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Abstract

The so-called Bercovici-Pata bijection maps the set of classical infinitely divisible laws to the set
of free infinitely divisible laws. The purpose of this work is to study the free infinitely divisible
laws corresponding to the classical Generalized Gamma Convolutions (GGC). Characterizations
of their free cumulant transforms are derived as well as free integral representations with respect
to the free Gamma process. A random matrix model for free GGC is built consisting of matrix
random integrals with respect to a classical matrix Gamma process. Nested subclasses of free
GGC are shown to converge to the free stable class of distributions.

1 Introduction

Generalized Gamma Convolutions (GGC) is the smallest class T ∗(R+) of classical infinitely divis-
ible distributions on R+ that contains all Gamma distributions and that is closed under classical
convolution and weak convergence. This class was introduced by Thorin [16], [17] and further
studied by Bondesson [7]. Thorin [18] also considered the smallest class of distributions on the
real line which contains all distributions in T ∗(R+) and is closed under convolution, convergence
and reflection. We denote this class by T ∗(R) and called it the Thorin class of distributions on R.
Let P (R) be set of probability measures on R and I∗(R) the class of all classical infinitely divisible
distributions in P (R). If µ ∈ P (R), µ̂(z) denotes its Fourier transform and when µ ∈ I∗(R)
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we denote by C ∗µ (z) its classical cumulant function or Lévy exponent i.e. C ∗µ (z) = log µ̂(z). A
probability measure µ ∈ P (R) is in I∗(R) if and only if its classical cumulant function has the
Lévy-Khintchine representation :

C ∗µ (z) = −
1

2
az2 + iηz +

∫

R

(e−izx − 1− izx1{|x |≤1})ν(d x), z ∈ R, (1)

where a ≥ 0, γ ∈ R and ν (the so called Lévy measure) is a measure satisfying ν({0}) = 0 and∫
R
(1∧|x |2)<∞. The triplet (a, η,ν) is uniquely determined and is called ∗-characteristic triplet or

simply ∗-triplet. When
∫
R
|x |ν(d x)<∞, we speak of the drift type Lévy Khintchine representation

C ∗µ (z) = −
1

2
az2 + iη′z +

∫

R

(e−izx − 1)ν(d x)(z ∈ R), (2)

where η′ is the drift of µ and is given by η′ = η−
∫
{|x |≤1} xν(d x). We write

I∗log(R) =

¨
µ ∈ I∗(R);

∫

R

log(|x | ∧ 1)µ(dx)<∞
«

and refer to Sato [13] for basic facts about classical infinitely divisible distributions.
Bondesson [7] proved that a positive random variable Y with classical law L ∗(Y ) = µ -without
translation term- belongs to T ∗(R+) if and only if there exists a positive Radon measure Uµ on
(0,∞) such that

C ∗µ (z) = −
∫ ∞

0

(1− eizx)
dx

x

∫ ∞

0

e−xsUµ(ds) (3)

= −
∫ ∞

0

log

�
1+

iz

s

�
Uµ(ds)

with
∫ 1

0
| log x |Uµ(dx) <∞ and

∫∞
1

Uµ(dx)

x
<∞. The measure Uµ is called the Thorin measure of

µ. So, the ∗-triplet of µ is (0,0,νµ) where the Lévy measure is concentrated on (0,∞) and such
that

νµ(dx) =
dx

x

∫ ∞

0

e−xsUµ(ds). (4)

It is known that the class T ∗(R+) is characterized by Wiener-Gamma representations, i.e., random
integral representations with respect to the standard one-dimensional Gamma process (see [10],
[9]). Specifically, a positive random variable Y belongs to T ∗(R+) if and only if there is a Borel
function h : R+→ R+ with ∫ ∞

0

log(1+ h(t))dt <∞, (5)

such that Y
d
= Y h has the Wiener-Gamma integral representation

Y h L=

∫ ∞

0

h(u)dγu, (6)
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where
�
γt ; t ≥ 0

�
is the standard Gamma process with Lévy measure ν(dx) = e−x dx

x
. Moreover,

C ∗
Y h(z) = −

∫ ∞

0

log

�
1+

iz

x

�
Uh
µ(dx),

where Uh
µ denotes the image of Lebesgue measure on (0,∞) under the application : s → 1/h(s).

That is, ∫ ∞

0

e
− x

h(s) ds =

∫ ∞

0

e−xzUh
µ(dz), x > 0. (7)

The function h is called the Thorin function of Y and is obtained as follows. Let FUµ
(x) =

∫ x

0
Uµ(dy)

for x ≥ 0 and let F−1
Uµ
(s) be the right continuous inverse of F−1

Uµ
(s) in the sense of composition of

functions, that is F−1
Uµ
(s) = inf{t > 0; FUµ

(t) ≥ s} for s ≥ 0. Then, h(s) = 1/F−1
Uµ
(s) for s ≥ 0.

Moreover we have the following alternative expression for the cumulant function of µ

C ∗µ (z) =−
∫ ∞

0

ds

∫ ∞

0

(1− eizx)
e−x/h(s)

x
dx . (8)

In the above equation, if {t > 0; FUµ
(t)≥ s}= φ, x/h(s) = 0.

Remark 1.1. If Y is a GGC random variable, we write Y h (respectively µh) to indicate that it has

the integral representation (6) and write µh = L ∗(Y h). We have excluded from the above discussion

the case of non-zero drift, which is easily incorporated by considering nonzero drift c0 in the ∗-triplet

(c0, 0,νµ).

Many well known distributions belong to T ∗(R+). The positive α-stable distributions, 0 < α < 1,

are GGC with h(s) = {sθΓ(α+ 1)}− 1
α for a θ > 0. In particular, for the 1/2−stable distribution,

h(s) = 4
�

s2π
�−1

. First passage time distribution, Beta distribution of the second kind, lognormal
and Pareto are also GGC, see [9].
As for distributions in T ∗(R), there is a another random integral representation approach recently
presented in Barndorff-Nielsen et. al [1], who also considered the multivariate case. We recall
that if (X t ; t ≥ 0) is a ∗-Lévy process and f : [a, b] → R is a continuous function defined on an
interval [a, b] in [0,∞), then the stochastic integral

∫
[a,b]

f (t)dX t may be defined as the limit

in probability of approximating Riemann sums. Moreover, if f is continuous function defined
on [0,∞),

∫
[a,∞) f (t)dX t may be as the limit in probability of

∫
[a,b)

f (t)dX t when b → ∞. For

stochastic integrals of nonrandom functions with respect to general additive processes we refer to
Sato [14].
It is shown in [1], that for any µ in I∗(R), the mapping Υ∗ given by

Υ∗(µ) =L ∗
 ∫ 1

0

log
1

t
dX
(µ)
t

!
, (9)

is always defined, where X
(µ)
t is a Lévy process with L ∗(X (µ)1 ) = µ. Moreover T ∗(R) = Υ∗(L

∗(R)),
where L∗(R) is the class of ∗-selfdecomposable distributions in R : µ ∈ L∗(R) if for any b ∈ (0,1)
there exists ρb ∈ P (R) such that µ̂(z) = µ̂(bz)ρ̂b(z). Furthermore, it is shown in [1] that a
random variable Y belongs to T ∗(R) if and only if there exists µ ∈ I∗log(R) such that

Y =

∫ ∞

0

e−1
1 (t)dX

(µ)
t (10)
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where the function e−1
1 (t) is the inverse of the incomplete gamma function e1(x) =

∫∞
x

e−ss−1ds

and X
(µ)
t is a Lévy process with L ∗(X (µ)1 ) = µ.

In the study of relations between classical and free infinite divisibility, Bercovici and Pata [5]
introduced a bijection Λ between the set I∗(R) of classical infinitely divisible laws and the set I⊞(R)

of free infinitely divisible laws. A new approach to this bijection was recently proposed by Benaych-
Georges [4] and Cabanal-Duvillard [8]. They construct random matrix ensembles associated to
classical one-dimensional infinitely divisible laws whose empirical spectral laws converge to their
corresponding free infinitely divisible laws under Λ. Recall that an ensemble of random matrices is
a sequence (M d)d≥1 where for each d ≥ 1, M d is a d×d matrix with random entries. The (random)
spectral measure (or empirical spectral law) bµM d

d
of M d is defined as the uniform distribution on

the spectrum λM d

1 , ...,λM d

d
, that is, bµM d

d
= d−1

∑d

i=1 δλMd

i

. An ensemble (M d)d≥1 is a Random

Matrix Model (RMM) for a probability measure µ, if bµM d

d
converges to µ weakly in probability as

d →∞. It is shown in [4], [8] that for any µ ∈ I∗(R), there exists a random matrix model (M d)d≥1

for Λ(µ), which is constructed from µ. These papers generalize the pioneering work by Wigner
who connects Gaussian and semicircle laws throughout the Gaussian Unitary Ensemble of random
matrices.
The purpose of this work is to study the free infinitely divisible laws (FGGC) corresponding to
the image of Λ of classical Generalized Gamma Convolutions and their corresponding random
matrix models. We start in Section 2 by recalling facts and notation about the free cumulant
function, the Bercovici-Pata bijection, free Lévy process and their random integrals. In Section 3
we prove a characterization of the free cumulant transform of a FGGC analogous to the classical
cumulant transform (3). Furthermore, we derive free integral representations with respect to the
free Gamma process and a Lévy process similar to (6) and (10), respectively. In Section 4 we
construct random matrix models for FGGC. They are given as (classical) matrix random integrals
of Wiener-Gamma type similar to (6), with respect to an appropriate (classical) matrix Gamma
process. Finally, in Section 5 we point out some facts on nested subclasses of Λ(T ∗(R)) and their
limits, analogous to the recent results for the classical convolution case study in Maejima and Sato
[11].

2 Preliminaries on Free infinite divisibility

The Cauchy-Stieltjes transform of a probability measure µ on R is defined by

Gµ(z) =

∫

R

1

z − t
µ(dt), z ∈ C+.

The function Fµ(z) = 1/Gµ(z) has right inverse F−1
µ (z) on the region Γη,M for some M > 0 and

η > 0, where
Γη,M := {z ∈ C : |Re (z)|< ηIm (z), Im (z)> M};

(see Bercovici and Voiculescu [6]). Following Barndorff-Nielsen and Thorbjørnsen [3], the free
cumulant transform C ⊞µ of µ is defined by

C ⊞µ (z) = zF−1
µ (z

−1)− 1 z−1 ∈ Γη,M .

A probability measure µ on R is ⊞-free infinitely divisible if and only if C ⊞µ (z) has an analytic
continuation to C−. We denote by I⊞(R) the class of all free infinitely divisible distributions. In
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complete analogy to the classical case, the free Lévy-Khintchine characterization establishes that
a probability measure µ belongs to I⊞(R) if only if

C ⊞µ (z) = ηµz + aµz
2 +

∫

R

�
1

1− tz
− 1− tz1[−1,1] (t)

�
νµ(dt), z ∈ C−, (11)

where aµ ∈ R+, ηµ ∈ R and the Lévy measure νµ is a measure satisfying νµ({0}) = 0 and
∫
R
(|x |2∧

1)νµ(dx)<∞. In this case, the ⊞-triplet (aµ,νµ,ηµ) is uniquely determined by µ and is called the
⊞-characteristic triplet or ⊞-triplet for µ, see [3] [6].
Bercovici and Pata [5] introduced a bijection Λ between classical and free infinitely divisible dis-
tributions. It is such that if µ ∈ I∗(R) has ∗-characteristic triplet (aµ,νµ,ηµ), then Λ(µ) is the free
infinitely divisible distribution with ⊞-triplet (aµ,νµ,ηµ).

Remark 2.1. If µ ∈ I⊞(R) and its Lévy measure νµ satisfies
∫
R
|x |νµ(d x)<∞, then for z ∈ C−

C ⊞µ (z) = ηµz + aµz
2 +

∫

R

�
1

1− tz
− 1− tz1[−1,1] (t)

�
νµ(dt)

=

 
ηµ −

∫

{|x |≤1}
xν(d x)

!
z + aµz

2 +

∫

R

�
1

1− tz
− 1

�
νµ(dt)

= η′µz + aµz
2 +

∫

R

�
1

1− tz
− 1

�
νµ(dt), (12)

where η′µ = ηµ−
∫
{|x |≤1} xνµ(d x). We call this representation the drift type ⊞-cumulant of µ ∈ I⊞(R)

and η′µ is the ⊞-drift. By Bercovici-Pata bijection, if µ ∈ I∗(R) has ∗-drift type triplet (aµ,νµ,η
′
µ) then

the ⊞-drift type triplet of Λ(µ) is also (aµ,νµ,η
′
µ).

We summarize some properties of the Bercovici-Pata bijection in the following result (see [3], [5],
[6]).

Proposition 2.2. The map Λ : I∗(R)→ I⊞(R) has the following properties.

(1) Λ(µ ∗ρ) = Λ(µ)⊞Λ(ρ) for any µ,ρ ∈ P (R).
(2) Let δa be Dirac measure at a. Λ(δa) = δa for a ∈ R. So Λ is preserved under affine transforms,

i.e. Λ(Dcµ ∗ δa) = DcΛ(µ)⊞ δa for any b > 0 and a ∈ R where Dcµ means the spectral distribution

of the operator cX with µ=L (X ).
(3) Λ is a homeomorphism w.r.t. weak convergence i.e. µn→ µ if and only if Λ(µn)→ Λ(µ) in weak

convergence.

For a classical random variable X or a stochastic process (X t), we write Λ(X ) and Λ(X t) as a short
notation for Λ(L ∗(X )) and Λ(L ∗(X t)).
Barndorff-Nielsen and Thorbjørnsen [3] introduced free selfdecomposable distribution. A prob-
ability measure µ on R is free selfdecomposable (⊞-selfdecomposable) if, for any b ∈ (0,1),
there exists ρb ∈ P (R) such that µ = Dbµ⊞ ρb. We denote by L⊞(R) the class of all free self-
decomposable distributions onR. We refer to Sakuma [15] for a detailed study of⊞-selfdecomposable
distributions.
As in the classical case, free Lévy process and their free integrals can be considered with respect
to the ⊞−convolution. Given a free random variable Z , we denote by L ⊞(Z) its spectral distri-
bution. Following [3], we say that a process (Zt ; t ≥ 0) of selfadjoint operators affiliated with a
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W ∗-probability space (A ,τ), is a free Lévy process (in law) if it satisfies the following four condi-
tions:

(1) Z0 = 0
(2) Whenever n ∈ N and 0≤ t0 < t1 < · · · tn, the increments

Zt0
, Zt1
− Zt0

, Zt2
− Zt1

, · · · , Ztn
− Ztn−1

,

are freely independent random variables.

(3) For any s, t in [0,∞), L ⊞(Zs+t − Zs) does not depend on s.
(4) For any s ∈ [0,∞), L ⊞(Zs+t − Zs) converge weakly to δ0, as t → 0.

For any compact interval [a, b] ⊂ [0,∞) and any continuous function f : [a, b] → R, the ran-

dom integral
∫ b

a
f (t)dZt exists as the limit in probability of approximating Riemann sums. The

following result summarizes the connection between classical and free random integrals, see [3].

Proposition 2.3. Let (X t) be a classical Lévy process and (Z t) be a free Lévy process with marginal

distribution µt and Λ(µt), respectively. Then for any [a, b] ⊂ [0,∞) and any continuous function

f : [a, b] → R, the laws L ∗(
∫ b

a
f (t)dX t) and L ⊞(

∫ b

a
f (t)dZt) are ∗-infinitely divisible and ⊞-

infinitely divisible, respectively. Moreover,

L ⊞
 ∫ b

a

f (t)dZt

!
= Λ

 
L ∗
 ∫ b

a

f (t)dX t

!!
. (13)

In particular, if Y is a free selfdecomposable random variable, there exists a free Lévy process Z t such

that L (Z1) = µ,
∫
R\(−1,1)

log(1+ |t|)νµ(d t)<∞ and L ⊞(Y ) =
∫∞

0
e−tdZt .

3 Free Generalized Gamma Convolutions

When γ is the classical gamma distribution, we call Λ(γ) the free gamma distribution. If (γt ; t ≥ 0)
is the standard Gamma process, the free Lévy process (Λ(γt); t ≥ 0) is called the free standard

Gamma process.
We say that a probability distribution λ is Free Generalized Gamma Convolution (FGGC) (resp.

Free Thorin) if there is a classical GGC (resp. Thorin) µ such that λ = Λ(µ). We denote by
T⊞(R+) = Λ(T

∗(R+)) and T⊞(R) = Λ(T ∗(R)) the classes of FGGC and Free Thorin class respec-
tively. It follows trivially from Proposition 2.2, that T⊞(R+) is the smallest class that contains all
free Gamma distributions and that is closed under ⊞-convolution and convergence, while T⊞(R)

is the smallest class on the real line R which contains T⊞(R+) and is closed under convolution,
convergence and reflection.
The following result is a characterization of the free cumulant transform of distributions in T⊞(R+)

in terms of the Cauchy transform of the exponential distribution.

Theorem 3.1. A probability measure λ in R+ is FGGC without drift term if and only if there exists a

Borel function h : R+→ R+ satisfying (5) such that λ has free cumulant transform

C ⊞
λ
(z) =

∫ ∞

0

h(s)GE( 1
h(s)
)(z
−1)ds z ∈ C−, (14)



532 Electronic Communications in Probability

where GE(a) is the Cauchy transform of the exponential law with mean 1/a, i.e.

GE(a)(z) =

∫ ∞

0

ae−ax

z − x
dx z ∈ C+. (15)

Alternatively, a probability measure λ in R+ is FGGC without drift term if and only if there is a Thorin

measure Uµh such that

C ⊞
λ
(z) =

∫ ∞

0

1

s
GE(s)(z

−1)Uµ(ds) z ∈ C−. (16)

Proof. For any t ≥ 0, the Lévy measure of (γt) has finite first moment. We work with the drift type
representation (12) with η′µ = aµ = 0. First, since (γt) and (Λ(γt)) have the same characteristic ∗
and ⊞-triplet, from (12), the free cumulant transform of Λ(γt) is obtained as

CΛ(γt )
(z) = t

∫ ∞

0

�
1

1− xz
− 1

�
e−x

x
dx

= t

∫ ∞

0

e−x

z−1 − x
dx

= tGE(1)(z
−1) z ∈ C−. (17)

Next, by Remark 1.1, a probability measure λ without drift term belongs to T⊞(R+), if and only if
there is a Thorin function h such that λ= Λ(µh), where µh is in T ∗(R+) with Thorin function and
measure h and Uh respectively. Since µh and Λ(µh) have the same Lévy measure

νµh(dx) =
dx

x

∫ ∞

0

e−xsUµh(ds), (18)

from (12) and (17), the free cumulant transform of λ is obtained as

Cλ(z) =
∫ ∞

0

�
1

1− xz
− 1

�
dx

x

∫ ∞

0

e−xsUµh(ds)dx (19)

=

∫ ∞

0

1

s
GE(s)(z

−1)Uµ(ds) z ∈ C−,

which proves (16) and the if part of the second statement of theorem. For the converse, let Uh be
a Thorin measure and λ be a probability measure such that (16) is satisfied. Let νµh(dx) be the
Lévy measure given by (18) and let µh be the corresponding measure in T ∗(R+). Then, from (19)
and the uniqueness of the Lévy-Khintchine representation, λ has Lévy measure νµh(dx). Thus, by
Bercovici-Para bijection λ= Λ(µh) and therefore λ ∈ T⊞(R+).
Finally, to prove the first statement of the theorem, we use (7) in (19), proceed as in (17) and by
using (15) we obtain that

Cλ(z) =
∫ ∞

0

�
1

1− xz
− 1

�
dx

x

∫ ∞

0

e−xsUµh(ds)dx

=

∫ ∞

0

h(s)GEx( 1
h(s)
)(z
−1)ds z ∈ C−.

Thus, (14) and (16) are equivalent.
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Using Propositions 2.2 and 2.3, we can easily deduce integral representations for FGGC. First, if
Y h ∈ T ∗(R+) has Wiener-Gamma representation (6), then

Λ(Y h) =L ⊞
�∫ ∞

0

h(t)dΛ(γt)

�
.

Secondly, for any µ in I⊞(R), define the mapping Υ⊞ as

Υ⊞(µ) =L ⊞
 ∫ 1

0

log
1

t
dZ
(µ)
t

!
.

where Z
µ
t is free Lévy process withL ⊞(Z (µ)1 ) = µ. Then it is easily seen that Λ(Υ∗(µ)) = Υ⊞(Λ(µ))

and that T⊞(R) = Υ⊞(L
⊞(R)). Moreover,

T⊞(R) =

¨
L ⊞

�∫ ∞

0

e−1
1 (t)dZ

(µ)
t

�
: µ ∈ Λ(I∗

log
(R))

«
. (20)

We now consider some examples of FGGC. A probability measure µ on R is called free stable
(⊞-stable), if the class

{ψ(µ) :ψ is an increasing affine transformation}

is closed under the operation ⊞. Let S⊞(R) denote the class of all free stable distributions on R.
The free domains of attractions of S⊞(R) were studied in [5]. As in the classical case, only the free
Gaussian, the Cauchy and the free 1/2−stable have densities with closed form [5]. In the next
example we further study the free 1/2−stable, pointing out that it is also infinitely divisible and
GGC in the classical sense.

Example 3.2. Let µ be the law of classical 1
2
-stable law (sometimes called Lévy distribution) with

scale parameter c and drift c0 ≥ 0 (so its Lévy measure is ν(dr) = cr−3/2dr). It is easy to see that

Λ(µ) has density

g(x) =
c

π

q
(x − c0)− c2

4

(x − c0)
2 (x >

c2

4
+ c0)

with Laplace transform

EΛ(µ)[exp(−rX )] =
2

π
exp

�
−r

�
c2

4
+ c0

��∫ ∞

0

(t + 1)−2 t
1
2 exp

�
−

rc2

4
t

�
dt r > 0.

From this expression we deduce that Λ(µ) is the Beta distribution of the second kind B2(
1
2
, 3

2
). Bondes-

son [7, pp 59] proved that Beta distributions of second kind are GGC. Thus, Λ(µ) belongs to T ∗(R+)
and T⊞(R+). It is an open problem whether free stable distributions other than free Cauchy and free
1
2
-stable are also infinitely divisible in the classical sense.

Example 3.3. We compute the free cumulant transform of four FGGC examples arising from classical

GGC whose Thorin measures are considered in [9]. From these expressions their corresponding free

cumulants are readily obtained.
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(1) Let µ be in T⊞(R+) with the Thorin measure Uµ(dx) =
∑∞

n=1 δ π2

8
(2n−1)2

(dx). Then,

C ⊞µ (z) =
∞∑

n=1

8

π2(2n− 1)2
G

E( π
2

8
(2n−1)2)

(z−1) z ∈ C−

=

∞∑

k=1

k!

 
∞∑

n=1

½
8

π2(2n− 1)2

¾!
zk+1 z ∈ C−.

(2) Let µ be in T⊞(R+) with the Thorin measure Uµ(dx) =
∑∞

n=1 δ π2n2

2

(dx). Then,

C ⊞µ (z) =
∞∑

n=1

2

π2n2 G
E( π

2n2

2
)
(z−1) z ∈ C−

=

∞∑

k=1

k!

�
2

π2

�k+1
 
∞∑

n=1

1

n2(k+1)

!
zk+1 z ∈ C−.

(3) Let µ be in T⊞(R+) with the Thorin measure Uµ(dx) = e−xup
u(2−u)

1(0,2)(dx). Then,

C ⊞µ (z) =
∞∑

k=1

1

22k(k!)2

∫ ∞

0

x2ke−x

z−1 − x
dx z ∈ C−.

(4) Let µ be in T⊞(R+) with the Thorin measure Uµ(dx) = 1p
u(2−u)

1(2,∞)(dx) Then,

C ⊞µ (z) =
∫ ∞

0

ds
1

p
s(s+ 2)

∫ ∞

0

e−(2+s)x

z−1 − x
dx .

4 Random Matrix Models for Free GGC

Let Md = Md(C) denote the linear subspace of Hermitian matrices, with scalar product 〈A, B〉 →
tr(AB∗), for A, B ∈ Md and tr denotes trace. By ‖M‖ we denote the Euclidean norm. Let M+

d
be

the closed cone of nonnegative definite matrices inMd .
Let us first recall several facts on infinite divisibility of matrices taking values in the coneM+

d
(see

[2]). A d × d Hermitian random matrix M is infinitely divisible in M+
d

if and only if its cumulant
transform C ∗

M
(A) = logE[exp(iTr(AM))] is of the form

C ∗
M
(A) = itr(Θ0A) +

∫

M
+
d

(eitr(XA) − 1)ρ(dX ), A∈M+
m

, (21)

where Θ0 ∈M+
d

is called the drift and the Lévy measure ρ is such that ρ(Md\M+d ) = 0 and ρ has
order of singularity ∫

M
+
d

min(1,‖X‖))ρ(dX )<∞. (22)

Moreover, the Laplace transform of M is given by

E[exp(−tr(MA))] = exp

(
−tr(Θ0A)−

∫

M
+
d

(1− e−tr(XA))ρ(dX )

)
. (23)
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If M is an infinitely divisible matrix in M+
d

, the associated matrix Lévy process {Mt}t≥0 is called
a matrix subordinator. It is M+

d
-increasing in the sense that for all 0 ≤ s < t, Mt − Ms ∈M+d with

probability one.
The matrix valued random integral

N =

∫ ∞

0

f (t)dMt (24)

of a non-random real valued function f is defined in the sense of integrals with respect to scattered
random measures, see [12], [14]. When definable, it is a d × d infinitely divisible random matrix
with cumulant transform

C ∗
N
(A) =

∫ ∞

0

C ∗
M
( f (t)A)dt. (25)

Of special interest in this work is the Gamma type matrix subordinator Γ = {Γd
t
}t≥0 corresponding

to the Lévy measure

ρ
g

d
(dX ) =

exp(−‖X‖)
‖X‖ eωd(dX ) (26)

where eωd/d(E) =
∫∞

0
dr
∫
Sd

ωd(dV )1E(rV ). ωd is the (probability) measure on S+
d
= {A ∈ M+

d

;‖A‖ = 1} induced by the transformation u → V = uu∗, where the column random vector u is
uniformly distributed on the unit sphere of Cd . The Lévy measure ρg

d
has the polar decomposition

ρ
g

d
(E) = d

∫

S
+
d

ωd(dV )

∫ ∞

0

1E(rV )
e−r

r
dr. (27)

We observe that ρg

d
has support on the subset of rank one matrices in M+

d
. The case d = 1

corresponds to the Lévy measure of the one dimensional gamma process. The corresponding
matrix random integral

∫∞
0

h(t)dΓd
t

is called the matrix Wiener-Gamma integral and is defined for
Borel functions h : R+→ R+ satisfying (5).
The following is the main result of this section. It gives a RMM for FGGC on R+, where the
RMM is given by matrix Wiener-Gamma type integrals, which are GGC matrix extensions of the
one-dimensional case.

Theorem 4.1. Let µh be a classical GGC on R+ given by the Wiener-Gamma integral

µh =L
�∫ ∞

0

h(t)dγt

�
.

The free GGC Λ(µh) has a RMM given by the ensemble of infinitely divisible matrix Wiener-Gamma

integrals �
M d

h
=

∫ ∞

0

h(t)dΓd
t

�

d≥1

, (28)

where for each d ≥ 1, {Γd
t
}t≥0 is the Gamma type matrix subordinator associated to the Lévy measure

ρ
g

d
given by (26).

Proof. We shall use Theorem 6.1 in [4], which establishes that for any µ ∈ I∗(R), there is an
ensemble of random matrices (Md)d≥1 such that the spectral distribution of Md converges in prob-
ability to Λ(µ). Moreover, from Theorem 3.1 in [4], for each d ≥ 1, the Fourier transform of the
random matrix Md is given by the expression

E[exp(iTr(AMd)] = exp{Eu(d ×C ∗µ (〈u,Au〉)}, A∈Mm, (29)
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where u = (u1, ...,ud)
t is a uniformly distributed random vector on the unit sphere of Cd and C ∗µ

is the cumulant function (Lévy exponent) of µ. We will show that when µh is a classical GGC, the
random matrices (M d

h
)d≥1 given by (28) have the same laws as (Md)d≥1 with Fourier transform

(29), where C ∗µ is the cumulant transform C ∗
µh of µh. This will prove the theorem.

First, let µ be the one dimensional standard Gamma distribution, d ≥ 1 be fixed and u =

(u1, ...,ud)
t be a uniformly distributed random vector on the unit sphere of Cd . Let Γd

1 be the
Gamma type matrix subordinator at t = 1 corresponding to the Lévy measure (26). We will show
that

E[exp(−Tr(AΓd
1))] = exp

¨
−dEu

�∫ ∞

0

�
1− e−〈u,Au〉x� e−x

x
dx

�«
. (30)

Then, writing V = uu∗ and using the polar decomposition (27) we have

E[exp(−Tr(AΓd
1))] = exp

(
−
∫

M
+
d

�
1− e−Tr(AX )

� e−||X ||

||X || eωd(dX )

)

= exp

(
−d

∫

S
+
d

ωd(dV )

∫ ∞

0

�
1− e−Tr(VA)x

� e−x

x
dx

)

= exp

¨
−dEV

�∫ ∞

0

�
1− e−Tr(VA)x

� e−x

x
dx

�«

= exp

¨
−dEu

�∫ ∞

0

�
1− e−Tr(uu∗A)x

� e−x

x
dx

�«
. (31)

Second, let (Pµ
h

d
)d≥1 be the matrix distributions of the random matrices ensemble given by (28),

where µh is a classical one dimensional GGC with Thorin function h. Using (25), (31) and (27),
we have that

E
P
µh

d

[exp(−Tr(AM d
h
))] = exp

(
−
∫ ∞

0

ds

∫

M
+
d

�
1− e−Tr(AX )h(s)

� e−||X ||

||X || eωd(dX )

)

exp

(
−d

∫ ∞

0

ds

∫

S
+
d

ωd(dV )

∫ ∞

0

�
1− e−Tr(VA)h(s)x

� e−x

x
dx

)

= exp

¨
−dEu

∫ ∞

0

ds

∫ ∞

0

�
1− e−Tr(uu∗A)x

� e−x/h(s)

x
dx

«
.

From this Laplace transform and (8), we get (29).

Remark 4.2. If µ ∈ T ∗(R+) and without drift, then Λ(µ) is concentrated on R+. This follows trivially

from the above construction of the RMM. As pointed out by the referee, this fact also follows from the

well known equivalence

ν∗n
n
→n→∞ µ ⇐⇒ ν⊞n

n
→n→∞ Λ(µ).

Similar to the above theorem, we can construct RMM for GGC on R, where the RMM is given by
matrix random integrals similar to the one dimensional representation (10).
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Theorem 4.3. Let µ1 be in T ∗(R) given by the random integral representation

µ1 =L
�∫ ∞

0

e−1
1 (t)dX

(µ)
t

�
,

for µ ∈ I∗log(R) and where X
(µ)
t is a Lévy process such that L (X (µ)1 ) = µ. The free GGC Λ(µ1) has a

RMM given by the ensemble of infinitely divisible matrix random integrals

�
M d

h
=

∫ ∞

0

e−1
1 (t)dRd

t

�

d≥1

, (32)

where for each d ≥ 1, {Rd
t
}t≥0 is a matrix valued Lévy process with Lévy measure νd given by

νd(E) =

∫

S
+
d

ωd(dV )

∫ ∞

0

1E(rV )ν(dr),

with ωd as in (26) and ν is the Lévy measure of µ.

5 Inheritance of nested subclasses of FGGC and its limit class

under Λ

Maejima and Sato [11] proved that nested subclasses of classical Thorin distributions are charac-
terized by limit theorem and proved that its limit class is the closure of the class of classic stable
distributions S∗(R), which is taken under ∗-convolution and weak convergence. We now point
out a similar result for free Thorin distributions. The free selfdecomposable case was recently
considered by Sakuma [15].
We define subclasses of T⊞(R) as follows. Let Ψ=

∫∞
0

e−1
1 (t)dZ

(µ)
t be the free integral considered

in (20) and I∗
logm(R) = {µ ∈ I∗(R) :

∫
R
(log+ |x |)mµ(dx)<∞}.

(1) For m= 1,2, ...let T⊞
m
(R) = Λ(Ψ(I∗

logm+1(R))) and T⊞∞(R) = ∩∞m=1T⊞
m
(R).

(2) µ ∈ L⊞
m
(R) if, for any c ∈ (0,1), there exists ρc ∈ L⊞m−1(R) such that µ = Dcµ⊞ ρc . We also

define L⊞∞(R) = ∩∞m=0 L⊞
m
(R). It was proved in [15] that L⊞

m
(R) is ⊞-c.c.s.s. and L⊞∞ = S⊞(R).

The following concept was introduced in the sense of classical convolution in [11].

Definition 5.1. A class M of distributions on R is said to be ∗ (resp. ⊞)-completely closed in the

strong sense (∗-c.c.s.s. (resp. ⊞-c.c.s.s.)), if M ⊂ I∗(R) (resp. M ⊂ I⊞(R)) and if the following are

satisfied.

(1) It is closed under ∗ (resp. ⊞)-convolution.

(2) It is closed under weak convergence.

(3) If µ ∈M, then Dcµ ∗δb ∈M (resp. Dcµ⊞δb ∈M) for any c > 0 and b ∈ R.

(4) µ ∈ M implies µs∗ ∈ M (resp. µs⊞ ∈ M) for any s > 0, where µs∗ is the distribution with the

cumulant sCµ(z) (resp. µs⊞ is the distribution with the free cumulant sC ⊞µ (z)).

The closure is taken under ⊞-convolution and weak convergence.
The following result gives the preservation of classical completely closed in the strong sense class
under the Bercovici-Pata bijection.

Lemma 5.2. If M is ∗-c.c.s.s., then Λ(M) is ⊞-c.c.s.s..
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Proof. (1) and (2) in the above definition follow from Proposition 2.2. If µ ∈ Λ(M), then Λ−1(Dcµ⊞

δb) = DcΛ
−1(µ)δb ∈ M. So Dcµ⊞ δb ∈ Λ(M) and (3) holds. Finally, (4) holds from the classical

and free Lévy Khintchine formulas.

From the above lemma and Proposition 2.3, we immediately obtain the following relationships.

Lemma 5.3. Fix 0 < a < ∞. Suppose f is continuous on (0, a) and
∫ a

0
f (s)ds 6= 0. Let {Zt} be a

free Lévy process with distribution µ. Define the mapping

Φ⊞
f
(µ) =L ⊞

�∫ a

0

f (s)dZ (µ)
s

�
.

Then the following are true

(1) If M is ⊞-c.c.s.s., then Φ⊞
f
(M)⊂M.

(2) If M is ⊞-c.c.s.s., then Φ⊞
f
(M) is also ⊞-c.c.s.s.

Theorem 5.4.

T⊞∞(R) = L⊞∞(R) = S⊞(R).

Proof. From T⊞
m
(R) = Υm+1

⊞
(L⊞

m
(R))⊂ L⊞

m
(R), we have

T⊞∞(R)⊂ L⊞∞(R). (33)

Since T ∗
m
(R) is ∗-c.c.s.s., then T⊞

m
(R) is ⊞-c.c.s.s. It is clear that T⊞

m
(R) = Υm+1

⊞
(L⊞

m
(R)) ⊂

Υm+1
⊞
(S⊞(R)) = S⊞(R). Next, since T⊞

m
(R) is ⊞-c.c.s.s., T⊞

m
(R)⊂ S⊞(R) and therefore,

T⊞∞ ⊂ S⊞(R) = L⊞∞(R). (34)

Then (33) and (34) yield
T⊞∞(R) = S⊞(R) = L⊞∞(R).
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