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Abstract Based on principal component analysis, this paper presents an application of faulty sensor detection and
reconstruction in a batch process, polyvinylchloride (PVC) making process. To deal with inconsistency in process
data, it is proposed to use the dynamic time warping technique to make the historical data synchronized first, then
build a consistent multi-way principal component analysis model. Fault detection is carried out based on squared
prediction error statistical control plot. By defining principal component subspace, residual subspace and sensor
validity index, faulty sensor can be reconstructed and identified along the fault direction. Finally, application results
are illustrated in detail by use of the real data of an industrial PVC making process.
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1 INTRODUCTION

Chemical process is usually very complex. A large
amount of measurements such as temperature, flow-
rate and pressure need to be monitored accurately.
How to control and monitor such process efficiently is
always an important issue and many researchers have
paid extensive attention. Batch process, popular in
chemical process, is very difficult to build model due
to its complexity. Therefore, in recent years, statisti-
cal process control and fault diagnosis have been play-
ing an important role in batch processes. Since the
amount of information collected by distributed con-
trol system is abundant, this makes statistical process
control become realizable.

Principal component analysis (PCA) is a typi-
cal statistical process control method and has been
widely used in many areas. Some control charts
such as M-Shewhart, M-CUSUM, M-EWMA have
been shown very effective in detecting abnormalities
in multivariate industrial equipmcnts[l‘?]. Contribu-
tion plot based fault identification methods have been
proposed[S"‘l. This approach uses a simple criterion
when a fault is intrinsically related to the sensor mea-
surement. Dunia et al. defined a sensor validity index
(SVI) to identify sensor faults and proposed a uni-
fied geometric approach to process and sensor fault
identification and reconstruction®). Fault detectabil-
ity, reconstructability and identifiability were defined
by Duina et al®. Qin and Duina also defined the
variance of reconstruction error (VRE) to select prin-
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cipal components (PCs) in PCA models!”. In the re-
construction of faulty data, the minimal PCs can be
obtained when the VRE reaches the minimum. More-
over, Duina and Qin defined various fault vector direc-
tions to distinguish different sensor faults, then fault
identification and reconstruction can be completed
based on the fault vector directions using PCA[®).
These methods have been shown effective for fault de-
tection and reconstruction in chemical processes.
This paper presents some application results
on faulty sensor detection and reconstruction in a
polyvinylchloride (PVC) making process in a chem-
ical plant in China. Multi-way principal component
analysis (MPCA) and dynamic time warping (DTW)
methods will be adopted. PVC making process is a
very typical chemical batch process(®'%. Owing to its
complexity, monitoring and fault diagnosis are diffi-
cult for this process. Although many statistical meth-
ods for monitoring and fault diagnosis in batch pro-
cess have been proposed, some practical problems re-
main to be resolved before the practical application.
Multi-way PCA is a special kind of PCA method to
decompose 3-D data into 2-D[1112] DTW, that has
been widely used in phonetic recognition, also has
the ability to reconcile inconsistent data/*3l. In the
PVC making process, inconsistent data always exist,
since the chemical reaction time of each batch is usu-
ally different. In this paper, based on MPCA and
DTW methods, a process statistical model for the
PVC making process is built first, then some statis-
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tical indexes are calculated. They are projected onto
the statistic model respectively, and faults can be de-
tected based on PCA. Based on SVI, faulty sensor can
be identified®. By defining the principal component
subspace (PCS), residual subspace (RS) and fault di-
rection, faulty data will be projected onto the two
subspaces, and faulty sensors will be reconstructed
along fault direction. After faulty sensor is replaced
by the reconstructed sensor, the influences of faulty
sensor will disappear, and the process will run nor-
mally again. These strategies are illustrated based on
the real data from a PVC making process.
2 PVC BATCH POLYMERIZATION PRO-
CESS

PVC is produced on a large scale by Shell in its
plant in Liaoning province, China. The PVC poly-
merization process is shown in Fig. 1. Due to its in-
consistency, traditional MPCA for fault detection and
diagnosis has many problems. This paper combines
DTW and MPCA technique to overcome these prob-
lems and makes PVC making process monitoring and
fault diagnosis realizable.
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heating watert ——

polymerization reactor

VC monomer

heating water—s]
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Figure 1 Flow diagram of the PVC
polymerization process

Figure 1 shows the process flow diagram of PVC
making process. The kernel is the polymerization re-
actor. The vinylchloride(VC) monomer is polymer-
ized in aqueous suspension in the reactor. At different
stage of reaction, the phases of product are different.
There are three phases including water phase, liquid
VC phase, and solid PVC phase. Firstly, water, VC,
suspension of stabilizers and initiator are added into

the reactor through different inlets. Then these mate-
rials are stirred so that suspension of VC droplets in
water is obtained.

In the polymerization process, it is important. that
the temperature at different reaction stage in the reac-
tor must be controlled to certain extent. Several tem-
perature monitoring measurements are installed. In
the 9 monitored variables, temperature variables oc-
cupy 5 (see Table 1). At the beginning of reaction, the
heating water is pumped into the jacket of reactor to
heat the reactor content to the set temperature(57°C).
The heating continues until the polymerization reac-
tion generates sufficient heat by itself. PVC is insolu-
ble in water and only weakly soluble in VC, so it will
precipitate quickly, forming a solid PVC phase inside
the VC monomer droplets. The polymerization takes
place in the PVC phase and in the monomer phase.

During the polymerization, the temperature in re-
actor will increase. A lot of heat has to be withdrawn
from the process since the polymerization reaction is
highly exothermic. The cooling water will be pumped
into the jacket to make temperature decrease. The
excess of heat is withdrawn by the cooling jacket sur-
rounding the reactor, and by condensing monomer va-
por to liquid in a condenser on top of the reactor.
When the temperature is lower than set point, the
heating water is pumped. This process is repeated.
After a period of polymerization, the monomer phase
is nolonger present and all remaining VC is present
in the gas phase or in the polymer phase. The poly-
merization continues and VC is absorbed from the gas
phase, resulting in a decreasing pressure. The poly-
merization is finally stopped by adding a killing agent.

In this process, some key variable parameters are
measured accurately by distributed control system.
Fig.1 shows the location of the variables, and they
are also listed in Table 1.

3 FAULTY SENSOR DETECTION AND RE-
CONSTRUCTION

The proposed procedure of faulty sensor detection
and reconstruction for PVC production is showed in
Fig. 2.

Table 1 Polymerization reactor variables

Variable No. Sensor No. Variable name Unit
1 TIC-P101 temperature of the reactor °C
2 TIC-P102 temperature of the reactor jacket inlet °«C
3 TI-P107 temperature of water inlet °C
4 TI-P108 temperature of baffle outlet °C
5 TI-P109 temperature of the reactor Jacket outlet °C
6 PIC-P102 pressure of the reactor MPa
7 FIC-P101 flow rate of baffle water m*h~!
8 FIC-P102 flow rate of jacket water m®.p~1
9 JI-P101 stirring power kW
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Figure 2 Procedure of faulty sensor detection and reconstruction

In Fig. 2, the historical normal data are used to set
up the MPCA model. Data pre-treatment includes
scaling and synchronization, where the DTW is in-
troduced to synchronize batch trajectories that may
have different data length. The pre-treated data are
used to build MPCA model. By projecting the current
data onto the MPCA model, faults can be detected.
Based on the SVI, the faulty sensor can be isolated
from normal sensors. Along the fault direction, the
faulty sensor can be reconstructed according to other
normal sensor data. Then the faulty sensor data is
replaced by the reconstructed data, and are mapped
onto MPCA model again. In the end, there is no fault
in the process, which illustrates the reconstruction is
successful. This procedure will be explained in detail
below.

3.1 Synchronization of batch trajectories based
on DTW

DTW is a dynamic-programming-based technique,
and has been used in the area of speech recognition for
the recognition of isolated and connected words!4~16],
Two modes can be reconciled by DTW and simi-
larly two trajectories can be synchronized based on
DTW[JT‘J'SJ‘

Consider two trajectories of T' and R, their dura-
tions are not same. T is a t x n matrix, and R is a
rxn matrix. t is the number of observations of T', and

r is the number of observations of R, n is the number
of measured variables. DTW can extract the features
in the two trajectories and extend or compress some
of them, and it is based on the distance between two
trajectories(!%,

There are different definitions of distance between
two trajectories. The local distance is

dli(k), j(k)] = {T'[i(k),:] - R[j(k),:]}-

WA{TIi(k),:] = R[j(k), )]}",

k=1, K (1)
where W is a positive definite weighting matrix that
reflects the relative importance of each measured vari-
ables. i(k) and j(k) are two indexes in the new com-
mon frame of the observations T" and R, respectively.

k is the time index in the new frame. The normalized
total distance is

K
D*(t,r)=—— m!;n{z d[f(k),j(knw(m} )
S N(k) k=1
1

where w(k) is a nonnegative weighting function for
dli(k),j(k)]; N(k) is the standard factor of w(k)"7],

Based on the minimal distance in Eq. (2), the op-
timal path F* can be obtained

F* =arg mFinID* (t, )] (3)
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Based on the optimal path, synchronization of tra-
jectories can be completed. DTW provides a new way
to synchronization of trajectories, to make batch tra-
jectories be consistent and provide reliable data for
faulty sensor detection and reconstruction in batch
processes.

3.2 Fault detection based on MPCA using
DTW

Since batch process data are of three dimensions
in batch process, conventional PCA can not be ap-
plied directly to such processes!’?l. To this end, one
has proposed multi-way PCA, which can decompose
a 3-D array into a 2-D matrix, and the translated
2-D data can be modeled by the conventional PCA
Hleth0d12‘4'll‘2{J].

PCA is an effective data analysis tool. The origi-
nal data matrix, X, can be discomposed as a sum of
the products of scores and loadings for each column
in the model (7}, and P, ) and the array of residual
errors E

X=T1@P1+T2®P2+---—l-T‘,,Q?)PP-I-E (4]
where @ denotes the Kronecker product, p is the num-
ber of principal component. X is composed of score
vectors, loading matrices and residual matrix E. In
other words, the measurement space can be decom-
posed into principal subspace and residual subspace.

Due to the characteristic of batch process, some
process trajectories have distinct time duration from
batch to batch. Not only modeling but also diagnosing
batch process need consistent data trajectories based
on MPCA. For this purpose, a new approach that can
make some data from different batches to be consistent
based on DTW firstly, then build MPCA model based
on these new consistent batch trajectories, make new
batch trajectories to be disposed based on DTW and
project them onto the MPCA model for monitoring
and fault diagnosis.

Some data come from an industrial real PVC mak-
ing processes is used for modeling and fault diagno-
sis based on MPCA. If I batches of normal data are
used for model, it is firstly necessary to make all data
have the same duration based on DTW. An impor-
tant thing is how to choose a reference trajectory and
then make others to match it. Usually the average
trajectory will be a reasonable choice. But all the raw
data are not of the same duration and it is impossible
to get the average. Normal method is to select one
trajectory from the I batches of data freely, and syn-
chronize other I-1 batches to this particular one using
DTW. As a result, [ batches will have the same dura-
tion. Then the average of I trajectories is defined to
be the reference trajectory. The whole procedure will
be repeated to make every trajectory be synchronized
with the reference one.
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MPCA model should be built that includes 95%
SPE limit and 99% SPE limit!"*!. Usually they are
called statistic control limits, and these indexes can be
used for fault detection. The SPE of the model cap-
tures what is not explained by the calibration model,
thus it provides better understanding of unanticipated
changes in the process. MPCA model can be built
only if the duration of all batches is equal. Therefore,
consistent MPCA model is built after using DTW to
synchronize all batch trajectories.

By projecting new batch data onto a MPCA
model, fault will be detected. The detailed applica-
tions are shown in Section 4.

3.3 Faulty sensor reconstruction based on PCA

According to Eq. (4), X can be decomposed into
two parts:

X=TP"+E (5)

where T is the principal component matrix, P is the
loading matrix. Eq.(5) can be rewritten as

X=X+X (6)

in which the projection on principal component sub-
space is .
X =PP'X=CX (7)

and the projection on residual subspace:
X=(I-PPHX=(I-C)X=CX (8

Assuming that the new sample data are detected by
squared prediction error (SPE) plot to be faulty, the
faulty sensor can be isolated by applying the SVIL
The SVI is defined for sensor fault identification as
Refs. [5,6,8]:

_ SPE;

~ SPE

where 7; is the SVI of reconstruction along fault di-
rection i. If n; is close to 0, variable 7 is just faulty
variable. Otherwise 7; is close to 1.

Faulty sensor reconstruction is that the corrupted
data are reconstructed along the direction of the fault.
The reconstructed data are as close as to the normal
data, and make the process return normal state from
abnormal statel®~7].

Assuming that the normal data is ", and the cor-
rupted sample data is x, the reconstructed data is ;.
The corrupted data z is the sum of normal data ="
and the faulty data @x;:

i

z=a" +xy (9)

(10)

Here 3 is the magnitude of fault i, Z; is the direction
vector of fault 4.

Ty = ﬁ‘E,;

= =10,0,---,1,---,0,0]" (11)
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in which the ith element is 1, and others are 0. The
reconstructed data is given by

z; =z — BiE; (12)

If the reconstructed data is projected onto the
MPCA model, the statistics of the process outputs
will go back to normal statistical regions(®~7).

4 APPLICATION TO PVC MAKING PRO-
CESS
4.1 Data pre-treatment

Data from different batches in the PVC making
process (in a large Shell plant in Liaoning province,
China) have different time durations. Usually the du-
ration of one batch is about 4h and 10 min. The sam-
pling interval is 5 s, so the average data length is about
3000 for a batch. 50 normal batches are used for mod-
eling, and their average length is just 3000.

Data scaling is carried out at first, i.e., the data
matrix for each batch is normalized, so that it has
zero-mean, and unity variancel?). One batch trajec-
tory is shown in Fig. 3, where there are 10 variables in
it. 9 variables are shown in Table 1, and the other one
is the set temperature in the reactor, it is a constant
(567°C) and is scaled to be 0.
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Figure 3 Reference data

A normal batch data that has the average length
is defined as the selected data matrix, and its length is
3000. The other 49 batches are synchronized with the
selected data matrix by the DTW technique. Synchro-
nized data is denoted by X (50 x 3000 x 9). Then the
50 batches trajectories are averaged, and the averaged
trajectory is called the reference trajectory in DTW
(see Fig.3). 50 batches data are synchronized with
the reference trajectory respectively. The consistent
MPCA model can be built based on the 50 batches
that have been synchronized to have the same dura-
tion. Faults can be detected based on the consistent

MPCA model and faulty sensor can be reconstructed
in the polymerization reaction process.

Now take one batch data as an example, it is shown
in Fig.4. Based on Section 3.1, the data matrix in
Fig.4 will be matched onto the reference trajectory
with fixed length 3000 using DTW. The optimal path
is shown in Fig. 5.

1 , - 20
0 seiing temperature = o
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Figure 5 Optimal path

Figure 5 shows the optimal path of synchronization
between two trajectories (3704 x 9 and 3000 x 9) based
on DTW, which interprets the process of synchroniza-
tion between two batches. As are shown in Figs.3
and 4, two batch trajectories (3704 x 9 and 3000 x 9)
are projected onto the common time index frame re-
spectively, and the optimal path is obtained firstly in
Fig.5. This process is called symmetric DTW. Then
the original trajectories (3704 x 9) in Fig. 4 will match
the reference trajectories (3000 x 9) in Fig.3. This
process is called asymmetric DTW, and new trajec-
tories (3000 x 9) in Fig. 6 are obtained, the new tra-
jectories contain all important information in old one
(3704 x 9).

50 batches data will be synchronized with refer-
ence trajectory respectively. Then MPCA model will
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be built based on the 50 normal batches that have the
same duration 3000.
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Figure 6 Synchronized data

4.2 Fault detection

Figure 7 shows a new batch data that has 9 vari-
ables (3049 x 9). It has been synchronized with refer-
ence trajectories. The SPE of this new batch is cal-
culated and projected onto 99% SPE and 95%SPE
model(see Fig.8). This model is just the consistent
MPCA model built in Section 4.1. It is obvious that
data before 1500 are inside the control limits, but af-
ter 1500, some samples are outside the control limits.
This illustrates that sensor faults occur after 1500.
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Figure 7 Detected data

4.3 Fault reconstruction
Now, we need to isolate the faulty sensors, the SVI
will be used for fault identification. After fault occurs,
all variables are reconstructed along their own fault
directions as
=, = [1,0,0,0,0,0,0,0,0]
=, =1[0,1,0,0,0,0,0,0,0]

= = [0,0,0,0,0,0,0,0,1]

April, 2004

If the faulty sensor is reconstructed, the SPE in
fault direction will decreases apparently. Thus, ev-
ery sensor output is reconstructed along its fault di-
rection, and all SVIs are calculated based on the re-
constructed sensors. The sensor corresponding to the
minimal SVI is just the faulty one. Fig.9 shows the
fault identification results. All SVIs are given at 1502
and 2000, respectively. The minimal SVI is obtained
in sensor 1, and one’s reconstruction along direction
=, = [1,0,0,0,0,0,0,0,0]. So sensor 1 is isolated to
be faulty, i.e., the sensor for temperature of the re-
actor { TIC-P101 ) is faulty. In Fig. 10, the SVI of
reconstruction along sensor 1 direction is close to 1
before 1500, and close to 0 after 1500, this also shows
that the fault is originated from sensor 1.
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Figure 11 (a) shows the output of faulty sensor 1,
and Fig.11 (b) reconstructs sensor 1 output. After
the faulty data is replaced by its reconstructed one,
the SPE of reconstructed one will be inside 99% SPE
and 95% SPE limits(see Fig. 12), which shows that the
reconstruction is successful. Our next work will focus
on fault identification for batch processes with non-
stationary process noise and earlier identification of
faulty sensors from the online data from the ongoing
batch processes.
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5 CONCLUSIONS

The results of application on faulty sensor detec-
tion and reconstruction for a PVC making process are
presented in this paper, in which the DTW technique
plays an important role to make the batch process
data synchronized. Although DTW was originally
proposed for speech recognition, it shows valid in the
synchronization of batch trajectories. Fault detection
is carried out based on consistent MPCA using DTW.
By calculating the SVIs of sensor outputs, faulty sen-
sor can be identified, the SPE of the reconstructed
data will decrease significantly in fault direction. Af-
ter faulty sensors are reconstructed along fault direc-
tion, the process will run normally again.
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