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Abstract

We present a short probabilistic proof of a weak convergence result for the number of cuts
needed to isolate the root of a random recursive tree. The proof is based on a coupling related
to a certain random walk.

1 Introduction and main result

Meir and Moon [9] introduced a procedure to isolate a root of a random recursive tree T with
n vertices, by the following successive deletions (cuts) of edges. One starts with choosing one
of the n−1 edges at random and cuts this edge. This edge-removing procedure is iterated with
the subtree containing the root, and the procedure stops as soon as the root has been isolated.
For more information on (random) recursive trees and related edge-removal procedures we
refer to Janson [7, 8] and Panholzer [11].

For n ∈ N := {1, 2, . . .} let Xn denote the number of cuts needed to isolate the root of a
random recursive tree with n vertices. It is known [3] that the sequence (Xn)n∈N satisfies the
distributional recursion X1 = 0 and

Xn
d
= 1 + Xn−Dn

, n = 2, 3, . . . , (1)

where Dn is a random variable independent of X2, . . . , Xn with distribution

P (Dn = k) =
n

(n− 1)k(k + 1)
, k ∈ {1, . . . , n− 1}.
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Note that (1) is equivalent to

P (Xn = j) =
n

n− 1

n−1∑

k=1

P (Xn−k = j − 1)

k(k + 1)
, j, n ∈ N, j < n. (2)

Equation (2) can be viewed as a recursion on n ∈ N with initial values P (X1 = j) = δj0,
j ∈ N0 := {0, 1, 2, . . .}, or, alternatively, as a recursion on j ∈ N0 with initial values P (Xn =
0) = δn1, n ∈ N, where δ denotes the Kronecker symbol.
As already pointed out in [2], there are important other interpretations for Xn. For example,
in the language of coalescent processes, Xn is the number of collision events that take place in
a Bolthausen-Sznitman n-coalescent [1] until there is just a single block. As a consequence, Xn

can be also interpreted as the absorption time of the Markov chain, which counts the number
of ancestors in a Bolthausen-Sznitman n-coalescent.
We are interested in the asymptotic behavior of Xn as n tends to infinity. The question of
finding a weak limit law for Xn was motivated by the work of Meir and Moon [9]. This problem
was unsolved for many years and, during that period, readdressed by several authors (see, for
example, Panholzer [11, p. 269]). A first proof of the following weak limit law for Xn appeared
in [3].

Theorem 1. As n tends to infinity,

(log n)2

n
Xn − log n− log log n

converges in distribution to a stable random variable X with characteristic function E(eitX) =
exp(it log |t| − π

2 |t|), t ∈ R.

Note that the same normalization as in Theorem 1 appears in [7] to derive an asymptotic
result for the number of cuts needed to isolate the root of a complete binary tree.
The proof of Theorem 1 in [3] works with analytic methods and is based on a singular anal-
ysis of generating functions. It is natural and, in our opinion, important to understand the
probabilistic structure behind Theorem 1. We therefore present a completely different, purely
probabilistic proof of Theorem 1. Our proof is considerably shorter than that given in [3] and
provides more insight in the probabilistic mechanisms behind the convergence. The key idea is

to replace Xn by a suitable random variable Mn with Mn
d
= Xn. We construct Mn in such a

way that it is related (coupled) to the first passage time of a certain random walk and, hence,
easier to handle than Xn. We also mention that our coupling method is quite general and
might be useful to derive weak limit laws for other sequences (Xn)n∈N as well, but we do not
try to generalize our results here. We start with the coupling in Section 2, and prove Theorem
1 in Section 3.

2 A coupling

Let (ξi)i∈N be a sequence of independent copies of a random variable ξ with values in N. For
arbitrary but fixed n ∈ N, define a two-dimensional (coupled) process (Ri, Si)i∈N0 recursively
via (R0, S0) := (0, 0) and, for i ∈ N,

(Ri, Si) := (Ri−1, Si−1) +

{
(ξi, ξi) if ξi < n−Ri−1,
(0, ξi) else.
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The process (Ri, Si)i∈N0 depends on the parameter n. For convenience, we do not indicate
this dependence in our notation. The process (Si)i∈N0 is a zero-delayed random walk (Si =
ξ1 + · · · + ξi, i ∈ N0) and does not depend on n. The process (Ri)i∈N0 has non-decreasing
paths, starts in R0 = 0 and satisfies Ri < n for all i ∈ N0. By induction on i it follows that
Ri ≤ Si, i ∈ N0.

Let Mn := #{i ∈ N |Ri−1 6= Ri} =
∑

l≥0 1{Rl+ξl+1<n} denote the total number of jumps of
the process (Ri)i∈N0 . Note that 0 ≤Mn ≤ n− 1, n ∈ N. Let Nn := inf{i ∈ N |Si ≥ n} denote
the number of steps the random walk (Si)i∈N0 needs to reach a state larger than or equal to
n. Note that 1 ≤ Nn ≤ n, n ∈ N.

We have Ri = Si < n for i ∈ {0, . . . , Nn − 1}. Therefore, the process (Ri)i∈N0 has at least
Nn − 1 jumps, i.e., Mn ≥ Nn − 1, n ∈ N. We are interested in the asymptotics of Mn and Nn

as n → ∞. The following lemma provides a recursion for the distributions of the marginals
Mn, n ∈ N.

Lemma 1. (Recursion for the distribution of Mn)
The distribution of Mn satisfies the recursion P (M1 = · · · = Mn0 = 0) = 1 and, for n > n0,

P (Mn = j) =
1

1− qn

n−1∑

k=1

pkP (Mn−k = j − 1), j ∈ {1, . . . , n− 1},

where pk := P (ξ = k), qk := P (ξ ≥ k), k ∈ N, and n0 := sup{k ∈ N | qk = 1} ∈ N.

Proof. Obviously P (ξ ≥ n0) = 1. Hence, for fixed n ≤ n0, the process (Ri)i is almost surely
constant equal to zero, and, therefore, M1 = · · · = Mn0 = 0 almost surely. Now fix n > n0

and let I := inf{i ∈ N|Ri > 0} denote the first jump time of the process (Ri)i. At this time,
the process (Ri)i will reach a state k ∈ {1, . . . , n− 1}. Thus, for j ∈ {1, . . . , n− 1},

P (Mn = j) =
∑

i≥1

n−1∑

k=1

P (I = i, RI = k, Mn = j)

=
∑

i≥1

n−1∑

k=1

P (ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k, Mn = j).

We now use a renewal argument similar to those presented in [6]. For i, m ∈ N define R̂
(i,m)
0 :=

0 and

R̂
(i,m)
k+1 := R̂

(i,m)
k + ξi+k+1 1

{ bR
(i,m)
k

+ξi+k+1<m}
, k ∈ N0.

Then, M̂i,m :=
∑∞

l=0 1
{ bR

(i,m)
l

+ξi+l+1<m}
is an independent copy of Mm, which is also indepen-
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dent of ξ1, . . . , ξi. Therefore,

P (Mn = j) =
∑

i≥1

n−1∑

k=1

P
(
ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k,

∞∑

l=0

1
{ bR

(0,n)
l

+ξl+1<n}
= j

)

=
∑

i≥1

n−1∑

k=1

P
(
ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k,

∞∑

l=i

1
{ bR

(0,n)
l

+ξl+1<n}
= j − 1

)

=
∑

i≥1

n−1∑

k=1

P (ξ1 ≥ n, . . . , ξi−1 ≥ n, ξi = k, M̂i,n−k = j − 1)

=
∑

i≥1

n−1∑

k=1

P (ξ1 ≥ n) · · ·P (ξi−1 ≥ n)P (ξi = k)P (Mn−k = j − 1)

=
∑

i≥1

qi−1
n

n−1∑

k=1

pk P (Mn−k = j − 1) =
1

1− qn

n−1∑

k=1

pk P (Mn−k = j − 1).

Remark. An analogous renewal argument can be used to derive a recursion for the joint
distribution of Mn and Nn, but we do not need to study the joint distribution of Mn and Nn

in our further considerations. We will only need an appropriate upper bound for the difference
Mn −Nn.

3 Proof of Theorem 1

The following probabilistic proof of Theorem 1 is based on the coupling presented in Section
2 in which

pk := P (ξ = k) :=
1

k(k + 1)
, k ∈ N.

Proposition 1. For each n ∈ N, the distribution of Mn coincides with the distribution of a
random variable Xn introduced in Section 1.

Proof. We have qn = P (ξ ≥ n) = 1/n, n ∈ N. By Lemma 1, for n ≥ 2,

P (Mn = j) =
n

n− 1

n−1∑

k=1

P (Mn−k = j − 1)

k(k + 1)
, j ∈ {1, . . . , n− 1}. (3)

This recursion coincides with the recursion (2) for the distributions of the random variables

Xn. Therefore, Mn
d
= Xn for all n ∈ N.

Proposition 2. As n tends to infinity,

(log n)2

n
Nn − log n− log log n

converges in distribution to a stable random variable with characteristic function t 7→ exp(−π
2 |t|+

it log |t|), t ∈ R.
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Proof. According to the theory of stable distributions and their domain of attraction (see, for
example, Theorem 1 and Remark 3 in [5]),

Sn

n
− log n =

ξ1 + · · ·+ ξn

n
− log n → Z

in distribution as n tends to infinity, where Z is a random variable with characteristic function
E(eitZ) = exp(−π

2 |t| − it log |t|), t ∈ R. In applications, the distribution of Z is sometimes
called the continuous Luria-Delbrück distribution (see, for example, [10]). Let F denote the
distribution function of Z. As F is continuous, we have uniform convergence

lim
n→∞

sup
x∈R

∣∣∣P
(Sn

n
− log n ≤ x

)
− F (x)

∣∣∣ = 0.

Fix x ∈ R. Let the integers n and k be functions of each other such that as n → ∞ (or,
equivalently, k →∞)

k

n
− log n → x. (4)

In the following it is assumed that all passages to the limit take place when n→∞ or k →∞.
We have

P (Nk ≤ n) = P (Sn ≥ k) = P
(Sn

n
− log n ≥

k

n
− log n

)
→ 1− F (x).

Assume it is known that
n

k
(log k)2 − log k − log log k → −x. (5)

Then,

1− F (x) ← P (Nk ≤ n)

= P
((log k)2

k
Nk − log k − log log k ≤

n

k
(log k)2 − log k − log log k

)

∼ P
((log k)2

k
Nk − log k − log log k ≤ −x

)
,

which implies the result as x 7→ 1 − F (−x) is the distribution function of −Z, which has the
desired characteristic function E(e−itZ) = exp(−π

2 |t|+ it log |t|).
It remains to verify (5). From (4),

k ∼ n logn. (6)

Therefore,

log k − log n− log log n → 0, (7)

which implies

log k ∼ log n, (8)

from which it follows

log log k − log log n → 0. (9)

From (6) and (8) we have

k ∼ n log k. (10)
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From (4) and (7)
k

n
− log k + log log n → x.

By (9),

log k
n log k − k

n log k
− log log k → −x.

In view of (10),

A(n, k) := log k
n log k − k

k
−

n log k

k
log log k

= log k
n log k − k

k
−

(n log k

k
− 1

)
log log k − log log k

→ −x. (11)

Multiply A(n, k) by log log k/ log k to conclude that

log log k
n log k − k

k
−

n log k

k

(log log k)2

log k
→ 0.

By (10), the second term tends to 0. Therefore,

log log k
(n log k

k
− 1

)
→ 0.

Substituting this result into (11) gives (5).

The following lemma presents a convergence result for the sequence of auxiliary random vari-
ables

Yn := n− Smax{i |Si≤n} = n− SNn+1−1, n ∈ N. (12)

Lemma 2. As n tends to infinity, log Yn/ log n converges in distribution to Y , where Y is
uniformly distributed on the unit interval [0, 1].

Proof. This lemma is a direct consequence of Erickson [4, p. 287, Theorem 6]. In our situation,
P (ξ > x) = 1/([x]+1) ∼ 1/x, x→∞. It only remains to note that Erickson’s Theorem 6 is still
true when ξ is arithmetic, as mentioned at the beginning of Erickson’s proof of his Theorem 6.
By Erickson [4, p. 287, Remark 1], the ‘truncated mean’ function m(t) in Theorem 6 is allowed

to be replaced by m1(t) := log t, as m(t) :=
∫ t

0
P (ξ > x) dx =

∑[t]
i=1 1/i + o(1) ∼ log t.

Lemma 2 allows to compare the random variables Mn and Nn as follows.

Proposition 3. As n tends to infinity,

(log n)2

n
(Mn −Nn)

converges in probability to zero.

Proof. We have Ri = Si ≤ n− 1 for i ∈ {0, . . . , Nn − 1}. Therefore,

Mn = #{i ≤ Nn − 1 |Ri−1 6= Ri}+ #{i > Nn − 1 |Ri−1 6= Ri}

= Nn − 1 + #{i > Nn − 1 |Ri−1 6= Ri}.
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From time Nn − 1 on, the process (Ri)i cannot have more than (n − 1) − RNn−1 jumps,
because otherwise this process would reach a state larger than n − 1, which is impossible by
construction. Therefore,

Mn ≤ Nn − 1 + (n− 1)−RNn−1 = Nn − 1 + (n− 1)− SNn−1,

or,

0 ≤ Mn −Nn + 1 ≤ n− 1− SNn−1 = Yn−1,

with Yn defined via (12). It remains to verify that Yn/bn → 0 in probability, where bn :=
n/(log n)2. In order to see this fix ε > 0 and δ > 0. From

log(εbn)

log n
=

log ε + log n− 2 log log n

log n
→ 1, n→∞

it follows that there exists a positive integer n0 = n0(ε, δ) such that

log(εbn)

log n
≥ 1− δ for all n > n0.

Therefore, for n > n0,

P (Yn > εbn) = P
( log Yn

log n
>

log(εbn)

log n

)
≤ P

( log Yn

log n
> 1− δ

)
→ δ,

as log Yn/ logn→ Y in distribution by Lemma 2, with Y uniformly distributed on [0, 1]. But
δ > 0 can be chosen arbitrarily small, which shows that P (Yn > εbn) → 0. The convergence
Yn/bn → 0 in probability is established.

Combining Proposition 1, 2, and 3 immediately yields that the convergence in Proposition 1
holds with Nn replaced by Mn or, alternatively, Xn. Thus we have found a probabilistic proof
of Theorem 1, which was the aim of this study.
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[2] Drmota, M., Iksanov, A., Möhle, M., and Rösler, U. (2007). Asymptotic results
about the total branch length of the Bolthausen-Sznitman coalescent. Stoch. Process.
Appl. 117, to appear
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