excited random walk on Z
d with bias parameter p;

• for all 2 ≤ j ≤ d and i ≥ 0, Yi · ej = Zi · ej ;

• the sequence (Yi · e1 − Zi · e1)i≥0 is non-decreasing.

Definition 1. If (zi)i≥0 ∈ S0, we call an integer n ≥ 0 an (e1, e2)–tan point index for the
sequence (zi)i≥0 if zn · e1 > zk · e1 for all 0 ≤ k ≤ n − 1 such that zn · e2 = zk · e2.

The key observation made in [1] is the following.

Lemma 4. If n is an (e1, e2)–tan point index for (Zi)i≥0, then Yn /∈ {Yi; 0 ≤ i ≤ n − 1}.

Proof. If n is an (e1, e2)–tan point index and if there exists an ℓ ∈ {0, . . . , n − 1} such that
Yn = Yℓ, then observe that, using the fact that Zℓ · e2 = Yℓ · e2 and Zn · e2 = Yn · e2, we have
that Zℓ ·e2 = Zn ·e2. Hence, by the definition of a tan point we must have that Zℓ ·e1 < Zn ·e1,
whence Yn · e1 − Zn · e1 < Yℓ · e1 − Zℓ · e1. But this contradicts the fact that the coupling has
the property that Yn · e1 − Zn · e1 ≥ Yℓ · e1 − Zℓ · e1.

Let H := {i ≥ 1; αi ∈ {1, 2}}, and define the sequence of indices (Ii)i≥0 by I0 := 0, I0 < I1 <
I2 < · · · , and {I1, I2, . . .} = H. Then the sequence of random variables (Wi)i≥0 defined by
Wi := (ZIi

· e1, ZIi
· e2) forms a simple random walk on Z

2.
If i and n are such that Ii = n, it is immediate to check that n is an (e1, e2)–tan point index
for (Zk)k≥0 if and only if i is an (e1, e2)–tan point index for the random walk (Wk)k≥0.
For all n ≥ 1, let Nn denote the number of (e1, e2)–tan point indices of (Wk)k≥0 that are ≤ n.
The arguments used to prove the following lemma are quite similar to the ones used in the
proofs of Theorem 4 in [1] and Lemma 1 in [8], which are themselves partly based on estimates
in [3].

Lemma 5. For all 0 < a < 3/4, as n goes to infinity,

P (Nn ≤ na) ≤ exp

(

−n
1
3 − 4a

9 + o(1)
)

.

Proof. For all k ∈ Z \ {0}, m ≥ 1, consider the three sets

Γ(m)k := Z × {2k⌊m1/2⌋},

∆(m)k := Z × ((2k − 1)⌊m1/2⌋, (2k + 1)⌊m1/2⌋),

Θ(m)k := {v ∈ ∆(m)k; |v · e2| ≥ 2k⌊m1/2⌋}.

Let χ(m)k be the first time when (Wi)i≥0 hits Γ(m)k, and note that χ(m)k is a.s. finite since
the simple random walk on Z

2 is recurrent. Let φ(m)k be the first time after χ(m)k when
(Wi)i≥0 leaves ∆(m)k. Again, φ(m)k is a.s. finite due to the recurrence of the simple random
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walk on Z
2. Let Mk(m) denote the number of time indices n that are (e1, e2)–tan point indices,

and satisfy χ(m)k ≤ n ≤ φ(m)k − 1 and Wn ∈ Θ(m)k.
Two key observations in [1] (see Lemma 2 in [1] and the discussion before its statement) are
that:

• the sequence (Mk(m))k∈Z\{0} is i.i.d.;

• there exist c1, c2 > 0 such that P (M1(m) > c1m
3/4) ≥ c2.

Now, consider an ǫ > 0 such that b := 1/3− 4a/9− ǫ > 0. let mn := ⌈(na/c1)
4/3

⌉+ 1, and let

hn := 2(⌈nb⌉ + 1)⌊m
1/2
n ⌋. Note that, as n → +∞, (hn)2 ∼ (4c

−4/3
1 )n

2
3
+ 4

9
a−2ǫ. Let Rn,+ and

Rn,− denote the following events

Rn,+ := {for all k ∈ {1, . . . ,+⌈nb⌉}, Mk(mn) ≤ c1m
3/4
n },

and
Rn,− := {for all k ∈ {−⌈nb⌉, . . . ,−1}, Mk(mn) ≤ c1m

3/4
n }.

From the above observations, P (Rn,+ ∪ Rn,−) ≤ 2(1 − c2)
⌈nb⌉.

Let qn := ⌊n(hn)−2⌋, and let Vn be the event

Vn := {for all i ∈ {0, . . . , n}, −hn ≤ Wi · e2 ≤ +hn}.

By Lemma 6 below, there exists a constant c3 > 0 such that, for all large enough n, all
−hn ≤ y ≤ +hn, and x ∈ Z, the probability that a simple random walk on Z

2 started at (x, y)
at time zero leaves Z × {−hn, . . . ,+hn} before time h2

n, is larger than c3. A consequence is
that, for all q ≥ 0, the probability that the same walk fails to leave Z×{−hn, . . . ,+hn} before
time qh2

n is less than (1 − c3)
q. Therefore P (Vn) ≤ (1 − c3)

qn .
Observe now that, on V c

n ,

n ≥ max(φ(mn)k; 1 ≤ k ≤ ⌈nb⌉) or n ≥ max(φ(mn)k; −⌈nb⌉ ≤ k ≤ −1).

Hence, on V c
n ,

Nn ≥

⌈nb⌉
∑

k=1

Mk(mn) or Nn ≥

−⌈nb⌉
∑

k=−1

Mk(mn).

We deduce that, on Rc
n,+ ∩ Rc

n,− ∩ V c
n , Nn ≥ c1m

3/4
n > na.

As a consequence, P0(Nn ≤ na) ≤ P0(Rn,+ ∪ Rn,−) + P0(Vn), so that P0(Nn ≤ na) ≤ 2(1 −

c2)
⌈nb⌉ + (1 − c3)

qn

Noting that, as n goes to infinity, qn ∼ nh−2
n ∼ (4c

−4/3
1 )−1n1/3−4a/9+2ǫ, the conclusion follows.

Lemma 6. There exists a constant c3 > 0 such that, for all large enough h, all −h ≤ y ≤ +h,
and x ∈ Z, the probability that a simple random walk on Z

2 started at (x, y) at time zero leaves
Z × {−h, . . . ,+h} before time h2, is larger than c3.

Proof. Consider the probability that the e2 coordinate is larger than h at time h2. By standard
coupling, this probability is minimal when y = −h, so the central limit theorem applied to the
walk starting with y = −h yields the existence of c3.
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Lemma 7. For all 0 < a < 3/4, as n goes to infinity,

P0(Jn ≤ na) ≤ exp

(

−n
1
3 − 4a

9 + o(1)
)

.

Proof. Observe that, by definition, Ik is the sum of k i.i.d. random variables whose distribution
is geometric with parameter 2/d. By a standard large deviations bound, there is a constant
c6 such that, for all large enough n, P (I⌊nd−1⌋ ≥ n) ≤ exp(−c6n). Then observe that, if
I⌊nd−1⌋ ≤ n, we have Jn(Y ) ≥ N⌊nd−1⌋ according to Lemma 4 above. (Remember that, by
definition, Jn(Y ) is the number of indices 0 ≤ k ≤ n such that Yk /∈ {Yi; 0 ≤ i ≤ k − 1}. )
Now, fix 0 < a < 3/4. According to Lemma 5 above, we have that, for all a < a′ < 3/4, as n
goes to infinity,

P (N⌊nd−1⌋ ≤ ⌊nd−1⌋a′

) ≤ exp

(

−⌊nd−1⌋
1
3 − 4a′

9 + o(1)
)

,

from which it is easy to deduce that, as n goes to infinity, P (N⌊nd−1⌋ ≤ na) ≤ exp

(

−n
1
3 − 4a

9 + o(1)
)

.

Now we deduce from the union bound that P (Jn(Y ) ≤ na) ≤ P (I⌊nd−1⌋ ≥ n) + P (N⌊nd−1⌋ ≤
na). The conclusion follows.

4.2 Estimates on the displacement of the walk

Lemma 8. For all 1/2 < a < 3/4, as n goes to infinity,

P0(Xn · e1 ≤ na) ≤ exp
(

−nψ(a)+o(1)
)

,

where ψ(a) := min
(

1
3 − 4a

9 , 2a − 1
)

.

Proof. Let γ := 2p−1
2d . Let (εi)i≥1 be an i.i.d. family of random variables with common

distribution µ on b, and let (ηi)i≥1 be an i.i.d. family of random variables with common
distribution ν on b independent from (εi)i≥1. Let us call (Ω2,G2, Q) the probability space on
which these variables are defined.

Define the sequence of random variables (ξi)i≥0 taking values in Z
d, as follows. First, set

ξ0 := 0. Consider then n ≥ 0, assume that ξ0, . . . , ξn have already been defined, and consider
the number Jn(ξ) of indices 0 ≤ k ≤ n such that ξk /∈ {ξi; 0 ≤ i ≤ k − 1}. If ξn /∈ {ξi; 0 ≤
i ≤ n− 1}, set ξn+1 := ξn + εJn(ξ). Otherwise, let ξn+1 := ξn + ηn−Jn(ξ)+1. It is easy to check

that the sequence (ξn)n≥0 is an excited random walk on Z
d with bias parameter p.

Now, according to Lemma 7, for all 1/2 < a < 3/4, Q(Jn ≤ na) ≤ exp

(

−n
1
3 − 4a

9 + o(1)
)

. It

is easy to deduce that, for all 1/2 < a < 3/4, Q(Jn−1 ≤ 2γ−1na) ≤ exp

(

−n
1
3 − 4a

9 + o(1)
)

.

Now observe that, by definition, for n ≥ 1,

ξn =

Jn−1
∑

i=1

εi +

n−Jn−1
∑

i=1

ηi. (3)
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Now, there exists a constant c4 such that, for all large enough n, and every 2γ−1na ≤ k ≤ n,

Q

(

k
∑

i=1

εi · e1 ≤ (3/2)na

)

≤ Q

(

k
∑

i=1

εi · e1 ≤ 3
4γk

)

≤ exp (−c4n
a) ,

by a standard large deviations bound for the sum
∑k

i=1 εi · e1, whose terms are i.i.d. bounded
random variables with expectation γ > 0. By the union bound, we see that

Q





Jn−1
∑

i=1

εi · e1 ≤ (3/2)na



 ≤ n exp (−c4n
a) + exp

(

−n
1
3 − 4a

9 + o(1)
)

. (4)

Now, there exists a constant c5 such that, for all large enough n, and for every 1 ≤ k ≤ n,

Q
(

∑k
i=1 ηi · e1 ≤ −(1/2)na

)

≤ exp
(

−c5n
2a−1

)

, by a standard moderate deviations bound

for the simple symmetric random walk on Z. By the union bound again, we see that

Q





n−Jn−1
∑

i=1

ηi · e1 ≤ −(1/2)na



 ≤ n exp
(

−c5n
2a−1

)

. (5)

Noting that, by (3), the event {ξn ·e1 < na} is included in the event {
∑Jn−1

i=1 εi ·e1 ≤ (3/2)na}∪

{
∑n−Jn−1

i=1 ηi ·e1 ≤ −(1/2)na}, the conclusion now follows by (4) and (5), and the union bound,
using the fact that, for 1/2 < a < 3/4, a ≥ ψ(a).

Lemma 9. As n goes to infinity,

P0(n ≤ D < +∞) ≤ exp
(

−n1/11+o(1)
)

.

Proof. Consider 1/2 < a < 3/4, and write P0(n ≤ D < +∞) =
∑+∞

k=n P0(D = k) ≤
∑+∞

k=n P0(Xk ·e1 = 0) ≤
∑+∞

k=n P0(Xk ·e1 ≤ ka). Now, according to Lemma 8, P0(Xk ·e1 ≤ ka) ≤

exp
(

−kψ(a)+o(1)
)

. It is then easily checked that
∑+∞

k=n exp
(

−kψ(a)+o(1)
)

≤ exp
(

−nψ(a)+o(1)
)

.

As a consequence, P0(n ≤ D < +∞) ≤ exp
(

−nψ(a)+o(1)
)

. Choosing a so as to minimize ψ(a),
the result follows.

4.3 Proof of Proposition 1

Let a1, a2, a3 be positive real numbers such that a1 < 3/4 and a2 + a3 < a1. For every n > 0,
let un := ⌊na1⌋, vn := ⌊na2⌋, wn := ⌊na3⌋. In the sequel, we assume that n is large enough so
that vn(wn + 1) + 2 ≤ un. Let

An := {Xn · e1 ≤ un}; Bn :=

vn
⋂

k=0

{Dk < +∞}; Cn :=

vn
⋃

k=0

{wn ≤ Dk − Sk < +∞}.

(With the convention that, in the definition of Cn, Dk − Sk = +∞ whenever Dk = +∞.) We
shall prove that {κ ≥ n} ⊂ An ∪ Bn ∪ Cn, then apply the union bound to P0(An ∪ Bn ∪ Cn),
and then separately bound the three probabilities P0(An), P0(Bn), P0(Cn).
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Assume that Ac
n ∩ Bc

n ∩ Cc
n occurs. Our goal is to prove that this assumption implies that

κ < n.

Call M the smallest index k between 0 and vn such that Dk = +∞, whose existence is
ensured by Bc

n. By definition, κ = SM , so we have to prove that SM < n. For notational
convenience, let D−1 = 0. By definition of M , we know that DM−1 < +∞. Now write

rDM−1
=

∑M−1
k=0 (rDk

− rSk
) + (rSk

− rDk−1
), with the convention that

∑−1
k=0 = 0. Since the

walk performs nearest-neighbor steps, we see that for all 0 ≤ k ≤ M −1, rDk
− rSk

≤ Dk −Sk.
On the other hand, by definition, for all 0 ≤ k ≤ M − 1, rSk

− rDk−1
= 1. Now, for all

0 ≤ k ≤ M − 1, Dk − Sk ≤ wn, due to the fact that Cc
n holds and that Dk < +∞. As

a consequence, we obtain that rDM−1
≤ M(wn + 1) ≤ vn(wn + 1). Remember now that

vn(wn + 1) + 2 ≤ un, so we have proved that, rDM−1
+ 2 ≤ un. Now observe that, on Anc ,

Xn · e1 > un. As a consequence, the smallest i such that Xi · e1 = rDM−1
+ 1 must be < n.

But SM is indeed the smallest i such that Xi ·e1 = rDM−1
+1, so we have proved that SM < n

on Ac
n ∩ Bc

n ∩ Cc
n.

The union bound then yields the fact that, for large enough n, P0(κ ≥ n) ≤ P0(An)+P0(Bn)+
P0(Cn).

Now, from Lemma 8, we see that P0(An) ≤ exp(−nψ(a1)+o(1)). By repeatedly applying Lemma 2
and the strong Markov property at the stopping times Sk for k = 0, . . . , vn to the process
(β(n),Xn)n∈N, we see that P0(Bn) ≤ P0(D < +∞)vn . Hence, from Lemma 1, we know that
P0(Bn) ≤ (1 − δ)vn .

From the union bound and Lemma 3, we see that P0(Cn) ≤ (vn + 1)P0(wn ≤ D < +∞), so,
by Lemma 9, P0(Cn) ≤ (vn + 1) exp(−na3/11+o(1)).

Using Lemma 8, we finally obtain the following estimate:

P0(κ ≥ n) ≤ (1 − δ)⌊n
a2⌋ + (⌊na2⌋ + 1) exp

(

−na3/11+o(1)
)

+ exp
(

−nψ(a1)+o(1)
)

.

Now, for all ǫ small enough, choose a1 = 12/19, a2 = 1/19, a3 = 11/19 − ǫ. This ends the
proof of Proposition 1.

5 Simulation results

We have performed simulations of the model in dimension d = 2, using a C code and the Gnu
Scientific Library facilities for random number generation.

The following graph is a plot of an estimate of v(p, 2) as a function of p. Each point is the
average over 1000 independent simulations of (X10000 · e1)/10000.
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The following graph is a plot of an estimate of σ(p, 2) as a function of p. Each point is the
standard deviation over 1000000 independent simulations of (X10000 ·e1)/(10000)1/2 (obtaining
a reasonably smooth curve required many more simulations for σ than for v).
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