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Abstract

This note extends Voiculescu’s S-transform based analytical machinery for free multiplicative
convolution to the case where the mean of the probability measures vanishes. We show that
with the right interpretation of the S-transform in the case of vanishing mean, the usual
formula makes perfectly good sense.

1 Introduction

Multiplicative free convolution ⊠ was introduced by Voiculescu [7], as an operation on prob-
ability measures to describe the multiplication of free random variables. Since various classes
of random matrices become asymptotically free, the multiplicative free convolution is an im-
portant concept to deal with the asymptotic eigenvalue distribution of products of random
matrices [8, 1]. A powerful analytical tool for an effective calculation of ⊠ is Voiculescu’s
S-transform. In the usual presentations of the S-transform it looks as if its definition breaks
down in the case where the considered random variable has mean zero. Since interesting cases,
like the multiplicative free convolution of a semicircle with a free Poisson distribution (corre-
sponding in the random matrix language to the product of a Gaussian random matrix with an
independent Wishart matrix), fall into this class one gets the impression that the S-transform
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machinery has a crucial flaw here. However, as we want to point out, this is only ostensive,
and with the right interpretation of the S-transform in the case of vanishing mean, the usual
formula makes perfectly good sense. We will show this by combinatorial arguments in the
setting where all moments exists. It stands to reason that one should be able to establish
this using purely analytical tools, for more general distributions for which the combinatorial
moment based arguments do not suffice.

2 Main result: one mean is zero

Let us first recall the definition of the S-transform. We start by working on an algebraic level,
further below we will address the question of positivity (which is crucial for the definition
of ⊠). So a random variable x is an element in some unital algebra A, which is equipped
with a linear functional ϕ such that ϕ(1) = 1. Our main interest is in the moments ϕ(xn)
of the random variable x. Of course, of main interest for us are real-valued random variables
X : Ω → R in the genuine sense, where ϕ is given by taking the expectation with respect to
the underlying probability measure,

ϕ(Xn) =

∫

Ω

X(ω)ndP (ω).

In our algebraic frame we have to restrict to situations where moments determine the distribu-
tion uniquely; let us, however, remark that by analytic tools much of the theory of multiplica-
tive free convolution can be extended to classes of probability measures with no assumption
on the existence of moments.

Definition 2.1. Let x be a random variable with ϕ(x) 6= 0. Then its S-transform Sx is
defined as follows. Let χ denote the inverse under composition of the series

ψ(z) :=
∞
∑

n=1

ϕ(xn)zn,

then

Sx(z) := χ(z) · 1 + z

z
.

The above definition has to be understood on the level of formal power series. Note that
ϕ(x) 6= 0 ensures that the inverse of ψ exists as formal power series in z. Furthermore, ψ can
be recovered from Sx and thus the S-transform contains all information about the moments
of the considered random variable.
The relevance of the S-transform in free probability theory is due to the following theorem of
Voiculescu [7].

Theorem 2.2. If x and y are free random variables such that ϕ(x) 6= 0 and ϕ(y) 6= 0, then
we have

Sxy(z) = Sx(z) · Sy(z).

Note that in the above setting ϕ(xy) = ϕ(x)ϕ(y) 6= 0, thus the S-transform of xy is also
well-defined and the above theorem allows to get the moments of xy out of the moments of x
and the moments of y.
Note that in this theorem we do not require x or y to be real or positive random variables.
In this formulation, the theorem is true in full generality, since it is essentially a statement
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about mixed moments of free random variables. However, if one wants to extract a probability
distribution out of the S-transform, then one has to make special requirements concerning x
and y. In particular, one would like to start with a situation where ϕ(xn) are the moments of
a probability measure µ on R (i.e., x should be a real-valued random variable, i.e., a selfadjoint
operator) and where ϕ(yn) are the moments of a probability measure ν on R (i.e., y should
be real-valued random variable or selfadjoint operator). Since x and y do not commute, xy
will not be a selfadjoint operator, thus it is not clear (and in general will not be the case) that
ϕ((xy)n) are the moments of a probability measure. However, if x is a positive random variable,
then

√
x makes sense and the operator

√
xy

√
x is selfadjoint and has the same moments as

xy. Thus in this case we know that the ϕ((xy)n) are the moments of a probability measure on
R; this is called the multiplicative free convolution of µ and ν and denoted by µ ⊠ ν. So the
operation µ, ν 7→ µ⊠ ν is defined for probability measures µ, ν on R if at least one of them is
supported on the positive real line.

Often one restricts both factors to be supported in R+. In this case the above theorem for
the S-transform gives a solution to the problem of calculating µ⊠ ν. But there are also many
interesting cases where only one factor is supported on R+. In this case the description of µ⊠ν

in terms of the S-transform seems to have the following flaw. In order to be able to invert
the power series ψ(z) =

∑

∞

n=1 ϕ(xn)zn one needs a non-vanishing linear term, which means
that the mean ϕ(x) of the variable should be non-zero. For measures supported on R+ this is
(with the exception of the uninteresting case x = 0) satisfied, but for measures supported on
R the mean ϕ(x) might be zero and in such a case it seems that the S-transform cannot be
used to calculate µ⊠ν. One should note that this is not an artificial situation, but covers such
common cases like taking the multiplicative free convolution of a semicircle with a distribution
supported on R+. One could of course try to approximate mean zero situations with non mean
zero ones; however, the main purpose of our note is to point out that actually the failure of the
S-transform description in the mean zero case is just ostensive; with the right interpretation,
the above theorem can also be used in that case to determine µ⊠ ν.

So let us consider the situation that ϕ(x) = 0 for some selfadjoint element. Let us first see
whether we still can make sense out of the relation Sxy(z) = Sx(z) · Sy(z) and whether this
still allows to recover all moments of xy uniquely out of the moments of x and of y. Again
we exclude the uninteresting case that x = 0; hence we know that ϕ(x2) > 0 (otherwise, by
positivity, x would be equal to 0) and thus our series ψ(z) starts with a multiple of z2. This
means that although it cannot be inverted by a power series in z it can be inverted by a power
series in

√
z. This inverse is not unique, but there are actually two choices (which correspond

to choosing a branch of
√
z); however, this ambiguity does not affect the final result for the

moments of xy, if y has non-zero mean. Let us be more specific about this in the following
proposition.

Proposition 2.3. (1) Let ψ be a formal power series of the form

ψ(z) =

∞
∑

n=2

αnz
n = α2z

2 + α3z
3 + · · ·

with α2 6= 0. Then there exist exactly two power series in
√
z which satisfy

ψ(χ(z)) = z.
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If we denote these solutions by

χ(z) =

∞
∑

k=1

βkz
k/2 = β1

√
z + β2z + β3

√
z

3
+ · · ·

and

χ̃(z) =

∞
∑

k=1

β̃kz
k/2 = β̃1

√
z + β̃2z + β̃3

√
z

3
+ · · ·

then their coefficients are related by

β̃k = (−1)kβk.

(2) Let ψ be as above and consider the two corresponding S-transforms

S(z) = χ(z) · 1 + z

z

and

S̃(z) = χ̃(z) · 1 + z

z

Then S(z) and S̃(z) are of the form

S(z) = γ−1
1√
z

+
∑

k=0

γkz
k/2

and

S̃(z) = γ̃−1
1√
z

+
∑

k=0

γ̃kz
k/2,

where
γ̃k = (−1)kγk.

(3) Let x be a random variable with vanishing mean and denote by Sx and S̃x the corresponding
two S-transforms, as constructed in (1) and (2). Let y be another random variable, with non-
vanishing mean so that its S-transform is of the form

Sy(z) =

∞
∑

k=0

δkz
k = δ0 + δ1z + δ2z

2 + · · ·

Then the two series Sxy(z) := Sx(z)Sy(z) and S̃xy(z) := S̃x(z)Sy(z) are of the form

Sxy(z) = ε−1
1√
z

+
∑

k=0

εkz
k/2

and

S̃xy(z) = ε̃−1
1√
z

+
∑

k=0

ε̃kz
k/2

and related by
ε̃k = (−1)kεk.
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If we put

χxy(z) = Sxy(z) ·
z

1 + z
, χ̃xy(z) = S̃xy(z) ·

z

1 + z

and denote by ψxy the unique solution of

ψxy(χxy(z)) = z

and by ψ̃xy the unique solution of

ψ̃xy(χ̃xy(z)) = z,

then we have

ψxy(z) = ψ̃xy(z).

Proof. (1) The equation ψ(χ(z)) = z means

z =

∞
∑

n=2

αn

(

∞
∑

k=1

βkz
k/2

)n
=

∞
∑

n=2

∞
∑

k1,...,kn=1

αnβk1
· · ·βkn

z(k1+···+kn)/2.

By equating the coefficients of powers of
√
z this is equivalent to the system of equations

1 = α2β
2
1

and

0 =

r
∑

n=2

r
∑

k1,...,kn=1

k1+···+kn=r

αnβk1
· · ·βkn

for all r > 2.
The first equation has the two solutions

β1 =
1√
α2

and

β̃1 = − 1√
α2

= −β1.

Writing the other equations in the form

0 = 2α2βr−1β1 +

r
∑

n=2

∑

k1,...,kn=1

k1+···+kn=r
···

αnβk1
· · ·βkn

(where the · · · indicate that we exclude in the second sum the cases k1 = 1, k2 = r − 1 and
k1 = r − 1, k2 = 1) one sees that the values of βn for n > 1 are recursively determined by β1

and the α’s. By induction, it follows that β̃1 = −β1 results in β̃k = (−1)kβk for all k.
(2) This is clear, since we have γk = βk+2 + βk for all k = −1, 0, 1, · · · , where we set β−1 :=
β0 := 0.
(3) This follows by reverting the arguments from the first and second part.
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Definition 2.4. Let x be a random variable with ϕ(x) = 0 and ϕ(x2) 6= 0. Then its two
S-transforms Sx and S̃x are defined as follows. Let χ and χ̃ denote the two inverses under
composition of the series

ψ(z) :=
∞
∑

n=1

ϕ(xn)zn = ϕ(x2)z2 + ϕ(x3)z3 + · · · ,

then

Sx(z) := χ(z) · 1 + z

z
and S̃x(z) := χ̃(z) · 1 + z

z
.

Both Sx and S̃x are formal series in
√
z of the form

γ−1
1√
z

+

∞
∑

k=0

γkz
k/2

Now we stand ready to formulate our main theorem

Theorem 2.5. Let x and y be free random variables such that ϕ(x) = 0, ϕ(x2) 6= 0 and
ϕ(y) 6= 0. By Sx and S̃x we denote the two S-transforms of x. Then

Sxy(z) = Sx(z) · Sy(z) and S̃xy(z) = S̃x(z) · Sy(z)

are the two S-transforms of xy.

Note that xy falls into the realm of Def. 2.4. We have

ϕ(xy) = ϕ(x)ϕ(y) = 0

and
ϕ((xy)2) = ϕ(x2)ϕ(y)2 + ϕ(x)2ϕ(y2) − ϕ(x)2ϕ(y)2 = ϕ(x2)ϕ(y)2 6= 0.

Let us point out again that the ambiguity of having two S-transforms for xy is not a problem,
because both of them will lead to the same moments for xy, according to Prop. 2.3.
In order to prove our Theorem 2.5, one might first inspect the usual proofs for the S-transfom.
One notices that all of them rely on the fact that ϕ(x) and ϕ(y) both are not zero. None of
the published proofs can be used directly for the case where one variable is centered. However,
at least the idea of the proof in [3, 4] can be adapted to our situation. The following proof
is a variant of the approach in [3, 4] (by avoiding an explicit use of the incomplete boxed
convolution) and can of course also be used to give a straightforward proof in the usual case
ϕ(x) 6= 0.

Proof. For a random variable x we denote by

ψx(z) :=
∞
∑

n=1

ϕ(xn)zn

and
Mx(z) := 1 + ψx(z)

the corresponding moments series and by

Cx(z) :=

∞
∑

n=1

κx
nz

n
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the corresponding cumulants series (κx
n = κn(x, . . . , x) is here the n-th free cumulant of x).

Consider now x and y as in the theorem. Then, in addition to the moment and cumulant
series of x, y, and xy, we consider also additional moments series of the form

M1(x) :=

∞
∑

n=0

ϕ
(

y(xy)n
)

zn

and

M2(z) :=

∞
∑

n=0

ϕ
(

x(yx)n
)

zn.

By the moment cumulant formula and by the fact that because of the freeness between x and
y mixed cumulants in x and y vanish (see [4] for the combinatorial theory of freeness), it is
quite straightforward to derive the following relations between these power series:

Mxy(z) = Myx(z) = Cy[zM2(z)] + 1 (1)

M1(z) = Cy[zM2(z)] ·
Mxy(z)

zM2(z)
(2)

M2(z) = Cx[zM1(z)] ·
Mxy(z)

zM1(z)
(3)

Note that all these relations are valid (and make sense as formal power series) independent of
whether ϕ(x) = 0 or not.
Let us note that we have the well-known relation M(z) = 1 +C[zM(z)] between moment and
cumulant series, which shows, by replacing z with χ(z), that C[zS(z)] = z. This relation,
which was observed in [3], can be taken as an alternate definition of S(z). In the case where
ϕ(y) 6= 0 this is just a relation between formal power series in z. In the case ϕ(x) = 0, it has
again to be read as formal power series in

√
z. (Note that for the case ϕ(x) = 0, ϕ(x2) 6= 0 we

also have κx
1 = ϕ(x) = 0 and κx

2 = ϕ(x2) 6= 0, thus Cx(z) starts also with a quadratic term in
z.)
Since ϕ(xy) = ϕ(x)ϕ(y) = 0, the moment series ψxy has two inverses; let χ be one of them.
Replacing z by χ(z) in (1) gives

1 + z = Mxy(χ(z)) = Cy[χ(z)M2(χ(z))] + 1,

yielding that
z = Cy[χ(z)M2(χ(z))]. (4)

Equation (2) gives
zM1(z)M2(z) = Cy[zM2(z)] ·Mxy(z).

Replacing z by χ(z) gives

χ(z) ·M1

(

χ(z)
)

·M2

(

χ(z)
)

= Cy[χ(z)M2(χ(z))] ·Mxy

(

χ(z)
)

and hence
χ(z) ·M1

(

χ(z)
)

·M2

(

χ(z)
)

= z · (z + 1) (5)

Since zSy(z) is the unique inverse of Cy under composition we must have, by (4) that

zSy(z) = χ(z)M2(χ(z)).



S-transform: case of the vanishing mean 255

In the same way as for (4) we get

z = Cx[χ(z)M1(χ(z))].

Since Cx has exactly two power series in
√
z as inverses under composition, namely zSx(z)

and zS̃x(z) we must have either

zSx(z) = χ(z)M1(χ(z)) or zS̃x(z) = χ(z)M1(χ(z)).

Name Sx and S̃x in such a way that we have the first equation.
Plugging this into (5) gives

zSx(z) · zSy(z) = χ(z)M1(χ(z)) · χ(z)M2(χ(z)) = χ(z)z(z + 1)

and thus

Sx(z)Sy(z) = χ(z)
z + 1

z
= Sxy(z).

If we start with the other inverse, χ̃, of ψxy, then we would end with the other S-transform,

S̃xy.

This proposition tells us that we can also use the formula Sxy(z) = Sx(z)Sy(z) to calculate the
moment series of xy, for x and y free, in the case where at most one of them has non-vanishing
mean. Since this is the case in the situation where y has a distribution supported on R+, we
see that the S-transform is a useful tool for the calculation of µ⊠ν, whenever µ is a probability
measure on R and ν is a probability measure on R+, independent of whether µ has vanishing
mean or not.

3 Case where both means are zero

One should also note that for the proof of our proposition it is important that at least one
of the two involved measures has non-vanishing mean. If both have vanishing mean then the
arguments break down. One should, however, note that this cannot be attributed to the fact
that there does not exist a probability measure with the moments of xy. Actually, for x, y free
with ϕ(x) = 0 = ϕ(y) we have by the definition of freeness that ϕ((xy)n) = 0 for all n, i.e., xy
has the same moments as the delta distribution δ0. So one might say that the multiplicative
free convolution of any two measures with mean zero is δ0. However, on a formal level the
situation for the S-transform gets quite different here. As a concrete example, let us consider
the multiplicative free convolution of the semicircle with some ν. The S-transform of the
semicircle µ (of variance 1) is

Sµ(z) =
1√
z
.

If we multiply this with an S-transform which is a power series in z then the result is again a
series of the form

1√
z
· power series in

√
z,

which can, as in our proposition, be uniquely resolved for the corresponding moment series.
Let us take now, on the other hand, the multiplicative convolution of two semicirculars. Then
we have

Sµ(z)Sµ(z) =
1

z
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which results in a ψ transform of the form

ψ(z) =
1

z
− 1.

This, however, is not a valid moment series. On the other hand, δ0 would have the moment
series ψ(z) = 0, for which no corresponding S-transform exists. So we see that in the case
where we multiply two free operators with mean zero the S-transform machinery breaks totally
down.

4 Some examples

Consider the free multiplicative convolution of the semi-circle distribution with the free Poisson
distribution. The semi-circle distribution has S-transform

Sµ(z) =
1√
z

while the free Poisson distribution has S-transform

Sγ(z) =
1

z + 1
.

The distribution obtained by their free multiplicative convolution has S-transform

Sµ⊠γ(z) =
1√

z(z + 1)
.

The Cauchy transform of the probability measure µ⊠ γ satisfies the algebraic equation

g4 z2 − zg + 1 = 0,

from which we can obtain the density function, plotted in Figure 1(a).
Consider now the free multiplicative convolution of the free Poisson distribution with the
shifted (by −α) free Poisson distribution. The free Poisson distribution (shifted by −α) has
S-transform

Sα
µ (z) =

−z − 1 + α+
√
z2 + 2 z + 2 zα+ 1 − 2α+ α2

2zα

which, for α = 1 yields

Sµ(z) := S1
µ(z) =

−z +
√
z2 + 4 z

2z

The distribution obtained by the free multiplicative convolution of the free Poisson distribution
with the free Poisson distribution (shifted by −1) has S-transform

Sµ⊠γ(z) =
−z +

√
z2 + 4 z

2z (1 + z)
.

The Cauchy transform of the probability measure µ⊠ γ satisfies the algebraic equation

g4z2 + z2g3 − zg2 − gz + 1 = 0

from which we can obtain the density function, plotted in Figure 1(b).
We note that the computations in this section were done using RMTool software [5] based on
the algebraic equation based framework for computational free probability developed in [2, 6].
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(a) The solid line is the density function of the probability measure obtained by the free mul-
tiplicative convolution of the semicircle with the free Poisson distribution. The histogram bars
are the eigenvalues of the product of a Wigner matrix with a Wishart matrix and were generated
using 50 × 50 sized random matrices over 4000 Monte-Carlo trials.
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(b) The solid line is the density function of the probability measure obtained by the free multiplica-
tive convolution of the free Poisson distribution with the shifted (by −1) free Poisson distribution.
The histogram bars are the eigenvalues of the product of a Wishart matrix with an independent
Wishart matrix (shifted by the negative identity) and were generated using 50 × 50 sized random
matrices over 4000 Monte-Carlo trials.

Figure 1: Examples of free multiplicative convolution with vanishing mean.
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