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Abstract

A Central Limit Theorem for non-commutative random variables is proved using the Lindeberg
method. The theorem is a generalization of the Central Limit Theorem for free random vari-
ables proved by Voiculescu. The Central Limit Theorem in this paper relies on an assumption
which is weaker than freeness.

1 Introduction

One of the most important results in free probability theory is the Central Limit Theorem
(CLT) for free random variables ([11]). It was proved almost simultaneously with the invention
of free probability theory. Later conditions of the theorem were relaxed ([10]). Moreover, a far-
reaching generalization was achieved in [1], which studied domains of attraction of probability
laws with respect to free additive convolutions. See also [2].
Freeness is a very strong condition imposed on operators and it is of interest to find out
whether the Central Limit Theorem continues to hold if this condition is somewhat relaxed.
This problem calls for a different proof of the non-commutative CLT which does not depend
on R-transforms or on the vanishing of mixed free cumulants, because both of these techniques
are closely connected with the concept of freeness.
In this paper we give a proof of free CLT that avoids using either R-transforms or free cu-
mulants. This allows us to develop a generalization of the free CLT to random variables that
are not necessarily free but that satisfy a weaker assumption. An example shows that this
assumption is strictly weaker than the assumption of freeness.
The proof that we use is a modification of the Lindeberg proof of the classical CLT ([6]). The
main difference is that we use polynomials instead of arbitrary functions from C3

c (R) , and that
more ingenuity is required to estimate the residual terms in the Taylor expansion formula.
The closest result to the result in this paper is Theorem 2.1 in ([12]), where the Central Limit
Theorem is proved under the conditions on summands that are weaker than the requirement
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of freeness. The conditions that we use are somewhat different than those in Voiculescu’s
paper. In addition, we give an explicit example of variables that are not free but that satisfy
conditions of the theorem.
The rest of the paper is organized as follows. Section 2 provides background material and
formulates the main result. Section 3 shows by an example that a condition in the main result
is strictly weaker than the condition of freeness. Section 4 contains the proof of the main
result. And Section 5 concludes.

2 Background and Main Theorem

Before proceeding further, let us establish the background. A non-commutative random space
(A, E) is a pair of an operator algebra A and a linear functional E on A. It is assumed that
A is closed relative to taking the adjoints and contains a unit, and that E is
1) positive, i.e., E (X∗X) ≥ 0 for every X ∈ A,
2) finite, i.e., E(I) = 1 where I denotes the unit operator, and
3) tracial, i.e., E (X1X2) = E (X2X1) for every X1 and X2 ∈ A.
This linear functional is called expectation. Elements of A are called random variables.
Let X be a self-adjoint random variable (i.e., a self-adjoint operator from algebra A). We can
write X as an integral over a resolution of identity:

X =

∫ ∞

−∞

λdPX (λ) ,

where PX (λ) is an increasing family of commuting projectors. Then we can define the spectral
probability measure of interval (a, b] as follows:

µX {(a, b]} = E [PX (b) − PX (a)] .

We can extend this measure to all measurable subsets in the usual way. We will call µX the
spectral probability measure of random variable X, or simply its spectral measure.
We can calculate the expectation of any summable function of a self-adjoint variable X by
using its spectral measure:

Ef (X) =

∫ ∞

−∞

f (λ) dµX (λ) .

In particular, the moments of the probability measure µX equal the expectation values of the
powers of X : ∫ ∞

−∞

λkdµX (λ) = E
(
Xk
)
.

Let us now recall the definition of freeness. Consider sub-algebras A1,...,An. Let ai denote
elements of these sub-algebras and let k (i) be a function that maps the index of an element
to the index of the corresponding algebra: ai ∈ Ak(i).

Definition 1. The algebras A1,...,An (and their elements) are free if E (a1...am) = 0 whenever
the following two conditions hold:
(a) E (ai) = 0 for every i, and
(b) k(i) 6= k (i + 1) for every i < m.
The variables X1, ..., Xn are called free if the algebras Ai generated by {I, Xi, X

∗
i } , respectively,

are free.
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An important property of freeness is that we can compute the moments of the products of the
free random variables.

Proposition 2. Suppose X1,..., Xn are free. Then

E (X1...Xn) =

n∑

r=1

∑

1≤k1<...<kr≤n

(−1)
r−1

E (Xk1
) ...E (Xkr

) E
(
X1...X̂k1

...X̂kr
...Xn

)
, (1)

where ˆ denotes terms that are omitted.

This property is easy to prove by induction. However, we will not need all the power of this
property. Below we formulate the conditions that we need to impose on the random variables
to prove the CLT. These conditions are consequences of freeness but are likely to be weaker.
We will say that a sequence of zero-mean random variables X1, ..., Xn, ... satisfies Condition
A if:

1. For every k, E (XkXi1 ... Xir
) = 0 provided that is 6= k for s = 1, ..., r.

2. For every k ≥ 2, E
(
X2

kXi1 ... Xir

)
= E

(
X2

k

)
E (Xi1 ... Xir

) provided that is < k for
s = 1, ..., r.

3. For every k ≥ 2,

E
(
XkXi1 ... Xip

XkXip+1
... Xir

)
= E

(
X2

k

)
E
(
Xi1 ... Xip

)
E
(
Xip+1

... Xir

)

provided that is < k for s = 1, ..., r.

Intuitively, if we know how to calculate every moment of the sequence X1, ..., Xk−1, then using
Condition A we can also calculate the expectation of any product of random variables X1,
..., Xk that involves no more than two occurrences of variable Xk. Part 1 of Condition A is
stronger than is needed for this calculation, since it involves variables with indices higher than
k. However, we will need this additional strength in the proof of Lemma 13 below, which is
essential for the proof of the main result.

Proposition 3. Every sequence of free random variables X1, ..., Xn, ... satisfies Condition
A.

This proposition can be checked by direct calculation using Proposition 2.
We will also need the following fact.

Proposition 4. Let X1, ..., Xl be zero-mean variables that satisfy Condition A(1), and let
Yl+1, ..., Yn be zero-mean variables which are free from each other and from the algebra gener-
ated by variables X1, ..., Xl. Then the sequence X1, ..., Xl, Yl+1, ..., Yn satisfies Condition A(1).

Proof: Consider the moment E (XkAi1 ...Ais
) , where Ait

is either one of Yj or one of Xi but
it can equal Xk. Then we can use the fact that Yj are free and write

E (XkAi1 ...Ais
) =

∑

α

cαE
(
XkXi1(a)...Xir(α)

)
,

where none of Xit(α) equals Xk. Then, using the assumption that Xi satisfy Condition A(1), we
conclude that E (XkAi1 ...Ais

) = 0. Also, E (YkAi1 ...Ais
) = E (Yk)E (Ai1 ...Ais

) = 0, provided
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that none of Ait
equals Yk. In sum, the sequence X1, ..., Xl, Yl+1, ..., Yn satisfies Condition

A(1). QED.

While the freeness of random variables Xi is the same concept as the freeness of the algebras
that they generate, Condition A deals only with variables Xi, and not with the algebras that
they generate. For example, it is conceivable that a sequence {Xi} satisfies condition A but{
X2

i − E
(
X2

i

)}
does not. In particular, this implies that Condition A requires checking a

much smaller set of moment conditions than freeness. Below we will present an example of
random variables which are not free but which satisfy Condition A.

Recall that the standard semicircle law µSC is the probability distribution on R with the
density π−1

√
4 − x2 if x ∈ [−2; 2], and 0 otherwise. We are going to prove the following

Theorem.

Theorem 5. Suppose that
(i) {ξi} is a sequence of self-adjoint random variables that satisfies Condition A;

(ii) every ξi has asbsolute moments of all orders, which are uniformly bounded, i.e., E |ξi|k ≤
µk for all i;
(iii) Eξi = 0, Eξ2

i = σ2
i ;

(iv)
(
σ2

1 + ... + σ2
N

)
/N → s as N → ∞.

Then the spectral measure of SN = (ξ1 + ... + ξN ) /
√

σ2
1 + ... + σ2

N converges in distribution
to the semicircle law µSC .

The contribution of this theorem is twofold. First, it shows that the semicircle central limit
holds for a certain class of non-free variables. Second, it gives a proof of the free CLT which
is different from the usual proof through R-transforms. However, it is not stronger than a
version of the free CLT which is formulated in Section 2.5 in [10].

3 Example

Let us present an example that suggest that Condition A is strictly weaker than the freeness
condition.

Let F be the free group with a countable number of generators fk. Consider the set of relations
R = {fkfk−1fkfk−1fkfk−1 = e} , where k ≥ 2, and define G = F/R, that is, G is the group
with generators fk and relations generated by relations in R.

Here are some consequences of these relationships:
1) fk−1fkfk−1fkfk−1fk = e.
(Indeed, e = f−1

k (fkfk−1fkfk−1fkfk−1) fk = fk−1fkfk−1fkfk−1fk.)
2) f−1

k−1f
−1
k f−1

k−1f
−1
k f−1

k−1f
−1
k = e and f−1

k f−1
k−1f

−1
k f−1

k−1f
−1
k f−1

k−1 = e.

We are interested in the structure of the group G. For this purpose we will study the structure
of R, which is a subgroup of F generated by elements of R and their conjugates. We will
represent elements of F by words, that is, by sequences of generators. We will say that a word
is reduced if does not have a subsequence of the form fkf−1

k or f−1
k fk. It is cyclically reduced

if it does not have the form of fk...f−1
k or f−1

k ...fk. We will call a number of elements in a
reduced word w its length and denote it as |w| . A set of relations R is symmetrized if for every
word r ∈ R, the set R also contains its inverse r−1 and all cyclically reduced conjugates of
both r and r−1.

For our particular example, a symmetrized set of relations is given by the following list:



40 Electronic Communications in Probability

R =

{
fkfk−1fkfk−1fkfk−1, fk−1fkfk−1fkfk−1fk,

f−1
k−1f

−1
k f−1

k−1f
−1
k f−1

k−1f
−1
k , f−1

k f−1
k−1f

−1
k f−1

k−1f
−1
k f−1

k−1

}
,

where k are all integers ≥ 2.
A word b is called a piece (relative to a symmetrized set R) if there exist two elements of R,
r1 and r2, such that r1 = bc1 and r2 = bc2. In our case, each fk and f−1

k with index k ≥ 2 is a
piece because fk is the initial part of relations fkfk−1fkfk−1fkfk−1 and fkfk+1fkfk+1fkfk+1,
and f−1

k is the initial part of relations f−1
k f−1

k−1f
−1
k f−1

k−1f
−1
k f−1

k−1 and f−1
k f−1

k+1f
−1
k f−1

k+1f
−1
k f−1

k+1.
There is no other pieces.
Now we introduce the condition of small cancellation for a symmetrized set R:

Condition 6 (C′ (λ)). If r ∈ R and r = bc where b is a piece, then |b| < λ |r| .

Essentially, the condition says that if two relations are multiplied together, then a possible
cancellation must be relatively small. Note that if R satisfies C′ (λ) then it satisfies C′ (µ) for
all µ ≥ λ.
In our example R satisfies C′ (1/5) .
Another important condition is the triangle condition.

Condition 7 (T ). Let r1, r2, and r3 be three arbitrary elements of R such that r2 6= r−1
1 and

r3 6= r−1
2 Then at least one of the products r1r2, r2r3, or r3r1, is reduced without cancellation.

In our example, Condition (T ) is satisfied.
If s is a word in F, then s > λR means that there exists a word r ∈ R such that r = st and
|s| > λ |r| . An important result from small cancellation theory that we will use later is the
following theorem:

Theorem 8 (Greendlinger’s Lemma). Let R satisfy C′ (1/4) and T. Let w be a non-trivial,
cyclically reduced word with w ∈ R. Then either
(1) w ∈ R,
or some cyclycally reduced conjugate w∗ of w contains one of the following:
(2) two disjoint subwords, each > 3

4R, or
(4) four disjoint subwords, each > 1

2R.

This theorem is Theorem 4.6 on p. 251 in [7].
Since in our example R satisfies both C′ (1/4) and T, we can infer that in our case the conclusion
of the theorem must hold. For example, (2) means that we can find two disjoint subwords of
w, s1 and s2, and two elements of R, r1 and r2, such that ri = siti and |si| > (3/4) |ri| = 9/2.
In particular, we can conclude that in this case |w| ≥ 10. Similarly, in case (4), |w| ≥ 16. One
immediate application is that G does not collapse into the trivial group. Indeed, fi are not
zero.
Let L2 (G) be the functions of G that are square-summable with respect to the counting
measure. G acts on L2 (G) by left translations:

(Lgx) (h) = x (gh) .

Let A be the group algebra of G. The action of G on L2 (G) can be extended to the action of
A on L2 (G) . Define the expectation on this group algebra by the following rule:

E (h) = 〈δe, Lhδe〉 ,
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where 〈·, ·〉 denotes the scalar product in L2 (G) . Alternatively, the expectation can be written
as follows:

E (h) = ae,

where h =
∑

g∈G agg is a representation of a group algebra element h as a linear combination
of elements g ∈ G. The expectation is clearly positive and finite by definition. It is also tracial
because g1g2 = e if and only if g2g1 = e.
If Lh =

∑
g∈G agLg is a linear operator corresponding to the element of group algebra h =∑

g∈G agg, then its adjoint is (Lh)
∗

=
∑

g∈G agLg−1 , which corresponds to the element h∗ =∑
g∈G agg

−1.

Consider elements Xi = fi + f−1
i . They are self-adjoint and E (Xi) = 0. Also we can compute

E
(
X2

i

)
= 2. Indeed it is enough to note that f2

i 6= e and f−2
i 6= e, and this holds because

insertion or deletion of an element from R changes the degree of fi by a multiple of 3. Therefore,
every word equal to zero must have the degree of every fi equal to 0 modulo 3.

Proposition 9. The sequence of variables {Xi} is not free but satisfies Condition A.

Proof: The variables Xk are not free. Consider X2X1X2X1X2X1. Its expectation is 2, be-
cause f2f1f2f1f2f1 = e and f−1

2 f−1
1 f−1

2 f−1
1 f−1

2 f−1
1 = e, and all other terms in the expansion

of X2X1X2X1X2X1 are different from e. Indeed, the only terms that are not of the form
above but still have the degree of all fi equal to zero modulo 3 are f2f

−1
1 f2f

−1
1 f2f

−1
1 and

f−1
2 f1f

−1
2 f1f

−1
2 f1, but they do not equal zero by application of Greendlinger’s lemma. There-

fore, E (X2X1X2X1X2X1) = 2. This contradicts the definition of freeness of variables X2 and
X1.
Let us check Condition A. For A(1), we have to prove that E (XkXi1 ...Xin

) = 0, where k 6= is
and is 6= is+1 for every s. Consider E (fkfi1 ...fin

) , where k 6= is and is 6= is+1 for every s.
Note fkfi1 ...fin

6= e, as can be seen from the fact that the degree of fk does not equal zero
modulo 3. Therefore E (fkfi1 ...fin

) = 0. A similar argument works for E
(
f−1

k fi1 ...fin

)
= 0

and more generally for the expectation of every element of the form fε
kfn1

i1
...fn2

in
, where ε = ±1

and ns are integer.
Similarly, we can prove that E

(
f±2

k fn1

i1
...fn2

in

)
= 0 and this suffices to prove A(2).

For A(3) we have to consider elements of the form fε1

k fi1 ...fip
fε2

k fip+1
...fiq

. Assume that neither
fi1 ...fip

nor fip+1
...fiq

can be reduced to e. Otherwise we can use property A2. Then the claim
is that E

(
fε1

k fi1 ...fip
fε2

k fip+1
...fiq

)
= 0. This is clear when ε1 and ε2 have the same sign since

in this case the degree of fk does not equal 0 modulo 3. A more difficult case is when ε1 = 1
and ε2 = −1. (The case with opposite signs is similar.) However, in this case we can conclude
that fkfi1 ...fip

f−1
k fip+1

...fiq
6= e by an application of Greendlinger’s lemma. Indeed, the only

subwords that this word can contain and which would also be subwords of an element of R, are
subwords of length 1 and 2. But these subwords fail to satisfy the requirement of either (2) or
(4) in Greendlinger’s lemma. Therefore, we can conclude that fkfi1 ...fip

f−1
k fip+1

...fiq
6= e, and

therefore A(3) is also satisfied. Thus Condition A is satisfied by random variables X1, ..., Xk, ...
in algebra A, although these variables are not free. QED.

4 Proof of the Main Result

Outline of Proof : Our proof of the free CLT proceeds along the familiar lines of the Lindeberg

method. We take a family of functions, {f} , and compare Ef (SN ) with Ef
(
S̃N

)
, where

SN = X1 + ... + XN and S̃N = Y1 + ... + YN , and Yi are free semicircle variables chosen
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in such a way that Var (SN ) = Var
(
S̃N

)
. To estimate

∣∣∣Ef (SN ) − Ef
(
S̃N

)∣∣∣, we substitute

the elements in SN with free semicircle variables, one by one, and estimate the corresponding
change in the expected value of f (SN). After that, we show that the total change, as all
elements in the sum are substituted with semicircle random variables, is asymptotically small
as N → ∞. Finally, the tightness of the selected family of functions allows us to conclude that
the distribution of SN must converge to the semicircle law as N → ∞.

The usual choice of functions f in the classical case are functions from C3
c (R) , that is, functions

with a continuous third derivative and compact support. In the non-commutative setting this
family of functions is not appropriate because the usual Taylor series formula is difficult to
apply. Intuitively, it is difficult to develop f (X + h) in a power series of h if variables X and
h do not commute. Since the Taylor formula is crucial for estimating the change in Ef (SN ),
we will still use it but we will restrict the family of functions to polynomials.

To show that the family of polynomials is sufficiently rich for our purposes, we use the following
Proposition:

Proposition 10. Suppose there is a unique distribution function F with the moments
{
m(r), r ≥ 1

}
.

Suppose that {FN} is a sequence of distribution functions, each of which has all its moments
finite:

m
(r)
N =

∫ ∞

−∞

xrdFN .

Finally, suppose that for every r ≥ 1 :

lim
n→∞

m
(r)
N = m(r).

Then FN → F vaguely.

See Theorem 4.5.5.on page 99 in [3] for a proof. Note that Chung uses words “vague conver-
gence” to denote that kind of convergence which is more often called the weak convergence of
probability measures.

Since the semicircle distribution is bounded and therefore is determined by its moments (see
Corollary to Theorem II.12.7 in [8]), therefore the assumption of Proposition 10 is satisfied,
and we only need to show that the moments of Sn converge to the corresponding moments of
the semicircle distribution.

Proof of Theorem 5: Define ηi as a sequence of random variables that are freely indepen-
dent among themselves and also freely independent from all ξi. Suppose also that ηi have
semicircle distributions with Eηi = 0 and Eη2

i = σ2
i . We are going to accept the fact that the

sum of free semicircle random variables is semicircle, and therefore, the spectral distribution

of (η1 + ... + ηN ) /
(
s
√

N
)

converges in distribution to the semicircle law µSC with zero ex-

pectation and unit variance. Let us define Xi = ξi/sN and Yi = ηi/sN . We will proceed by
proving that moments of X1 + ... + XN converge to moments of Y1 + ... + YN and applying
Proposition 10. Let

∆f = Ef (X1 + ... + XN) − Ef (Y1 + ... + YN ) ,

where f (x) = xm. We want to show that this difference approaches zero as N grows.

By assumption, EYi = EXi = 0 and EY 2
i = EX2

i = σ2
i /s2

N .
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The first step is to write the difference ∆f as follows:

∆f = [Ef (X1 + ... + XN−1 + XN) − Ef (X1 + ... + XN−1 + YN )]

+ [Ef (X1 + ... + XN−1 + YN ) − Ef (X1 + ... + YN−1 + YN )]

+ [Ef (X1 + Y2 + ... + YN−1 + YN ) − Ef (Y1 + Y2 + ... + YN−1 + YN )] .

We intend to estimate every difference in this sum. Let

Zk = X1 + ... + Xk−1 + Yk+1 + ... + YN . (2)

We are interested in

Ef (Zk + Xk) − Ef (Zk + Yk) .

We are going to apply the Taylor expansion formula but first we define directional derivatives.
Let f ′

Xk
(Zk) be the derivative of f at Zk in direction Xk, defined as follows:

f ′
Xk

(Zk) =: lim
t↓0

f (Zk + tXk) − f(Zk)

t
.

The higher order directional derivatives can be defined recursively. For example,

f ′′
Xk

(Zk) =:
(
f ′

Xk

)′
Xk

(Zk) = lim
t↓0

f ′
Xk

(Zk + tXk) − f ′
Xk

(Zk)

t
. (3)

For polynomials, this definition is equivalent to the following definition:

f ′′
Xk

(Zk) = 2 lim
t↓0

f (Zk + tXk) − f(Zk) − tf ′
Xk

(Zk)

t2
. (4)

Example 11. Operator directional derivatives of f (x) = x4

Let us compute f ′
X (Z) and f ′′

X (Z) for f (x) = x4. Using definitions we get

f ′
X (Z) = Z3X + Z2XZ + ZXZ2 + XZ3

and

f ′′
X (Z) = 2

(
Z2X2 + ZXZX + XZ2X + ZX2Z + XZXZ + X2Z2

)
, (5)

and the expression for f ′′
X (Z) does not depend on whether definition (3) or (4) was applied.

The derivatives of f at Zk + τXk in direction Xk are defined similarly, for example:

f ′′′
Xk

(Zk + τXk)

= 6 lim
t↓0

f (Zk + (τ + t)Xk) − f(Zk + τXk) − tf ′
Xk

(Zk + τXk) − 1
2 t2f ′′

Xk
(Zk + τXk)

t3
.

Next, let us write the Taylor formula for f (Zk + Xk):

f (Zk + Xk) = f(Zk) + f ′
Xk

(Zk) +
1

2
f ′′

Xk
(Zk) +

1

2

∫ 1

0

(1 − τ)
2
f ′′′

Xk
(Zk + τXk) dτ. (6)
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Formula (6) can be obtained by integration by parts from the expression

f (Zk + Xk) − f(Zk) =

∫ 1

0

f ′
Xk

(Zk + τXk) dτ.

For polynomials it is easy to write the explicit expressions for f
(r)
Xk

(Zk) or f
(r)
Xk

(Zk + τXk)
although they can be quite cumbersome for polynomials of high degree. Very schematically,
for a function f (x) = xm, we can write

f ′
Xk

(Zk) = XkZm−1
k + ZkXkZm−2

k + ... + Zm−1
k Xk, (7)

and

f ′′
Xk

(Zk) = 2
(
X2

kZm−2
k + XkZkXkZm−3

k + ... + Zm−2
k X2

k

)
, (8)

Similar formulas hold for f ′
Yk

(Zk) and f ′′
Yk

(Zk) , with the change that Yk should be used instead
of Xk.
Using the assumptions that sequence {Xk} satisfies Condition A and that variables Yk are free,
we can conclude that Ef ′

Yk
(Zk) = Ef ′

Xk
(Zk) = 0 and that Ef ′′

Yk
(Zk) = Ef ′′

Xk
(Zk) . Indeed,

consider, for example, (8). We can use expression (2) for Zk and the free independence of Yi

to expand (8) as

Ef ′′
Xk

(Zk) =
∑

α

cαPα

(
E
(
XkX1XkX2

)
, E
(
XkX3XkX4

)
, ...
)
, (9)

where Xi denotes certain monomials in variables X1, ..., Xk−1 (i.e., Xi = Xi1 ...Xip
with ik ∈

{1, ..., k − 1}), and where α indexes certain polynomials Pα. In other words, using the free
independence of Yi and Xi we expand the expectations of polynomial f ′′

Xk
(Zk) as a sum over

polynomials in joint moments of variables Xj and Yi where j = 1, ..., k and i = k+1, ..., N. By
freeness, we can reduce the resulting expression so that the moments in the reduced expression
are either joint moments of variables Xj or joint moments of variables Yi but never involve
both Xj and Yi. Moreover, we can explictly calculate the moments of Yi (i.e., expectations of
the products of Yi) because their are mutually free. The resulting expansion is (9).
Let us try to make this process clearer by an example. Suppose that f (x) = x4, N = 4, k = 2
and Zk = Z2 = X1 + Y3 + Y4. We aim to compute Ef ′′

X2
(Z2) . Using formula (5), we write:

Ef ′′
X2

(Z2) = 2E
(
Z2

2X2
2 + ...

)

= 2E
(
(X1 + Y3 + Y4)

2 X2
2 + ...

)

= 2{E
(
X2

1X2
2

)
+ E

(
X1Y3X

2
2

)
+ E

(
X1Y4X

2
2

)

+E
(
Y3X1X

2
2

)
+ E

(
Y 2

3 X2
2

)
+ E

(
Y3Y4X

2
2

)

+E
(
Y4X1X

2
2

)
+ E

(
Y4Y3X

2
2

)
+ E

(
Y 2

4 X2
2

)
+ ...}.

Then, using the freeness of Y3 and Y4 and the facts that E (Yi) = 0 and E
(
Y 2

i

)
= σ2

i , we
continue as follows:

Ef ′′
X2

(Z2) = 2{E
(
X2

1X2
2

)
+ σ2

3E
(
X2

2

)
+ σ2

4E
(
X2

2

)
+ ...},

which is the expression we wanted to obtain.
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It is important to note that the coefficients cα do not depend on variables Xj but only on Yj ,
j > k, and on the locations which Yj take in the expansion of f ′′

Xk
(Zk) . Therefore, we can

substitute Yk for Xk and develop a similar formula for Ef ′′
Yk

(Zk):

Ef ′′
Yk

(Zk) =
∑

α

cαPα

(
E
(
YkX1YkX2

)
, E
(
YkX3YkX4

)
, ...
)
. (10)

In the example above, we will have

Ef ′′
Y2

(Z2) = 2{E
(
X2

1Y 2
2

)
+ σ2

3E
(
Y 2

2

)
+ σ2

4E
(
Y 2

2

)
+ ...}.

Formula (10) is exactly the same as formula (9) except that all Xk are substituted with Yk.
Finally, using Condition A we obtain that for every i:

E
(
YkXiYkXi+1

)
= E

(
Y 2

k

)
E
(
Xi

)
E
(
Xi+1

)

= E
(
X2

k

)
E
(
Xi

)
E
(
Xi+1

)

= E
(
XkXiXkXi+1

)
,

and therefore Ef ′′
Yk

(Zk) = Ef ′′
Xk

(Zk) .
Consequently,

Ef (Zk + Xk) − Ef (Zk + Yk)

=
1

2

∫ 1

0

(1 − τ)
2
Ef ′′′

Xk
(Zk + τXk) dτ − 1

2

∫ 1

0

(1 − τ)
2
Ef ′′′

Yk
(Zk + τYk) dτ.

Next, note that if f is a polynomial, then f ′′′
Xk

(Zk + τXk) is the sum of a finite number of
terms which are products of Zk + τXk and Xk. The number of terms in this expansion is
bounded by C1, which depends only on the degree m of the polynomial f.
A typical term in the expansion looks like

E (Zk + τXk)
m−7

X3
k (Zk + τXk)

3
Xk.

In addition, if we expand the powers of Zk + τXk, we will get another expansion that has the
number of terms bounded by C2, where C2 depends only on m. A typical element of this new
expansion is

E
(
Zm−7

k X3
kZ2

kX2
k

)
.

Every term in this expansion has a total degree of Xk not less than 3, and, correspondingly,
a total degree of Zk not more than m − 3. Our task is to show that as n → ∞, these terms
approach 0.
We will use the following lemma to estimate each of the summands in the expansion of
f ′′′

Xk
(Zk + τXk).

Lemma 12. Let X and Y be self-adjoint. Then

|E (Xm1Y n1 ...XmrY nr)|

≤
[
E
(
X2rm1

)]2−r [
E
(
Y 2rn1

)]2−r

...
[
E
(
X2rmr

)]2−r [
E
(
Y 2rnr

)]2−r

.
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Proof: For r = 1, this is the usual Cauchy-Schwartz inequality for traces:

|E (Xm1Y n1)|2 ≤ E
(
X2m1

)
E
(
Y 2n1

)
.

See, for example, Proposition I.9.5 on p. 37 in [9].
Next, we proceed by induction. We have two slightly different cases to consider. Assume first
that r is even, r = 2s. Then, by the Cauchy-Schwartz inequality, we have:

|E (Xm1Y n1 ...XmrY nr)|2

≤ E (Xm1Y n1 ...XmsY nsY nsXms ...Y n1Xm1) E (Y nrXmr ...Y ns+1Xms+1Xms+1Y ns+1 ...XmrY nr)

= E
(
X2m1Y n1 ...XmsY 2nsXms ...Y n1

)
E
(
Y 2nrXmr ...Y ns+1X2ms+1Y ns+1 ...Xmr

)
.

Applying the inductive hypothesis, we obtain:

|E (Xm1Y n1 ...XmrY nr)|2

≤
[
E
(
X2rm1

)]2−r+1 [
E
(
Y 2rns

)]2−r+1 [
E
(
Y 2r−1n1

)]2−r+2

...
[
E
(
X2r−1ms

)]2−r+2

×
[
E
(
X2rms+1

)]2−r+1 [
E
(
Y 2rnr

)]2−r+1 [
E
(
Y 2r−1ns+1

)]2−r+2

...
[
E
(
X2r−1mr

)]2−r+2

.

We recall that by the Lyapunov inequality,
[
E
(
Y 2r−1n1

)]2−r+2

≤
[
E
(
Y 2rn1

)]2−r+1

and we

get the desired inequality:

|E (Xm1Y n1 ...XmrY nr)|

≤
[
E
(
X2rm1

)]2−r [
E
(
Y 2rn1

)]2−r

...
[
E
(
X2rmr

)]2−r [
E
(
Y 2rnr

)]2−r

.

Now let r be odd, r = 2s + 1. Then

|E (Xm1Y n1 ...XmrY nr)|2

≤ E (Xm1Y n1 ...Y nsXms+1Xms+1Y ns ...Y n1Xm1)E (Y nrXmr ...Xms+2Y ns+1Y ns+1Xms+2...XmrY nr)

= E
(
X2m1Y n1 ...Y nsX2ms+1Y ns ...Y n1

)
E
(
Y 2nrXmr ...Xms+2Y 2ns+1Xms+1...Xmr

)
.

After that we can use the inductive hypothesis and the Lyapunov inequality and obtain that

|E (Xm1Y n1 ...XmrY nr)|

≤
[
E
(
X2rm1

)]2−r [
E
(
Y 2rn1

)]2−r

...
[
E
(
X2rmr

)]2−r [
E
(
Y 2rnr

)]2−r

.

QED.
We apply Lemma 12 to estimate each of the summands in the expansion of f ′′′

Xk
(Zk + τXk).

Consider a summand E (Zm1

k Xn1

k ...Zmr

k Xnr

k ) . Then by Lemma 12, we have

|E (Zm1

k Xn1

k ...Zmr

k Xnr

k )| (11)

≤
[
E
(
Z2rm1

k

)]2−r [
E
(
X2rn1

k

)]2−r

...
[
E
(
Z2rmr

k

)]2−r [
E
(
X2rnr

k

)]2−r

.

Next step is to estimate the absolute moments of the variable Zk.
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Lemma 13. Let Z = (v1 + ... + vN ) /N1/2, where vi are self-adjoint and satisfy condition

A(1) and let E |vi|k ≤ µk for every i. Then, for every integer r ≥ 0

E (|Z|r) = O (1) as N → ∞.

Proof: We will first treat the case of even r. In this case, E (|Z|r) = E (Zr) . Consider the
expansion of (v1 + ... + vN )r . Let us refer to the indices 1, ..., N as colors of the corresponding
v. If a term in the expansion includes more than r/2 distinct colors, then one of the colors must
be used by this term only once. Therefore, by the first part of condition A the expectation of
such a term is 0.
Let us estimate a number of terms in the expansion that include no more than r/2 distinct
colors. Consider a fixed combination of ≤ r/2 colors. The number of terms that use colors
only from this combination is ≤ (r/2)

r
. Indeed, consider the product

(v1 + ... + vN ) (v1 + ... + vN ) ... (v1 + ... + vN ) with r product terms. We can choose an ele-
ment from the first product term in r/2 possible ways, an element from the second product
term in r/2 possible ways, etc. Therefore, the number of all possible choices is (r/2)

r
. On the

other hand, the number of possible different combinations of k ≤ r/2 colors is

N !

(N − k)!k!
≤ N r/2.

Therefore, the total number of terms that use no more than r/2 colors is bounded from above
by

(r/2)
r
N r/2.

Now let us estimate the expectation of an individual term in the expansion. In other words

we want to estimate E
(
vk1

i1
...vks

is

)
, where kt ≥ 1, k1 + ... + ks = r, and it 6= it+1. First, note

that ∣∣∣E
(
vk1

i1
...vks

is

)∣∣∣ ≤ E
(∣∣∣vk1

i1
...vks

is

∣∣∣
)

.

Indeed, using the Cauchy-Schwartz inequality, for any operator X we can write

|E (X)|2 =
∣∣∣E
(
U |X |1/2 |X |1/2

)∣∣∣
2

≤ E
(
|X |1/2

U∗U |X |1/2
)

E
(
|X |1/2 |X |1/2

)

= E (|X |P )E (|X |) ,

where U is a partial isometry and P = U∗U is a projection. Note that from the positivity
of the expectation functional it follows that E (|X |P ) ≤ E (|X |) . Therefore, we can conclude
that |E (X)| ≤ E (|X |) .
Next, we use the Hölder inequality for traces of non-commutative operators (see [4], especially
Corollary 4.4(iii) on page 324, for the case of the trace in a von Neumann algebra and Section
III.7.2 in [5] for the case of compact operators and the usual operator trace). Note that

1

s
+ ... +

1

s︸ ︷︷ ︸
s-times

= 1,

therefore, the Hölder inequality gives

E
(∣∣∣vk1

i1
...vks

is

∣∣∣
)
≤
[
E
(
|vi1 |k1s

)
...E

(
|vis

|kss
)]1/s

.
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Using this result and the uniform boundedness of the moments (from assumption of the
lemma), we get:

log
∣∣∣E
(
vk1

i1
...vks

is

)∣∣∣ ≤ 1

s

s∑

i=1

log µkis.

Without loss of generality we can assume that bounds µk are increasing in k. Using the facts
that s ≤ r and ki ≤ r, we obtain the bound:

log
∣∣∣E
(
vk1

i1
...vks

is

)∣∣∣ ≤ log µr2 ,

or ∣∣∣E
(
vk1

i1
...vks

is

)∣∣∣ ≤ µr2 .

Therefore,
E (v1 + ... + vN )

r ≤ (r/2)
r
µr2N r/2,

and
E (Zr) ≤ (r/2)

r
µr2 . (12)

Now consider the case of odd r. In this case, we use the Lyapunov inequality to write:

E |Z|r ≤
(
E |Z|r+1

) r
r+1

(13)

≤
((

r + 1

2

)r+1

µ(r+1)2

) r
r+1

=

(
r + 1

2

)r (
µ(r+1)2

) r
r+1

.

The important point is that the bounds in (12) and (13) do not depend on N. QED.
By definition Zk = (ξ1 + ... + ξk−1 + ηk+1 + ... + ηN ) /sN and by assumption ξi and ηi are
uniformly bounded, and sN ∼

√
N . Moreover, ξ1, ..., ξk−1 satisfy Condition A by assumption,

and ηk+1, ..., ηN are free from each other and from ξ1, ..., ξk−1. Therefore, by Proposition 4,
ξ1, ..., ξk−1, ηk+1, ..., ηN satisfy condition A(1). Consequently, we can apply Lemma 13 to Zk

and conclude that E |Zk|r is bounded by a constant that depends only on r but does not
depend on N.
Using this fact, we can continue the estimate in (11) and write:

|E (Zm1

k Xn1

k ...Zmr

k Xnr

k )| (14)

≤ C4

[
E
(
X2rn1

k

)]2−r

...
[
E
(
X2rnr

k

)]2−r

,

where the constant C4 depends only on m.
Next we note that

[
E
(
X2rn1

k

)]2−r

≤ C
( µ2rn1

N2r−1n1

)2−r

= C
(µ2rn1

)2
−r

Nn1/2
.

Next note that n1 + ... + nr ≥ 3; therefore we can write

[
E
(
X2rn1

k

)]2−r

...
[
E
(
X2rnr

k

)]2−r

≤ C′N−3/2.

In sum, we obtain the following Lemma:
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Lemma 14. ∣∣Ef ′′′
Xk

(Zk + τXk)
∣∣ ≤ C5N

−3/2,

where C5 depends only on the degree of polynomial f and the sequence of constants µk.

A similar result holds for
∣∣Ef ′′′

Xk
(Zk + τYk)

∣∣ and we can conclude that

|Ef (Zk + Xk) − Ef (Zk + Yk)| ≤ C6N
−3/2.

After we add these inequalities over all k = 1, ..., N we get

|Ef (X1 + ... + XN ) − Ef (Y1 + ... + YN )| ≤ C7N
−1/2.

Clearly this estimate approaches 0 as N grows. Applying Proposition 10, we conclude that
the measure of X1 + ... + XN converges to the measure of Y1 + ... + YN in distribution. This
finishes the proof of the main theorem.

5 Concluding Remarks

The key points of this proof are as follows: 1) We can substitute each random variable Xi in
the sum SN with a free random variable Yi so that the first and the second derivatives of any
polynomial with SN in the argument remain unchanged. The possibility of this substitution
depends on Condition A being satisfied by Xi. 2)We can estimate a change in the third
derivative as we substitute Yi for Xi by using the first part of Condition A and several matrix
inequalities, valid for any collection of operators. Here Condition A is used only in the proof
that the k-th moment of (ξ1 + ... + ξN ) /N1/2 is bounded as N → ∞.
It is interesting to speculate whether the ideas in this proof can be generalized to the case of
the multivariate CLT.
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