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Abstract

We illustrate how a technique from the theory of random iterations of functions can be used within
the theory of products of matrices. Using this technique we give a simple proof of a basic theorem
about the asymptotic behavior of (deterministic) “backwards products” of row-stochastic matrices
and present an algorithm for perfect sampling from the limiting common row-vector (interpreted
as a probability-distribution).

1 Preliminaries

An N×N matrix P = (pi j) is called stochastic if
∑

j pi j = 1, and pi j ≥ 0 for all i and j. A stochastic
matrix P is called stochastic-indecomposable-aperiodic (SIA) if

Q = lim
n→∞

Pn

exists and has all rows equal. Such matrices are of interest in the theory of Markov chains since
if {Xn} is a Markov chain with a transition matrix, P, which is SIA then in the long run Xn will
be distributed according to the common row vector of Q independent of the value of X0. Basic
theory of Markov chains gives soft conditions ensuring a stochastic matrix to be SIA. Essentially
“periodicity” has to be ruled out, and one fixed closed irreducible set should eventually be reached
by the chain from any given starting point. To have something in mind, the matrix
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is SIA while the matrices
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are not SIA since decomposability and periodicity respectively are present in the latter two.
Wolfowitz [11] proved that if A1, ...,An0

are N ×N matrices such that any finite product of them is
SIA, then for any ε > 0 there is an integer ν(ε) such that m ≥ ν(ε) implies that every product of
m Ai ’s has rows which differ by at most ε. In particular, if ω = ω1ω2 . . ., with ω j ∈ {1, ..., n0} for
any j, then the limit

Lω = lim
n→∞

Aωn
Aωn−1
· · ·Aω1

,

exists with all rows of Lω being identical. Such products are known as infinite “backwards prod-
ucts” in the literature, see e.g. Seneta [8]. In contrast, “forwards products”, defined by multiplying
the matrices in reversed order will typically not converge. These notions have their roots in the
theory of time-inhomogeneous Markov chains where “forwards/backwards products” corresponds
to running the Markov chain forwards/backwards in “time”.
It is not sufficient to require merely that A1, ...,An0

are SIA in Wolfowitz’ theorem since it is e.g.
easy to construct two SIA matrices A1 and A2 such that their product A1A2 is decomposable and
(A1A2)

n will therefore not have approximately identical rows for any n, see e.g. Hajnal [4], Equa-
tion 4(b). The conditions of Wolfowitz’ theorem may therefore be hard to verify. Some rather
weak sufficient conditions for Wolfowitz’ condition however follow from Sarymsakov [7]. In ad-
dition, Thomasian [9] proved a result which implies an algorithm, requiring a bounded number
of arithmetical operations, for determining whether any finite product (of whatever length) of
SIA-matrices is SIA. See Paz [6] for a sharp bound.
In the present paper we will extend Wolfowitz’ theorem with an algorithm for simulating from
the common row vector of Lω. In the particular case when n0 = 1 our algorithm reduces to a
“Coupling From The Past (CFTP)”-algorithm for “perfect sampling” from the stationary distribution
of a homogeneous Markov chain with a SIA transition matrix.
Let us present the simple key idea in the simplest “clearest” case when n0 = 1; Any probability
matrix, P = (pi j), can be represented by an Iterated Function System (IFS) with probabilities,
i.e. there exists a finite family of functions fk : {1, ..., N} → {1, ..., N}, and associated probabilities
pk, k = 1,2, .., M , for some constant M , (pk > 0 and

∑M

k=1 pk = 1), such that pi j =
∑

k: fk(i)= j pk.
Intuitively we may thus “run” a Markov chain with transition probability matrix P by random itera-
tions of the functions in a representing IFS choosing functions fk with the associated probabilities
pk. The concept of IFSs was coined by Barnsley and Demko [3] and has mainly been used on
general state-spaces as a tool to construct fractals. If P has at least one column with only positive
elements then we can choose the IFS with the property that (at least) one of the maps fk, say fk0

is a constant map (i.e. fk0
(x) = c, for some constant c), see Athreya and Stenflo [2] for details in a

more general setup. If {In}
∞
n=1 is a sequence of independent random variables with P(In = k) = pk

for any n and k then it follows that

P( fI1
◦ fI2
◦ · · · ◦ f In

(i) = j) = p
(n)

i j
,

where p
(n)

i j
denotes the element on row i and column j in the matrix Pn. If the IFS contains a

constant map, then it follows that the random variable of composed maps

Xn(i) := fI1
◦ fI2
◦ · · · ◦ f In

(i),
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will not depend on i, (i.e. will be constant) for all n ≥ T , where T = inf{ j : I j = k0} is the
first time when the constant map is applied (a geometrically distributed random variable). Thus
X = fI1

◦ fI2
◦ · · · ◦ f IT

(i) is a random variable having the same distribution as the common row
vector of limn→∞ Pn. See Athreya and Stenflo [2] for further details of the above method and
Wilson [10] for further literature related to CFTP.

2 Results

Let Ω be an arbitrary set, and let for each ω ∈ Ω,

Pω =









pω11 . . . pω1N
...

. . .
...

pω
N1 . . . pω

NN









, (3)

be a row-stochastic matrix, i.e. a matrix with
∑

j pω
i j
= 1, and pω

i j
≥ 0 for all i and j.

Our basic theorem is the following:

Theorem 1. Suppose all matrices Pω satisfy a Doeblin condition uniformly in ω i.e. suppose there

exists a constant c > 0 such that for any ω ∈ Ω,

∑

j

cω
jmin
≥ c, (4)

where cω
jmin
= min{pω1 j

, pω2 j
, . . . , pω

N j
} denotes the minimum value of the elements in the j:th column

of Pω.

Let ω =ω1ω2 . . ., be an arbitrary sequence of elements of Ω i.e. ω j ∈ Ω, j ≥ 1.

a) Convergence towards the limit with an exponential rate:

The limit

Mω = lim
n→∞

Pωn Pωn−1 · · · Pω1 (5)

exists, and Mω is a matrix with identical rows, i.e.

Mω =









µω1 . . . µω
N

...
. . .

...

µω1 . . . µω
N









,

for some probability vector µω = (µω1 , . . . ,µω
N
).

If Mω
n
= Pωn Pωn−1 · · · Pω1 , then for any i,

1

2

N
∑

j=1

|Mω
n
(i, j)−µω

j
| ≤ (1− c)n, n≥ 0. (6)

Thus the convergence rates of the row distributions towards the limit distribution µω = (µω1 , . . . ,µω
N
)

in (5) is exponential (in total-variation norm) uniformly in i.



Products of stochastic matrices 477

b) Perfect sampling:

Let U1, U2, U3,... be independent random variables uniformly distributed on the unit interval, and let

T be a geometrically distributed random variable with

P(T = k) = c(1− c)k−1, k ≥ 1, independent of the Ui:s, i ≥ 1.

Then Xω = g
ω1

U1
◦ g
ω2

U2
◦ · · · ◦ g

ωT−1

UT−1
(XUT

), where

XUT
=min(k :

∑k

j=1 c
ωT

jmin
∑N

j=1 c
ωT

jmin

≥ UT ),

and g
ωm

Um
(i) = min(k :
∑k

j=1(p
ωm

i j
− c

c
ωm
jmin
∑N

j=1 c
ωm
jmin

) ≥ Um(1 − c)), m ≥ 1, is a random variable with

distribution µω = (µω1 , . . . ,µω
N
).

Remark 1. The result in b) suggest an obvious algorithm for generating perfect samples from the

common row-distribution of Mω by simulating sets of a geometrically distributed size of uniformly

distributed random numbers. See Athreya and Stenflo [2] for generalizations of the above theorem in

the case when Ω contains one point.

Proof The matrices Pω may be expressed as

Pω = cPω⋆ + (1− c)Pω
⋄

,

where Pω⋆ = (p
⋆ω
i j
), with p⋆ω

i j
= cω

jmin
/(
∑N

j=1 cω
jmin
) and Pω

⋄
= (p⋄ω

i j
), with

p⋄ω
i j
=

(pω
i j
− c

cωjmin
∑N

j=1 cω
jmin

)

1− c
.

Define

g⋄ω
s
(i) =min(k :

k
∑

j=1

p⋄ω
i j
≥ s),

for each given ω ∈ Ω, and s ∈ (0,1). The function g⋄ω is an IFS representation of Pω
⋄

in the sense
that if U is a uniformly distributed random variable on the unit interval, then P(g⋄ω

U
(i) = j) = p⋄ω

i j
.

Similarly the matrix Pω⋆ can be represented by an IFS containing only the constant maps

g⋆ω
s
= g⋆ω

s
(i) =min(k :

k
∑

j=1

p⋆ω
i j
≥ s).

If for s̄ = (s1, s2) ∈ (0,1)2,

gω
s̄
= χ(s2 ≤ 1− c)g⋄ω

s1
+χ(s2 > 1− c)g⋆ω

s1
,

where χ denotes the indicator function, then if U = (U , Û) is a uniformly distributed random
variable on (0,1)2, then

P(gω
U
(i) = j) = c · P(g⋆ω

U
(i) = j) + (1− c) · P(g⋄ω

U
(i) = j) = pω

i j
, (7)

and we have thus created an explicit IFS representation of Pω.
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If {Un = (Un, Ûn)} is a sequence of independent uniformly distributed random variables on (0,1)2,
and we define

Xω
n
(i) = g

ω1

U1
◦ · · · g

ωn

Un
(i),

then if T = inf{n : Ûn > 1−c}, then it follows that T is a geometrically distributed random variable
with parameter c, independent of the random variables Un, and

Xω
n
(i) = g

⋄ω1

U1
◦ g
⋄ω2

U2
◦ g
⋄ωn

Un
(i), for n< T,

and
Xω

n
(i) = Xω := g

⋄ω1

U1
◦ g
⋄ω2

U2
◦ g
⋄ωT−1

UT−1
(g
⋆ωT

UT
), for n≥ T.

Let
Mω

n
= Pωn Pωn−1 · · · Pω1 .

We claim that
P(Xω

n
(i) = j) = Mω

n
(i, j) (8)

for all n,ω, i and j. In order to see this we use induction; First note by construction that P(Xω1 (i) =

j) = p
ω1

i j
= Mω

1 (i, j), see (7). If P(Xω
n
(i) = j) = Mω

n
(i, j) for some fixed n, then

P(Xω
n+1(i) = j) = P(Xω

n
(g
ωn+1

Un+1
(i)) = j)

= c · P(Xω
n
(g
⋆ωn+1

Un+1
(i)) = j) + (1− c) · P(Xω

n
(g
⋄ωn+1

Un+1
(i)) = j)

= c ·

N
∑

k=1

p
⋆ωn+1

ik
Mω

n
(k, j) + (1− c)

N
∑

k=1

p
⋄ωn+1

ik
Mω

n
(k, j)

= (Pωn+1 Mω
n
)(i, j) = Mω

n+1(i, j).

Therefore (8) follows by induction.
Define µω

j
= P(Xω = j). By construction

1

2

N
∑

j=1

|Mω
n
(i, j)−µω

j
| =

1

2

N
∑

j=1

|P(Xω
n
(i) = j)− P(Xω = j)|

≤ P(Xω
n
(i) 6= Xω)≤ P(T > n) = (1− c)n.

This completes the proof of the theorem.

Remark 2. Let d denote the Dobrushin ergodic coefficient defined for a stochastic matrix A by

d(A) =
1

2
max
i1,i2

N
∑

j=1

|A(i1, j)− A(i2, j)|= 1−min
i1,i2

N
∑

j=1

min(A(i1, j),A(i2, j)). (9)

It is straightforward to prove that

d(A · B)≤ d(A)d(B),

for any two stochastic matrices A and B. By using the right hand side of (9) we see that assumption

(4) implies that d(Pω)≤ 1− c, for any ω and thus

d(Mω
n
)≤ (1− c)n. (10)
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Now fix j andω and note that mini Mω
n
(i, j) is increasing in n. Also note, similarly, that maxi Mω

n
(i, j)

is decreasing in n. By (10),

(max
i

Mω
n
(i, j)−min

i
Mω

n
(i, j))∼ O((1− c)n) (11)

and therefore there exists a limit µω
j

such that

N
∑

j=1

|Mω
n
(i, j)−µω

j
| ∼ O((1− c)n).

We can thus prove that the exponential convergence rate of Theorem 1a) holds without involving

IFSs. A good reason to involve IFSs in the proof above is however that it simultaneously allows us to

prove b).

Remark 3. Note that we have no restrictions on the number of matrices in our theorem above.

The theorem corresponds to backwards limits for Markov chains in random environments or time-

inhomogeneous Markov chains with state space S = {1, ..., N}. It is straightforward to extend the

theorem to the case when S is an arbitrary complete separable metric space. Transition matrices

Pω = (pω
i j
) are then replaced by transition kernels Pω(x , B) (interpreted as the transition probability

of moving from state x into the set B) satisfying the Doeblin condition Pω(x , B) ≥ cνω(B), for all

sets B for some probability measure νω depending on ω ∈ Ω. In the proof we then use the fact that

any Markov chain on a complete separable metric space can be represented by an IFS, see Kifer [5] or

Athreya and Stenflo [2].

As a consequence of Theorem 1 we can now, as our main result, extend the theorem by Wolfowitz
[11] with a perfect sampling algorithm;
Suppose A1, ...,An0

are N×N matrices such that any finite product of them is SIA. Ifω =ω1ω2 . . .,
with ω j ∈ {1, ..., n0} for any j, then it follows from [11] that for any c ∈ (0,1) there exists an
integer nc such that the matrices

P(1) = Aωnc
Aωnc−1

· · ·Aω1
, P(2) = Aω2nc

Aωnc−1
· · ·Aωnc+1

, P(3) = . . . , . . .

satisfy the conditions of Theorem 1.
That is

∑

j

c
(k)

jmin
≥ c,

where c
(k)

jmin
= min{p(k)1 j

, p
(k)

2 j
, . . . , p

(k)

N j
} denotes the minimum value of the elements in the j:th

column of P(k), k ≥ 1.
By applying Theorem 1 we obtain;

Corollary 1. Suppose A1, ...,An0
are N × N matrices such that any finite product of them is SIA.

Then for any ω =ω1ω2 . . ., with ω j ∈ {1, ..., n0} for any j, the limit

Lω = lim
n→∞

Aωn
Aωn−1
· · ·Aω1

, (12)

exists with all rows of Lω being identical and the convergence rates of the row distributions towards

the limit is exponential (in total-variation norm) uniformly in the row-index and ω.
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If U1, U2, U3,... is a sequence of independent random variables uniformly distributed on the unit

interval, and T is a geometrically distributed random variable with P(T = k) = c(1− c)k−1, k ≥ 1,

independent of the Ui:s, i ≥ 1, then Xω = ĝ
(1)
U1
◦ ĝ
(2)
U2
◦ · · · ◦ ĝ

(T−1)
UT−1

(X̂UT
), where

X̂UT
=min(k :

∑k

j=1 c
(T )

jmin
∑N

j=1 c
(T )

jmin

≥ UT ),

and ĝ
(m)

Um
(i) = min(k :
∑k

j=1(p
(m)

i j
− c

c
(m)

jmin
∑N

j=1 c
(m)

jmin

) ≥ Um(1 − c)), m ≥ 1, is a random variable with

distribution lω = (lω1 , . . . , lω
N
) being the common row vector of Lω.

Proof From Theorem 1 it follows that the limit

Lω = lim
n→∞

P(n)P(n−1) · · · P(1) (13)

exists, and Lω is a matrix with identical rows, i.e.

Lω =









lω1 . . . lω
N

...
. . .

...
lω1 . . . lω

N









,

for some probability vector lω = (lω1 , . . . , lω
N
).

Moreover, if Lω
n
= Aωn

Aωn−1
· · ·Aω1

, then for any i,

1

2

N
∑

j=1

|Lω
nnc
(i, j)− lω

j
| ≤ (1− c)n, n≥ 0, (14)

and thus, (c.f. (11)),

max
j
(max

i
Lω

nnc
(i, j)−min

i
Lω

nnc
(i, j))∼ O((1− c)n) (15)

This establishes the exponential convergence rate, since if 0≤ k < nc , then

|Lω
nnc+k

(i, j)− lω
j
| ≤ max

i
Lω

nnc+k
(i, j)−min

i
Lω

nnc+k
(i, j)

≤ max
i

Lω
nnc
(i, j)−min

i
Lω

nnc
(i, j)

and thus by (15)

1

2

N
∑

j=1

|Lω
nnc+k

(i, j)− lω
j
| ∼ O((1− c)n).

Therefore
1

2

N
∑

j=1

|Lω
n
(i, j)− lω

j
| ∼ O((1− c)[n/nc]), n≥ 0,

for any i, where [x] denotes the largest integer less than or equal to x .

Remark 4. The exponential convergence rate in Corollary 1 is a known consequence of the theorem

in [11], see e.g. Anthonisse and Tijms [1]. See also Seneta [8].

An advantage with our method based on IFSs is that it gives the perfect sampling algorithm ”for free”.
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