水热法制备板钛矿型 TiO₂ 纳米颗粒及其表征

李明辉 曲长红 李伊荇 付乌有 杨海滨 (吉林大学超硬材料国家重点实验室 长春 130012)

摘 要 采用水热法成功合成板钛矿型 TiO₂ 纳米颗粒。利用 X 射线衍射仪、透射电子 显微镜、拉曼光谱仪、激光粒度分析仪对样品进行分析表征,结果表明 TiO₂ 纳米颗粒为 棒状,直径约为 10nm,长度约为 100nm。发现所合成的样品随着反应时间,其长度有 明显的增加,而直径没有明显的变化。 关键词 TiO₂ 板钛矿型 纳米棒

引言

在二氧化钛的三种晶体结构中,由于板钛矿 型属于亚稳相且不易制备而被研究甚少^[1,2]。若将 TiO₂的三种晶体结构相比较,板钛矿有一些独特 的性质^[3,4],表现为:板钛矿结构中的八面体链有 特殊的连接方式,使其(100)晶面上有裸露的氧原 子,从而使其成为催化反应等的活性原子。板钛矿 结构中TiO₆八面体的排列方式使得在其晶体结构 中形成沿 c 轴方向的隧道,一些较小的阳离子,如 氢离子或锂离子可以结合于其中,使之在催化及干 电池等领域有潜在的应用背景。目前关于单一相的 板钛矿样品制备的报道还很少,随着对板钛矿型 TiO₂的性质及应用研究的不断深入,寻找制备单 一板钛矿相的合成方法具有重要意义。

本文介绍一种制备单一板钛矿型 TiO₂ 的方法, 以 TiCl₃ 的盐酸溶液,新配制的饱和 NaCl 和少量 的配位剂尿素为前驱体,于 200℃水热条件下反应, 可制得粒度分布均匀的板钛矿型 TiO₂ 微晶粉末, 样品具有很高的晶相纯度,透射电镜照片显示出每 个晶粒都是形状规整的棒状结构。

1 实验部分

实验中所用的三氯化钛 (TiCl₃),氯化钠 (NaCl), 尿素 (CO(NH₂)₂),无水乙醇 (CH₃CH₂OH) 均为分析 纯,购于北京化工厂。

1.1 板钛矿型 TiO₂ 纳米颗粒的制备

将一定体积的 20%(溶于 3% 盐酸中) TiCl₃ 溶液倒入新配制的饱和 NaCl 水溶液中,形成 0.15mol/L 的 TiCl₃溶液,再加入一定量的配位 剂尿素固体 (n(尿素): n(Ti³⁺)=1:10),磁 力搅拌 10min,溶液稍静置后倒入 100mL 不锈 钢(内衬为聚四氟乙烯)的洁净高压釜,溶 液的最大体积不超过高压釜体积的75%,将 经清洁处理(洗涤剂超声波洗涤→无水丙酮超 声波洗涤→无水乙醇超声波洗涤→NaOH饱 和无水乙醇溶液超声波洗涤→无水乙醇洗涤→ 去离子水洗涤)的玻璃基片插入溶液,斜靠在 反应釜的内壁,拧紧高压釜盖,置入烘箱中, 从环境温度开始升温到200℃时分别恒温反应 2~10h,反应完毕后切断电源使烘箱自然降 温冷却至室温后取出玻璃基板。经去离子水洗 涤(以AgNO₃检验CI⁻的存在)、无水乙醇洗 涤后,自然干燥后保存,用于表征测试。

1.2 板钛矿型 TiO₂ 的表征

采用常温常压下的拉曼振动光谱仪 (Renishaw in Via, λ =514.5nm, 高性能 CCD 接收器)和日 本 Rigaku X 射线粉末衍射仪 (XRD, CuK α, λ =1.54184Å)测定样品晶体结构;样品的颗粒 尺寸和形貌通过透射电子显微镜 (TEM, JEOL 2000EX)检测;样品粒径分布以英国 Malvern 公 司 Zetasizer3000HAS 型激光粒度分析仪上测试。

2 结果与讨论

图 1 为所合成的板钛矿型 TiO₂ 微晶粉末进 行 X 射线衍射的结构分析衍射谱图。由 XRD 图 可以看出, X 射线衍射峰出现在 2 θ 为 25.319°, 30.792°, 32.785°, 36.208°, 37.253°, 37.950°, 40.131°, 42.305°, 46.045°, 48.005°, 49.134°, 54.182°, 55.222°, 57.096°, 59.932°, 64.612°, 64.922°, 65.921°, 68.726°, 70.784°, 71.879°, 77.015°和 78.975°等位置, 它们分别归属于 {210}、{211}、{020}、{102}、{021}、{311}、{202}、 {221}、{302}、{321}、{312}、{230}、{421}、{113}、 {213}、{512}、{123}、{611}、{040}、{332}、{323}、 {711}和 {341} 衍射峰, 符合 JCPDS Patterns No. 76-1935,这完全是板钛矿型 TiO₂的衍射峰,并且 在该谱线上,没有任何其他衍射峰,结果表明谱图 中所有的衍射峰都归属于板钛矿型 TiO₂的晶面衍 射。

图1 所合成板钛矿纳米颗粒的 XRD 衍射谱图

图 2 为反应时间 3h 得到的具有代表性的板钛 矿型 TiO₂ 样品的 TEM 电镜照片。从图 2 中可以清 楚地看到板钛矿型 TiO₂ 纳米颗粒为棒状。纳米颗 粒直径约为 10nm,长约 100nm。

图 2 板钛矿型 TiO2 样品的 TEM 电镜照片

用激光粒度分析仪测试所合成板钛矿型 TiO₂样品的粒度分布情况(见图3),图3中 可以看出,出现两个峰,说明样品可能为一维 状,直径约在6~15nm,中心在10nm,长度为 65~125nm,更多集中在100nm左右。这与透 射电镜观察到的结果是一致的。从图3b可以看 出,反应时间为10h时,直径约在10nm左右, 而长度约为300nm,表明随着反应时间的延长,

样品直径变化不大, 而长度增加。

图 4 给出所合成的板钛矿型 TiO₂ 微晶的拉 曼光谱。板钛矿 TiO₂ 属于空间群 D_{2h}^{15} ,每个晶胞 中含 8 个分子,根据子群的对称性分析可得板钛 矿 TiO₂ 有 69 个光学声子模,其中 36 个拉曼活 性振动模,它们分属于 A_{1g} 、 B_{1g} 、 B_{2g} 、 B_{3g} 四个 振动模式^[40]。在图 4 中有 16 个拉曼振动模可以 观察到,它们分别属于: A_{1g} (127cm⁻¹,154cm⁻¹, 193cm⁻¹,246cm⁻¹,412cm⁻¹,638cm⁻¹); B_{1g} (214cm⁻¹, 322cm⁻¹,412cm⁻¹,504cm⁻¹); B_{2g} (368cm⁻¹, 395cm⁻¹,463cm⁻¹,587cm⁻¹) 和 B_{3g} (287cm⁻¹, 545cm⁻¹)。

如前所述,在板钛矿结构的TiO2中,氧原子 有两种不同的位置,八面体中每条键长都不相等; 而锐钛矿和金红石结构的八面体中所有的氧原子都 占据相同的位置,只有5种不同的键长;因此板钛 矿型 TiO,的晶格振动谱带要比金红石和锐钛矿的 都复杂。板钛矿的振动谱带可分成强的低频部分的 振动模式和很弱的高频部分的振动模式两部分。低 频部分154cm⁻¹是一个非常强的振动谱带,与锐钛 矿 Eg 振动模(144cm⁻¹)有相似的振动强度,而金 红石在这个区域的振动谱没有这样的强度。按照文 献对锐钛矿的振动分类[41],板钛矿振动谱中低于 400cm⁻¹的拉曼振动属于 O-Ti-O 弯曲振动, 高 于 400 cm⁻¹ 的拉曼振动属于 Ti-O 伸缩振动。与 锐钛矿和金红石不同,板钛矿型 TiO2 的常规 振动光谱中没有二级散射谱出现,这说明板钛 矿比金红石和锐钛矿的结构更有序,非谐性低。

综上所述,可以得出以下结论:所合成的板钛 矿型 TiO₂ 样品具有很高的晶相纯度,粒度分布均 匀,晶粒形状相同,晶粒具有完美的内部结构。

3 结论

以 TiCl₃ 的盐酸溶液,新配制的饱和 NaCl 和少量的配位剂尿素为前驱体,于 200℃的水

现代仪器 (www.moderninstrs.org.cn)

二〇〇八年・第五期

热条件下反应,可制得粒度分布均匀的板钛矿 型TiO,微晶粉末。

经 XRD, TEM, Raman 测试表明, 所合成的 样品具有单一的板钛矿型 TiO,结构, 粒度分布均 匀,晶粒形状相同,晶粒具有完美的内部结构。

参考文献

1 Bokhimi X ,Morales A ,Novaro O, et al . Effect of Copper Precursor on the Stabilization of Titania Phases, and the Optical Properties of Cu/TiO₂ Prepared with the Sol-Gel Technique, Chem. Mater. 1997,9:2616

- 2 Hong S .H.,Lee N,Carim A.H.,et al. Evidence from HRTEM image processing, XRD and EDS on nanocrystalline irondoped titanium oxide powders, J.Mater.Res.1998,13:974
- 3 Bokhimi X, Morales A, Aguilar M, et al. Local order in titania polymorphs, International Journal of Hydrogen Energy. 2001, 26:1279
- 4 Koelsch M, Cassaignon S, Guillemoles J F, et al. Comparison of optical and electrochemical properties of anatase and brookite TiO₂ synthesized by the sol-gel method, Thin Solid Films. 2002, 312~319,403

Hydrothermal synthesis and characteristics of brookite TiO₂ nanoparticles

Li Minghui Qu Changhong Li Yixing Fu Wuyou Yang Haibin

(National laboratory of superhard materials, J ilin university, Changchun 130012)

Abstract Brookite TiO₂ nanoparticles have been successfully synthesized by hydrothermal method. The morphology and the crystalline structure of nanoparticles were characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum and 3000HSA analyzer (MALVERN), respectively. The result indicate that the TiO₂ nanorods with an average diameter of 10nm and 100nm longness. It was found that the longness of TiO₂ nanorods increase as increasing the reaction times, while the diameter does not show any change.

Key words TiO₂ Nanorods Brookite

(上接第21页)	
吸收光谱法测定烟叶中微量钙和镁,光谱实验室, 2005,	18 付秋娟,张怀宝,邱军等.近红外光谱法快速测定烟
22 (3): 491~495	中的总挥发碱中国,烟草科学,2005,(4):14~15

15 刘少民,陈良友,郭家明等.间氯偶氮安替比林光度法 测定烟草中的钙,烟草科技,2002,(7):32~35

16 张承明, 古昆, 王保兴等. 微波消化-分光光度法测定 烟草中的镁,光谱实验室,2004,21 (1):181~182

17 乐俊明,陈鹰,丁映.近红外光谱分析法测定烟草化学 成分,贵州农业科学,2005,33 (3):62~63

耳草

19 邱军, 王允白, 张怀宝等. 烟草中淀粉、石油醚提取物 的近红外光谱分析模型研究,分析化学,2006,34(4): 588

20 何智慧, 练文柳, 吴名剑等. 声光可调 - 近红外光谱技 术分析烟草主要化学成分,分析化学,2006,34(5): 702~704

The simultaneous detection of the element Ca and Mg in tobacco leaf by FT-NIR spectral method

Ding Yunsheng² Yuan Xingfen² He Yue² Cao Jinli² Min Shungeng¹ Wang Dong¹ (1. Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193) (2. Yunnan Tobacco Company Dali Branch, Dali 671000)

Abstract The spectra of 220 tobacco samples were measured by FT-NIR Spectrometer. The calibration models of the elements of calcium and magnesium were established by PLS method, which were optimized by rejecting the outliers. The result suggested that after the models being optimized, for the NIR model of the element of calcium, R², SEE, SEP and RPD were 98.39%, 0.11, 0.15 and 5.7 respectively, the number of factors was 14; for the NIR model of the element of magnesium, R², SEE, SEP and RPD were 89.39%, 0.04, 0.06 and 2.2 respectively, the number of factors was 14. The results of the NIR models were tested by F test and t test, which suggested that the predicted values by NIR models and the specified values had no distinct difference. The results showed that near-infrared spectral method can be applied to the quantitative analysis of calcium and magnesium in tobacco leaf simultaneously.

Key words Tobacco Leaf Calcium Magnesium FT-NIR Spectroscopy