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Abstract

Suppose sn is the spectral norm of either the Toeplitz or the Hankel matrix whose entries come
from an i.i.d. sequence of random variables with positive mean µ and finite fourth moment. We
show that n−1/2(sn − nµ) converges to the normal distribution in either case. This behaviour
is in contrast to the known result for the Wigner matrices where sn−nµ is itself asymptotically
normal.

1 Introduction

For an n×n real symmetric matrix An, let λ1(An) ≤ λ2(An) ≤ · · · ≤ λn(An) be the eigenvalues
of An. Let ‖An‖ denote the spectral norm of An, i.e. the maximum of the eigenvalues in their
modulus. In other words,

‖An‖ = max(−λ1(An), λn(An)).

One of the most frequently studied large dimensional random matrix is the Wigner matrix.
A (real) Wigner matrix (Wigner (1955, 1958)) of order n is a matrix whose entries above the
diagonal are i.i.d. real random variables and whose diagonal elements are also i.i.d. real random
variables, independent of the other elements. So this matrix is given by
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Wn =








w11 w12 w13 . . . w1(n−1) w1n

w21 w22 w23 . . . w2(n−1) w2n

...
...

...
...

...
...

wn1 wn2 wn3 . . . wn(n−1) wnn








(1)

where wkj = wjk j < k, are i.i.d. (real) random variables and the diagonal elements wii are
i.i.d. real random variables and are independent of the off diagonal variables.

There are a host of results known for the Wigner matrix and its variants. We quote below the
results relevant to us on their spectral norm and extreme eigenvalues.

Theorem 1. Suppose {Wn} is a sequence of Wigner matrices of order n such that E(w2
11) = 1

and E(w4
11) < ∞.

(A) If E(w11) = 0, then the maximum eigenvalue of n− 1

2 Wn converges to 2 almost surely.

(B) Assume that the mean µ of the entries is positive. Let ϕn be the spectral norm of Wn.

Then ϕn − µn
d→ N(0, 1).

Part A is proved in Bai and Yin (1988). Part B is due to Silverstein (1994).

Observe that in Part B, the mean of the entries is assumed to be positive. We call this the
noncentral case. It is interesting to note that for the distributional convergence, only centering
suffices and no scaling is required.

Nonrandom Toeplitz and Hankel matrices are extremely well studied in mathematics, specially
in operator theory. Let {x0, x1, . . .} be a sequence of real numbers.

Then the n × n Toeplitz Matrix is the matrix whose (i, j)-th entry is x|i−j|. So it is given by

Tn =










x0 x1 x2 . . . xn−2 xn−1

x1 x0 x1 . . . xn−3 xn−2

x2 x1 x0 . . . xn−4 xn−3

...
...

...
...

...
...

xn−1 xn−2 xn−3 . . . x1 x0










.

Hankel matrices have very close connections with the Toeplitz matrices. The n × n Hankel
Matrix is the matrix whose (i, j)-th entry is xi+j−2. So it is given by

Hn =










x0 x1 x2 . . . xn−2 xn−1

x1 x2 x3 . . . xn−1 xn

x2 x3 x4 . . . xn xn+1

...
...

...
...

...
...

xn−1 xn xn+1 . . . x2n−3 x2n−2










.

The question of existence of limiting spectral distribution for the eigenvalues of random Toeplitz
and Hankel matrices has been settled recently. See Bryc et. al (2006).
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Theorem 2 (Bryc, Dembo and Jiang (2006)). Let the {xi} in the Toeplitz (Hankel) matrix
Tn (Hn) be i.i.d. with mean zero and variance one. Then with probability one, the empirical
spectral distribution of 1√

n
Tn ( 1√

n
Hn) converges weakly as n → ∞ to a nonrandom symmetric

probability measure which does not depend on the distribution of the entries {xi} and has
unbounded support.

Also see Hammond and Miller (2005) for some detailed information on the behavior of empirical
spectral moments of random Toeplitz matrices. Unlike the Wigner case, apparently, there are
no results known for the behavior at the edge of the spectrum of the random Toeplitz and the
Hankel matrices. In the next section we consider Toeplitz and Hankel matrices where {xi} are
i.i.d. with mean µ > 0. We show that the spectral norm of both the Toeplitz and the Hankel
matrices obey a strong law and also converges to a normal distribution under appropriate
centering and scaling.

2 Main results and proofs

Suppose {xi} are i.i.d. and have mean µ. Let Tn be the Toeplitz matrix formed by these {xi}.
Let un = n−1/2(1, 1, · · · , 1

︸ ︷︷ ︸

ntimes

)T . Then T ◦
n = Tn −µnunuT

n is the corresponding centered Toeplitz

matrix whose entries have mean zero. We now state our main theorem.

Theorem 3. Suppose Tn is a Toeplitz matrix where E(x0) = µ > 0 and Var(x0) = 1. Let
T ◦

n = Tn − µnunuT
n . Then,

(A)
‖Tn‖

n
→ µ almost surely and ‖ T ◦

n

‖Tn‖
‖→0 almost surely.

(B) Further assume E(x4
0) < ∞. Then for Mn = ‖Tn‖ or Mn = λn(Tn),

Mn − µn√
n

→ N(0, 4/3) in distribution.

(C) If Tn and T ◦
n are replaced by the corresponding Hankel matrices, then (A) holds. Further,

(B) holds with the limiting variance being changed from 4/3 to 2/3.

Before going to the proof of the theorem let us state the following Lemma.

Lemma 1. Let Tn and T ◦
n be as above. Then

(i) If E(x2
0) < ∞, then n−1‖T ◦

n‖ → 0 a.s.

(ii) If E(x4
0) < ∞, then n−3/4‖T ◦

n‖ is tight.

Proof Let yi = xi −µ. Define yc
i = yiI(|yi| ≤ c)−E

[
yiI(|yi| ≤ c)

]
, the truncated and centered

version of yi. Let T
(c)
n be the Toeplitz matrix formed by the sequence {yc

i }.

Then n−1
∣
∣‖T ◦

n‖ − ‖T (c)
n ‖

∣
∣ ≤ n−1‖T ◦

n − T
(c)
n ‖ ≤

[
n−2 Tr[(T ◦

n − T
(c)
n )2]

]1/2
.
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Define rc
i = yi − yc

i , i = 0, 1, 2, · · · . Clearly, {rc
i }’s are i.i.d. and E (rc

0)2 → 0 as c → ∞.

Now n−2 Tr[(T ◦
n − T

(c)
n )2] = n−2[2

∑n−1
i=1 (n− i)(rc

i )2 + n(rc
0)2] ≤ 2n−1

∑n−1
i=0 (rc

i )2 → E(rc
0)2 as

n → ∞ by SLLN. So, we just need to show that n−1‖T (c)
n ‖ → 0.

To complete the proof of part (i), we extract a crucial fact from the proof of Theorem ??

given in Bryc, Dembo and Jiang (2006). If we carefully follow their argument, it is clear that

for bounded mean zero random variables, n−3 Tr[(T
(c)
n )4] converges to some positive constant

almost surely. Hence,

(n−1‖T (c)
n ‖)4 ≤ n−4 Tr[(T (c)

n )4] → 0 almost surely.

To prove part (ii), it is enough to show the fourth moment is uniformly bounded. But this is
true since,

E
[
(n−3/4‖T ◦

n‖)4
]
≤ n−3 E[Tr

(
(T ◦

n)4
)
] = n−3 E(

∑

i1,i2,i3,i4
y|i1−i2|y|i2−i3|y|i3−i4|y|i4−i1|) = O(1)

from Bryc, Dembo and Jiang (2006).

Thus the proof of the Lemma is complete.

Proof of Theorem ?? We will prove only Parts A and B. The proof of Part C is similar and
will be omitted.

Using the triangle inequality for norms,

‖µnunuT
n‖ − ‖T ◦

n‖ ≤ ‖Tn‖ ≤ ‖µnunuT
n‖ + ‖T ◦

n‖

or, µ − ‖T ◦
n

n
‖ ≤ ‖Tn‖

n
≤ µ + ‖T ◦

n

n
‖.

Thus using Lemma ??(i) , we easily conclude ‖Tn‖
n →µ almost surely. This proves the first

part of (A). The second part now follows again from Lemma ??(i)

We now prove part (B). Define the three sets,

Ω
(n)
1 = {‖ T ◦

n

‖Tn‖
‖ ≤ 1/2}, Ω

(n)
2 = {n−1‖T ◦

n‖ < µ/2}, Ω(n) = Ω
(n)
1 ∩ Ω

(n)
2 .

For simplicity we will drop the superscript and write Ω1, Ω2 and Ω for the above three sets
respectively. Note that from Lemma ??(i) and first part of the Theorem, given ǫ > 0, for all
large n,

P (Ω) > 1 − ǫ.

Suppose A is any matrix such that ‖A‖ < α < 1. Then (I−A)−1 =
∑∞

j=0 Aj and ‖(I−A)−1‖ <

(1 − α)−1.

Hence, on the set Ω1, (I − 1
‖Tn‖T ◦

n)−1 exists and

||(I − 1

‖Tn‖
T ◦

n)|| ≤ 2. (2)

The following fact is well known in the theory of matrices (See Horn and Johnson (1985)
Corollary 6.3.4).
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Fact. Suppose λ̂ is an eigenvalue of A + P , where A is normal (that is AAT = AT A). Then

there exists an eigenvalue λ of A such that |λ̂ − λ| ≤ ‖P‖.
Using this fact and noting that the distinct eigenvalues of µnunuT

n are 0 and µn, we get

λ1(Tn) ≥ −‖T ◦
n‖.

and
λn(Tn) ≥ µn − ‖T ◦

n‖.

Hence on Ω2 (i.e. if n−1‖T ◦
n‖ < µ/2), we have

λn(Tn) > −λ1(Tn).

So, on Ω2

‖Tn‖ = λn(Tn). (3)

Then there exists an eigenvector g 6= 0 such that Tng = λn(Tn)g or equivalently, (T ◦
n +

µnunuT
n )g = λn(Tn)g. Noting that uT

ng is just a real number, this implies that µnuT
ngun =

(
λn(Tn)I − T ◦

n

)
g.

Now we will work on the set Ω, on which

g = µnuT
ng(λn(Tn)I − T ◦

n)−1un.

Note that by the last relation, uT
ng 6= 0 and hence premultiplying both sides of this relation

by uT
n ,

λn(Tn) = µnuT
n (I − 1

λn(Tn)
T ◦

n)−1un.

Motivated by the above relation, define

λ̃n =







µn
(

1 + 1
λn(Tn)u

T
nT ◦

nun + ( 1
λn(Tn) )2uT

n (T ◦
n)2un + uT

n (
T◦

n

λn(Tn) )3(I − 1
λn(Tn)T

◦
n)−1un

)

on the set Ω
0 otherwise

(4)

We have λ̃n = λn(Tn) on Ω1. Also recall that on the set Ω2, λn(Tn) = ‖Tn‖ and P (Ω) → 1.
So, λ̃n − λn(Tn) = op(1) and λ̃n − ‖Tn‖ = op(1). Hence, it is enough to find the limiting

distribution of λ̃n.

Consider the last three terms of λ̃n on Ω. Call them B2, B3 and B4.

B4. Using inequality (??),

|B4|√
n

=
∣
∣
∣µn1/2uT

n (
T ◦

n

λn(Tn)
)3(I − 1

λn(Tn)
T ◦

n)−1un

∣
∣
∣

≤ 2µn1/2
( ‖T ◦

n‖
λn(Tn)

)3

=
2µ

n1/4

( n

λn(Tn)

)3(‖T ◦
n‖

n3/4

)3

→ 0 in probability by Lemma ??(ii)
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Hence B4√
n

= op(1).

B3.
µn

(λn(Tn))2
uT

n (T ◦
n)2un = µ

( n

λn(Tn)

)2

n−1uT
n (T ◦

n)2un
︸ ︷︷ ︸

An say

.

We have

E(A2
n) = n−4 E

[(∑

i,j,k

y|i−j|y|j−k|
)2

]

= n−4 E
(∑

y|i1−j1|y|j1−k1|y|i2−j2|y|j2−k2|
)

= O(1).

where yi = xi − µ is the centered version of {xi}. The last step above follows from argument
similar to those given in Bryc, Dembo and Jiang (2006). So, {An} is tight. Hence B3√

n
→ 0.

B2.

nµ
λn(Tn) → 1 and uT

nT ◦
nun = 1

n

∑

i,j y|i−j|

= 2
n

∑n−1
i=0 (n − i)yi + ny0

n = 1
n [2

∑n−1
i=0 (n − i)yi − ny0].

By central limit theorem for sums of independent random variables, it easily follows that
B2√

n
→ N(0, 4/3) in distribution.

Combining the above steps, we have λ̃n−µn√
n

d→ N(0, 4/3). This completes the proof of part

(B) since as we have already observed that on Ω, λ̃n = λn(Tn) = ‖Tn‖ and P (Ω) → 1.
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