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Abstract

This note continues investigation of randomness-type properties emerging in idealized finan-
cial markets with continuous price processes. It is shown, without making any probabilistic
assumptions, that the strong variation exponent of non-constant price processes has to be 2,
as in the case of continuous martingales.

1 Introduction

This note is part of the recent revival of interest in game-theoretic probability (see, e.g.,
7,18, 4,2, 3]). Tt concentrates on the study of the “/dt effect”, the fact that a typical change in
the value of a non-degenerate diffusion process over short time period dt has order of magnitude
V/dt. Within the “standard” (not using non-standard analysis) framework of game-theoretic
probability, this study was initiated in [9]. In our definitions, however, we will be following [11],
which also establishes some other randomness-type properties of continuous price processes.

The words such as “positive”, “negative”, “before”, and “after” will be understood in the wide
sense of > or <, respectively; when necessary, we will add the qualifier “strictly”.

2 Null and almost sure events

We consider a perfect-information game between two players, Reality (a financial market) and
Sceptic (a speculator), acting over the time interval [0, T], where T is a positive constant fixed
throughout. First Sceptic chooses his trading strategy and then Reality chooses a continuous
function w : [0, 7] — R (the price process of a security).

Let 2 be the set of all continuous functions w : [0,7] — R. For each ¢ € [0,T], F; is defined
to be the smallest o-algebra that makes all functions w — w(s), s € [0,¢], measurable. A
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process S is a family of functions S; : Q@ — [—o0, 0], t € [0,T], each S; being F;-measurable
(we drop the adjective “adapted”). An event is an element of the o-algebra Fp. Stopping
times 7 : @ — [0,T] U {oco} w.r. to the filtration (F;) and the corresponding o-algebras F,
are defined as usual; w(7(w)) and S;(,)(w) will be simplified to w(7) and Sr(w), respectively
(occasionally, the argument w will be omitted in other cases as well).

The class of allowed strategies for Sceptic is defined in two steps. An elementary trading
strategy G consists of an increasing sequence of stopping times 7y < 75 < --- and, for each
n =1,2,..., a bounded F, -measurable function h,. It is required that, for any w € €, only
finitely many of 7,,(w) should be finite. To such G and an initial capital ¢ € R corresponds the
elementary capital process

K& (w) == c+ Z b (W) (w(Tng1 At) —w(Ty AL)), t€10,T]

(with the zero terms in the sum ignored); the value h,(w) will be called the portfolio chosen
at time 7, and K?’C(w) will sometimes be referred to as Sceptic’s capital at time ¢.
A positive capital process is any process S that can be represented in the form

Si(w) =Y K7 (W), (1)

where the elementary capital processes ICtG " (w) are required to be positive, for all ¢ and w,
and the positive series Z:;l ¢p is required to converge. The sum is always positive but

allowed to take value co. Since IC(? " (W) = ¢, does not depend on w, So(w) also does not
depend on w and will sometimes be abbreviated to Sp.
The upper probability of a set E C € is defined as

P(E) :=inf{S, | Yw € @ : Sr(w) > Ip(w)},

where S ranges over the positive capital processes and Ig stands for the indicator of E. Notice
that P is not a probability measure, even if restricted to Fp: for example, the events E(¢) :=
{weQ|wt) =cVte[0,T]} are disjoint for different ¢, but P(E(?)) = 1 for all ¢; see [11] for
less trivial examples.

We say that E C Q is null if P(E) = 0. A property of w € Q will be said to hold almost surely
(a.s.), or for almost all w, if the set of w where it fails is null.

Upper probability is countably (and finitely) subadditive:

Lemma 1. For any sequence of subsets Fq, Es, ... of ,

P ( - En> < iﬁ(En).

In particular, a countable union of null sets is null.

3 Main result

For each p € (0,00), the strong p-variation of w € Q is

var, (w) 1= supz lw(t;) —w(ti—1)|",
®oi=1
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where n ranges over all positive integers and k over all subdivisions 0 =ty <t; < --- <t, =T
of the interval [0,7]. It is obvious that there exists a unique number vex(w) € [0, 0], called
the strong variation exponent of w, such that var,(w) is finite when p > vex(w) and infinite
when p < vex(w); notice that vex(w) ¢ (0, 1).

The following is a game-theoretic counterpart of the well-known property of continuous semi-
martingales (Lepingle [5], Theorem 1 and Proposition 3; Lévy [6] in the case of Brownian
motion).

Theorem 1. For almost all w € €,
vex(w) = 2 or w is constant. (2)

(Alternatively, (2) can be expressed as vex(w) € {0,2}.)

4 Proof

The more difficult part of this proof (vex(w) < 2 a.s.) will be modelled on the proof in [1],
which is surprisingly game-theoretic in character. The proof of the easier part is modelled on
[10]. (Notice, however, that our framework is very different from those of [1] and [10], which
creates additional difficulties.) Without loss of generality we impose the restriction w(0) = 0.

Proof that vex(w) > 2 for non-constant w a.s.

We need to show that the event vex(w) < 2 & nc(w) is null, where nc(w) stands for “w is not
constant”. By Lemma 1]it suffices to show that vex(w) < p & nc(w) is null for each p € (0, 2).
Fix such a p. It suffices to show that var,(w) < co & nc(w) is null and, therefore, it suffices to
show that the event var,(w) < C' & nc(w) is null for each C' € (0,00). Fix such a C. Finally,
it suffices to show that the event

Ep,C,A = {w e

varp(w) < C' & sup |w(t)| > A}
t€[0,T)

is null for each A > 0. Fix such an A.
Choose a small number § > 0 such that A/0 € N (in this note, N := {1,2,...}), and let
I :={kd | k € Z} be the corresponding grid. Define a sequence of stopping times 7,, inductively
by

Tngr = inf{t > 7, | w(t) €T\ {w(m)}}, n=0,1,...,
with 79 := 0 and inf® understood to be co. Set T4 := inf{t | |w(t)] = A}, again with
inf () := oo, and

o () 20(rn) U Th(w) < TAT4s(w) and n+1 < C/6P
n(w) =
0 otherwise.

The elementary capital process corresponding to the elementary gambling strategy G :=
(Tn, hn)$S; and initial capital ¢ := §27PC will satisfy

W2(Tn+1) - WZ(TH) = 2w(7n) (W(Tnt1) — w(Tn)) + (W(Tn41) — W(Tn))Q
= K& (w) — KE4(w) + 4

Tn+1
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provided 7,41(w) < T ATa(w) and n+ 1 < C/éP, and so satisfy
wi(rn) = K& (w) — K5 4+ No* = KE¢(w) — 627PC + 627 PN§P < K¢ (w) (3)

provided 7y (w) < TATa(w) and N < C/6P. On the event E, ¢ 4 we have Ty(w) < T and
N < C/éP for the N defined by 7y = T4. Therefore, on this event

A? = WA (T) < K5 (w) = K5 ().

We can see that ICtG *“(w) increases from §27PC, which can be made arbitrarily small by making
§ small, to A? over [0, 7]; this shows that the event E, ¢ 4 is null.
The only remaining gap in our argument is that ICtG “ may become strictly negative strictly
between some 7, < TAT4 and 7,41 with n+1 < C/P (it will be positive at all 7y € [0, T AT4]
with N < C'/6P, as can be seen from (3)). We can, however, bound K& for 7,, < t < T4 as
follows:

KE (W) = K50 (W) + 20(ma) (1) — w(Tn)) > 2|w(ra)| (=) > —245,

and so we can make the elementary capital process positive by adding the negligible amount
2A6 to Sceptic’s initial capital.

Proof that vex(w) < 2 a.s.

We need to show that the event vex(w) > 2 is null, i.e., that vex(w) > p is null for each p > 2.
Fix such a p. It suffices to show that var,(w) = oo is null, and therefore, it suffices to show
that the event

EpyA = {w IS2Y)

varp(w) = oo & sup |w(t)] < A}

te[0,T]
is null for each A > 0. Fix such an A.
The rest of the proof follows [1] closely. Let M;(f, (a,b)) be the number of upcrossings of the
open interval (a,b) by a continuous function f € Q during the time interval [0,¢], t € [0,T].
For each d > 0 we also set

My(£.6) == 37 My (F, (k3 (k + 1)5))

keZ

The strong p-variation var,(f, [0,¢]) of f € Q over an interval [0,¢t], t < T, is defined as
vary(f,[0,t]) == SUPZ |f(ti) = fta-)I”,
F =1

where n ranges over all positive integers and « over all subdivisions 0 =ty <t; <--- <t, =t
of the interval [0,¢] (so that var,(f) = var,(f,[0,7])). The following key lemma is proved in
[1] (Lemma 1; in fact, this lemma only requires p > 1).

Lemma 2. Forall f €Q,t>0, and q € [1,p),

op+q+1

vary(f, [0,t]) <

< T 50 eane(f) F DA,

where

A> sup [f(s) = f(0)] and cgxi(f) = sup 2_qut(f7 )\Q_k)-
s€[0,t] keN
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Another key ingredient of the proof is the following game-theoretic version of Doob’s upcross-
ings inequality:

Lemma 3. Let ¢ < a < b be real numbers. For each elementary capital process S > c there
exists a positive elementary capital process S* that starts from Sg = a — ¢ and satisfies, for all
te€[0,T] and w € Q,

St (w) = (b —a)M(S(w), (a,b)),

where S(w) stands for the sample path t — Si(w).

Proof. The following standard argument is easy to formalize. Let G be an elementary gambling
strategy leading to S (when started with initial capital Sp). An elementary gambling strategy
G* leading to S* (with initial capital a — ¢) can be defined as follows. When S first hits a, G*
starts mimicking G until S hits b, at which point G* chooses portfolio 0; after S hits a, G*
mimics G until S hits b, at which point G* chooses portfolio 0; etc. Since S > ¢, S* will be
positive. O

Now we are ready to finish the proof of the theorem. Let T4 := inf{t | |w(t)| = A} be the
hitting time for {—A, A} (with T4 := T if {—A, A} is not hit). By Lemmal3, for each k € N
and each i € {2 +1,...,2%} there exists a positive elementary capital process S that
starts from A + (i — 1)A27F and satisfies

Skl > A2 My, (w, (i — 1)A27%, i427))

Summing 2_quk7i/A2_k over i € {—Qk +1,..., 2’“}7 we obtain a positive elementary capital
process S* such that

2k .
_ A+ (i—1)A27F _ _
Sg =2 ka E T S 2 kq22k+1 and Sr_]zch Z 2 quTA (0.)7142 k)

i=—2k41

Next, assuming ¢ € (2,p) and summing over k € N, we obtain a positive capital process S
such that
o ka2t 1 254
SO = Z 2—ka9 = m and STA Z Cq,A,Ts (UJ)
k=1
On the event E, 4 we have T4 = T and so, by Lemma 2| ¢4 4,7, (w) = co. This shows that
St =00 on E, 4 and completes the proof.

5 Conclusion

Theorem (1] says that, almost surely,

<oo ifp>2
var, (w) . )

= oo if p <2 and w is not constant.
The situation for p = 2 remains unclear. It would be very interesting to find the upper
probability of the event {vary(w) < oo and w is not constant}. (Lévy’s [6] result shows that
this event is null when w is the sample path of Brownian motion, while Lepingle [5] shows this
for continuous, and some other, semimartingales.)
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