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Abstract

We construct a Riemannian manifold where the Kendall-Cranston coupling of two Brownian
particles does not maximize the coupling probability.

1 Introduction

Given two stochastic processes Xt and Yt on a state space M , a coupling Zt = (Z
(1)
t , Z

(2)
t ) is

a process on M × M so that Z(1) or Z(2) has the same distribution as X or Y respectively.
Of particular interest in many applications is the distribution of the coupling time T (Z) :=

inf{t > 0 ; Z
(1)
s = Z

(2)
s for all s > t}. The goal is to make the coupling probability P[T (Z) ≤ t]

as large as possible by taking a suitable coupling. When X and Y are Brownian motions
on a Riemannian manifold, Kendall [3] and Cranston [1] constructed a coupling by using
the Riemannian geometry of the underlying space. Roughly speaking, under their coupling,
infinitesimal motion ∆Yt ∈ TYt

M at time t is given as a sort of reflection of ∆Xt via the minimal
geodesic joining Xt and Yt. Their coupling has the advantage of controlling the coupling
probability by using geometric quantities such as the Ricci curvature. As a result, Kendall-
Cranston coupling produces various estimates for heat kernels, harmonic maps, eigenvalues
etc. under natural geometric assumptions.
On the other hand, there is the question of optimality. We say that a coupling Z of X and Y
is optimal at time t if

P[T (Z) ≤ t] ≥ P[T (Z̃) ≤ t]

holds for any other coupling Z̃. Though Kendall-Cranston coupling has a good feature as
mentioned, in general there is no reason why it should be optimal.
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The Kendall-Cranston coupling is optimal if the underlying space has a good symmetry. For
example, in the case M = Rd, the Kendall-Cranston coupling (Z(1), Z(2)) is nothing but the

mirror coupling. It means that Z
(2)
t = Ψ(Z

(1)
t ) up to the time they meet, where Ψ is a

reflection with respect to a hyperplane in Rd so that Ψ(X0) = Y0. It is well known that the
mirror coupling is optimal. Indeed, it is the only coupling which is optimal and Markovian [2].
More generally, the same result holds if there is a sort of reflection structure like a map Ψ on
Rd (see [4]).
In this paper, we show that the Kendall-Cranston coupling is not optimal in general.

Theorem 1.1 For each t > 0, there is a complete Riemannian manifold M where the Kendall-

Cranston coupling of two Brownian motions X· and Y· with specified starting points is not

optimal.

The proof of Theorem 1.1 is reduced to the case t = 1 by taking a scaling of Riemannian
metric. We construct a manifold M in the next section and prove Theorem 1.1 in section 3.

Notation: Given a Riemannian manifold N we denote by BN
r (x) or simply Br(x) the open

ball in N of radius r centered at x.
Given a Brownian motion (Xt)t≥0 on N we denote by τA = inf {t > 0 : Xt ∈ A} the hitting
time of a set A ⊂ N . We remark that, throughout this article, τA always stands for the hitting
time for the process (Xt)t≥0 even when we consider a coupled motion (Xt, Yt)t≥0.

2 Construction of the manifold

We take three parameter R > 0, ζ > 0 and δ > 0 such that ζ < R/4 and δ < ζ/3. Let
C = R × S1 be a cylinder with a flat metric such that the length of a circle S1 equals ζ. For
simplicity of notation, we write z = (r, θ) for z ∈ C where r ∈ R and θ ∈ (−ζ/2, ζ/2] such
that the Riemannian metric is written as dr2 +dθ2. If appropriate, any θ ∈ R will be regarded
mod ζ and considered as element of (−ζ/2, ζ/2]. We put

M1 := ([−R,∞) × S1) \ BC
δ ((0, ζ/2)) ⊂ C

and write ∂1,0 := ∂BC
δ ((0, ζ/2)) as well as ∂1,2 := {−R}× S1 (see Fig.1). Let C′ be a copy of

C. Then we put analogously

M2 := ((−∞, R] × S1) \ BC′

δ ((0, 0)) ⊂ C′

and write ∂2,0 := ∂BC′

δ ((0, 0)) as well as ∂2,1 := {R} × S1. Let M0 = S1 × [−1, 1] be another
cylinder. We write z ∈ M0 by z = (ϕ, r) where ϕ ∈ (0, 2π] and r ∈ [−1, 1]. Now we define a
C∞-manifold M (see Fig.2) by M = M0 ⊔ M1 ⊔ M2/∼, where the identification “∼” means

∂1,2 ∋ (−R, θ) ∼ (R, ζ/2 − θ) ∈ ∂2,1 for θ ∈ (−ζ/2, ζ/2] ,

∂1,0 ∋ (δ cosϕ, ζ/2 − δ sin ϕ) ∼ (ϕ, −1) ∈ M0 for ϕ ∈ (0, 2π] ,

∂2,0 ∋ (δ cosϕ, δ sin ϕ) ∼ (ϕ, 1) ∈ M0 for ϕ ∈ (0, 2π] .

We endow M with a C∞-metric g such that (M, g) becomes a complete Riemannian manifold
and:

(i) g|M1
coincides with the metric on M1 inherited from C,
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(ii) g|M2
coincides with the metric on M2 inherited from C′,

(iii) g|M0
is invariant under maps (θ, r) 7→ (θ,−r) and (θ, r) 7→ (θ + ϕ, r) on M0,

(iv) d((−1, 0), (1, 0)) = ζ for z1 = (−1, 0), z2 = (1, 0) ∈ M0

where d is the distance function on M .

3 Comparison of coupling probabilities

Let M be the manifold constructed above (with suitably chosen parameters R, ζ and δ) and
fix two points x = (0, ζ/6) ∈ M1 and y = (0, ζ/3) ∈ M2.
In this paper, the construction of Kendall-Cranston coupling is due to von Renesse [5]. We
will try to explain his idea briefly. His approach is based on the approximation by coupled
geodesic random walks {Ξ̂k}k∈N starting in (x, y) whose sample paths are piecewise geodesic.
Given their positions after (n − 1)-th step, one determines its next direction ξn according to
the uniform distribution on a small sphere in the tangent space and the other does it as the
reflection of ξn along a minimal geodesic joining their present positons. We obtain a Kendall-
Cranston coupling (Xt, Yt) by taking the (subsequential) limit in distribution of them. We
will construct another Brownian motion (Ŷt)t≥0 on M starting in y, again defined on the same
probability space as we construct (Xt, Yt) such that

P (X and Y meet before time 1) < P

(

X and Ŷ meet before time 1
)

.

In other words, if Q denotes the distribution of (X, Y ) and Q̂ denotes the distribution of (X, Ŷ )
then

Proposition 3.1 Q [T ≤ 1] < Q̂ [T ≤ 1] .

Our construction of the process Ŷ will be as follows. We define a map Φ : M1 → M2 by
Φ((r, θ)) = (−r, ζ/2 − θ) and then put
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(i) Ŷt = Φ(Xt) for t ∈ [0, τ∂1,0
∧ T );

(ii) X and Ŷ move independently for t ∈ [τ∂1,0
, T ) in case τ∂1,0

< T ;

(iii) Ŷt = Xt for t ∈ [T,∞).

Note that τ∂1,2
= T holds when τ∂1,2

≤ τ∂1,0
under Q̂.

Set H = S1 ×{0} ⊂ M0 ⊂ M . For z1, z2 ∈ M and A ⊂ M , minimal length of paths joining z1

and z2 which intersect A is denoted by d(z1, z2 ; A). We define a constant L0 by

L0 := inf

{

L ∈ (δ, R] ;
d(z1, z2 ; H) ≥ d(z1, z2 ; ∂1,2)
for some z1 = (L, θ) ∈ M1, z2 = (L, ζ/2 − θ) ∈ M2

}

.

Lemma 3.2 R − ζ < L0 < R.

Proof. First we show L0 < R. Let z1 = (R, 0) ∈ M1 and z2 = (R, ζ/2) ∈ M2. Obviously
there is a path of length 2R joining z1 and z2 across ∂1,2. Thus we have d(z1, z2 ; ∂1,2) ≤ 2R.
By symmetry of M ,

d(z1, z2 ; H) = 2d(z1, H) = 2

(

d(z1, ∂1,0) +
ζ

2

)

= 2
(

√

R2 + ζ2/4 − δ
)

+ ζ > 2R,

where the second equality follows from the third and fourth properties of g and the last
inequality follows from the choice of δ. These estimates imply L0 < R.
Next, let z′1 = (R − ζ, θ) ∈ M1 and z′2 = (R − ζ, ζ/2 − θ) ∈ M2. In the same way as observed
above, we have

d(z′1, z
′
2 ; H) = 2

(

√

(R − ζ)2 + θ2 − δ
)

+ ζ ≤ 2R − 2δ.

Note that the length of a path joining z′1 and z′2 which intersects both of ∂1,2 and H is obviously
greater than d(z′1, z

′
2 ; H). Thus, in estimating d(z′1, z

′
2 ; ∂1,2), it is sufficient to consider all

paths joining z′1 and z′2 across ∂1,2 which do not intersect H . Such a path must intersect both
{δ} × S1 ⊂ M1 and {−δ} × S1 ⊂ M1 (see Fig.3). Thus we have

d(z′1, z
′
2 ; ∂1,2) ≥ d(z′1, {δ} × S1) + d({−δ} × S1, ∂1,2) + d(∂2,1, z

′
2)

≥ (R − ζ − δ) + (R − δ) + ζ

= 2R − 2δ.

Hence, the conclusion follows. �

Set M ′
1 := M1 ∩ [−L0, L0] × S1 ⊂ C and M ′

2 := M2 ∩ [−L0, L0] × S1 ⊂ C′. We define a
submanifold M ′ ⊂ M with boundary by M ′ = M0⊔M ′

1⊔M ′
2/∼ (see Fig.4). Let Ψ : M ′ → M ′

be the reflection with respect to H . For instance, for z = (r, θ) ∈ M ′
1, Ψ(z) = (r, ζ/2−θ) ∈ M ′

2.
Note that Ψ is an isometry, Ψ ◦ Ψ = id and {z ∈ M ′ ; Ψ(z) = z} = H .
Let X ′ be the given Brownian motion starting in x and now stopped at ∂M ′, i.e. X ′

t = Xt∧τ∂M′
.

Define a stopped Brownian motion starting in y by Y ′
t = Ψ(X ′

t) for t < τH and by Yt = Xt

for t ≥ τH (that is, the two Brownian particles coalesce after τH). Then we can prove the
following lemma.
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Lemma 3.3 The law of (Xt∧τ∂M′
, Yt∧τ∂M′

)t≥0 coincides with that of (X ′
t, Y

′
t )t≥0.

Proof. Note that the minimal geodesic in M joining z and Ψ(z) must intersect H for every
z ∈ M ′ by virtue of the choice of L0. Thus, by the symmetry of M ′ with respect to H , coupled
geodesic random walks Ξ̂k are in E defined by

E :=
{

(z
(1)
· , z

(2)
· ) ∈ C([0,∞) → M × M) ; z

(2)
t = Ψ(z

(1)
t ) before z

(1)
· exits from M ′

}

(cf. Theorem 5.1 in [4]). Since E is closed in C([0,∞) → M ×M), (X·, Y·) ∈ E holds P-almost
surely by taking a (subsequential) limit in distribution of {Ξ̂k}k∈N. Thus the conclusion follows.
�

We now begin to show Proposition 3.1. First we give a lower estimate of Q̂ [T ≤ 1]. Let

γ(a) :=
{

(x1, x2) ∈ R2 ; x2 = a
}

, a ∈ R,

A(δ) :=
⋃

n∈Z

BR
2

δ

((

ζ

(

n +
1

3

)

, 0

))

.

The remark after the definition of Q̂ implies

Q̂ [T ≤ 1] ≥ Q̂
[

T ≤ 1, τ∂1,2
< τ∂1,0

]

= Q̂
[

τ∂1,2
≤ 1 ∧ τ∂1,0

]

.

By lifting Xt to R2, the universal cover of C,

Q̂
[

τ∂1,2
≤ 1 ∧ τ∂1,0

]

= PR
2 [

τγ(R) ≤ 1 ∧ τA(δ)

]

≥ PR
2 [

τγ(R) ≤ 1, τA(δ) > 1
]

≥ PR [τR ≤ 1] − PR
2 [

τA(δ) ≤ 1
]

. (3.1)

Here PR
2

and PR denote the usual Wiener measure for Brownian motion (starting at the origin)
on R2 or R, resp. For simplicity, we write τR instead of τ{R}.
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Next we give an upper estimate of Q [T ≤ 1]. Let E :=
{

τ∂1,0
< 1 ∧ τ∂M ′

}

. Then

Q [E] = P [E] ≤ PR
2 [

τA(δ) < 1
]

.

Note that, on {T ≤ 1} ∩ Ec, X must hit ∂M ′ before T . It means

Q [{T ≤ 1} ∩ Ec] = Q [{τ∂M ′ < T ≤ 1} ∩ Ec] .

By Lemma 3.3, Yτ∂M′
= Ψ(Xτ∂M′

) on Ec under Q. In order to collide two Brownian motions
starting at Xτ∂M′

and Ψ(Xτ∂M′
), either of them must escape from the flat cylinder of length

2(L0 − δ) where its starting point has distance L0 − δ from the boundary. This observation
together with the strong Markov property yields

Q [{τ∂M ′ < T ≤ 1} ∩ Ec] = Q

[

Q(Xτ
∂M′

,Ψ(Xτ
∂M′

)) [T ≤ 1 − s] |s=τ∂M′
; τ∂M ′ < 1 ∧ τ∂1,0

]

≤ 2Q
[

PR
[

τ−(L0−δ) ∧ τL0−δ < 1 − s
]

|s=τ∂M′
; τ∂M ′ < 1 ∧ τ∂1,0

]

≤ 4Q
[

PR [τL0−δ < 1 − s] |s=τ∂M′
; τ∂M ′ < 1 ∧ τ∂1,0

]

.

By Lemma 3.2 and the definition of ζ and δ, we have L0 − δ ≥ R − ζ − δ > 2R/3. Thus

Q
[

PR [τL0−δ < 1 − s] |s=τ∂M′
; τ∂M ′ < 1 ∧ τ∂1,0

]

≤ 2 exp

(

− (L0 − δ)2

2

)

P
[

τ∂M ′ < 1 ∧ τ∂1,0

]

≤ 2 exp

(

−2R2

9

)

P
[

τ∂M ′ < 1 ∧ τ∂1,0

]

.

By lifting Xt to R2, we have

P
[

τ∂M ′ < 1 ∧ τ∂1,0

]

≤ PR
2 [

τγ(L0) ∧ τγ(−L0) < 1 ∧ τA(δ)

]

≤ 2PR [τL0
< 1] ≤ 2PR [τR−ζ < 1] .

Here the last inequality follows from Lemma 3.2. Consequently, we obtain

Q [T ≤ 1] ≤ PR
2 [

τA(δ) < 1
]

+ 16 exp

(

−2R2

9

)

PR [τR−ζ < 1] . (3.2)

Now take R > 3
√

2 log 2. After that we choose ζ so small that PR [τR−ζ < 1] ≈ PR [τR < 1].

Finally we choose δ so small that PR
2 [

τA(δ) < 1
]

≈ 0. Then Proposition 3.1 follows from (3.1)
and (3.2).
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