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Abstract

We provide a characterisation of Gaussian time series which optimise the one-step prediction
error subject to the covariance sequence being completely monotone with the first m covari-
ances specified.

1 Introduction

In [9] the aggregation of simple dynamic equations, in particular AR(1) models, was introduced
as a means for generating processes displaying long memory. Since this paper, the idea of ag-
gregating has become a popular approach for constructing time series with a flexible covariance
structure (see, for instance [1, 12, 2, 19, 15, 17]). Aggregation has also become a useful way
to represent certain time series and provides a method for simulation. Examples of time series
which can be represented in this way include the fractional ARIMA(0, d, 0) model proposed
by Granger and Joyeaux in [10] and Lamperti’s transformation of fractional Brownian motion
with H < 1/2 [5]. Other examples are given in [14]. The problem of representing long memory
processes in terms of an aggregation of short memory processes is studied in [7].
Consider the aggregation of independent Gaussian AR(1) time series with positive correlation
parameters. The covariance sequence of this time series is represented as

γk =

∫

[0,1]

ρ|k|σ(dρ), (1)

for some Borel measure σ on [0, 1]. The representation (1) is equivalent to stating that {γk}
∞
k=0

has the completely monotone property, that is, for all n, k ≥ 0

(−1)n∆nγk ≥ 0
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where ∆ is the difference operator ∆an = an+1 − an ([18]). In this note we consider the
problem of optimising the one-step prediction error variance, denoted by ψ(σ), subject to the
covariance sequence having representation (1) and satisfying equality constraints

γk = ck, k = 0, 1, . . . ,m. (2)

The measure which maximises the prediction error will also provide the maximum entropy
process ([6]) subject to constraints (1) and (2). While the measure which minimises the
prediction error will not necessarily be the minimum entropy process, it will still provide
a lower bound on the prediction error for Gaussian time series with completely monotone
covariance.
For the case where m = 1, the problem of maximising ψ(σ) subject to (1) and (2) can be
solved from the result of Burg [3]. He showed that the time series which maximises prediction
error subject to (2) is a Gaussian AR(m) time series. When m = 1 this result can be applied
so that the measure which maximises the prediction error subject to γ0 = c0, γ1 = c1 is the
measure

σ(A) = c0χA(c1/c0),

where χA(x) is the characteristic function of the set A taking the value 1 if x ∈ A and zero
otherwise. The measure which minimises ψ(σ) subject to (1) and (2) was shown in [14] to be

σ(A) = (c0 − c1)χA(0) + c1χA(1).

It is interesting to note that for m = 1 the measure which maximises prediction error minimises
the covariance γk for k ≥ 2 and similarly, the measure which minimises prediction error
maximises the covariance γk for k ≥ 2. In the terminology of moment spaces [13] these two
measures are called the extremising measures of the moment space [11]
The paper is organised as follows. In Section 2 we recall some basic properties of time series
with completely monotone covariance sequences and some properties of moment spaces. The
main result of this paper, that the extremising measures of the moment space are precisely the
measures which maximise and minimise the prediction error, is stated in Section 3. The proof
of the result is given first assuming the measure is supported on [0, φ] with φ < 1 and then for
the case of measures supported on [0, 1]. The paper concludes with a discussion of how these
measures are constructed.

2 Preliminaries

2.1 Wold decomposition

Consider a time series with covariance sequence (1) and such that σ({1}) = 0. Then the
corresponding spectral density function is given by

f(ω;σ) =
1

2π

∫

[0,1)

1 − ρ2

1 + ρ2 − 2ρ cos ω
σ(dρ) =

∫

[0,1)

g(ω; ρ)σ(dρ),

where g(ω; ρ) is the spectral density of an AR(1) time series with variance 1. This spectral
density satisfies the following bounds

f(ω;σ) ≥
1

8π
(γ0 − γ2) , ω ∈ (−π, π], (3)



Optimising prediction error 115

and
f(ω;σ) ≤

γ0

2π (1 − cos2(ω))
, ω ∈ (−π/2, π/2). (4)

From (3) it is seen that if σ({1}) = 0 then the time series is completely non-deterministic and
the prediction error is given by the Kolmogorov formula

ψ(σ) = 2π exp

{

1

2π

∫ π

−π

log f(ω;σ)dω

}

. (5)

In general, the Wold decomposition of a time series with covariance sequence (1) is simply

Xt = Z + Yt,

where Z is a random variable whose variance is σ({1}) and Yt has covariance sequence γk−γ∞.
The prediction error is still given by (5) provided the spectral density is understood as that of
the completely nondeterministic part.

2.2 Moment spaces

Let D | c be the set of measures on [0, 1] satisfying (2). When we need to consider measures
on [0, φ], φ ≤ 1 we shall write Dφ | c. A necessary and sufficient condition for D | c to consist
of at least one measure is that the quadratic forms

q
∑

j=0

q
∑

k=0

cj+kxjxk,

q−1
∑

j=0

q−1
∑

k=0

(cj+k+1 − cj+k+2) xjxk, (6)

for m = 2q or
q

∑

j=0

q
∑

k=0

cj+k+1xjxk,

q
∑

j=0

q
∑

k=0

(cj+k − cj+k+1) xjxk, (7)

for m = 2q + 1, are positive definite or semi-definite (see Theorems 16.1a and 16.1b in [13]).
From Theorem 16.2 and Theorem 20.1 of [13] it follows that if (6) or (7), as required, is
positive definite then there is more than one measure in D | c. In this case we say D | c is
non-degenerate. If (6) or (7), as required, is only positive semi-definite then there is only one
measure in D | c and we say it is degenerate. These conditions are easily modified for Dφ | c.

2.3 Extremising measures

Let G
(m)
φ be the set of continuous, bounded functions on [0, φ] whose first m derivatives are

monotonic on (0, φ) and let g ∈ G
(m)
φ . Assume that Dφ | c is non-degenerate. The problem of

optimising Eσg(ρ) over Dφ | c has been studied by [11]. If m = 2q then the two extremising
measures of Dφ | c are defined by:

σ∗
1,φ, the measure on [0, φ] having q atoms in (0, φ) and an atom at 0.

σ∗
2,φ, the measure on [0, φ] having q atoms in (0, φ) and an atom at φ.

If m = 2q + 1 then the two extremising measures of Dφ | c are defined by:

σ∗
1,φ, the measure on [0, φ] having q + 1 atoms in (0, φ).
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σ∗
2,φ, the measure on [0, φ] having q atoms in (0, φ), an atom at 0 and another atom at

φ.

Note that these conditions define unique measures (see Theorem 5 of [11]). In [11] it was
demonstrated that one of σ∗

1,φ, σ∗
2,φ will maximise Eσg(ρ) while the other measure will minimise

the expectation. Which of these measures acts to minimise and which acts to maximise depends
on the function g.

3 Main result

We first consider the case of measures on [0, φ] with φ < 1. The following result confirms
the observation made in the introduction that in order to maximise (minimise) the prediction
error we should minimise (maximise) the covariance sequence.

Lemma 1. Let γ, γ̃ be the covariance sequences associated with measures σ, σ̃ ∈ Dφ | c, φ < 1.
If γk ≥ γ̃k for all k ≥ m then ψ(σ) ≤ ψ(σ̃).

Proof. To show that ψ(σ) ≤ ψ(σ̃) it is sufficient to show that
∫ π

−π

log
f(ω;σ)

f(ω; σ̃)
dω ≤ 0. (8)

From the inequality x − 1 − log x ≥ 0, for all x > 0,

∫ π

−π

log
f(ω;σ)

f(ω; σ̃)
dω ≤

∫ π

−π

∞
∑

k=−∞

(γk − γ̃k) cos(ωk)f−1(ω; σ̃)dω. (9)

The interchange of summation and integration is permitted since the covariance sequences are
in ℓ1 and f−1(ω; σ̃) is bounded. Applying Jensen’s inequality

∫ π

−π

cos(ωk)f−1(ω; σ̃)dω ≤

∫ π

−π

cos(kω)

∫

[0,φ]

g−1(ω; ρ)σ̃(dρ)dω

≤

∫

[0,φ]

∫ π

−π

cos(kω)g−1(ω; ρ)dωσ̃(dρ)

≤ 0, for k 6= 0, (10)

where the final inequality follows from the fact that the inverse autocovariance of an AR(1)
time series with positive correlation parameter is non-positive for all k 6= 0 [4]. The result now
follows from (8)-(10).

Lemma 2. The measure which maximises Eσρj , j > m over Dφ | c is σ∗
2,φ. Conversely, the

measure which minimises Eσρj , j > m over Dφ | c is σ∗
1,φ.

Proof. The second statement is an immediate implication of the first. The result for all φ ≤ 1
will follow immediately if it can be shown to be true for φ = 1. Since σ∗

2 always has an atom
at 1 it follows that

lim
j→∞

Eσ∗

2
ρj = α > 0.

On the other hand σ∗
1 only has atoms in [0, 1) and so

lim
j→∞

Eσ∗

1
ρj = 0.
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Therefore, there exists a J ∈ N such that for all j ≥ J

Eσ∗

1
ρj < Eσ∗

2
ρj . (11)

Now assume that Eσρj is not maximised by σ∗
2 for some j > m and let k be the largest integer

such that
Eσ∗

1
ρk > Eσ∗

2
ρk. (12)

From (11) and (12) there exists an ωj ∈ (0, 1) such that

Eσ∗

1

(

ωjρ
k + (1 − ωj)ρ

j
)

= Eσ∗

2

(

ωjρ
k + (1 − ωj)ρ

j
)

.

As ωjρ
k + (1 − ω)ρj ∈ G(m) we can apply Theorem 7 of [11] so that

Eσ

(

ωjρ
k + (1 − ωj)ρ

j
)

= Cj (13)

for all σ ∈ D | c. Now take any σ ∈ D | c which does not have an atom at 1. As limj→∞ ωj =
ω > 0 we can apply (13) to conclude that

lim
j→∞

Cj

ωj

= Eσρk,

and all higher order moments can be determined from (13). Therefore, for any two measures
σ, σ′ ∈ D | c which do not have atoms at 1, Eσρj = Eσ′ρj , j ≥ k. It follows that there is
only one measure in D | c which does not have an atom at 1 ([8]) and this is σ∗

1 . If we can
show that there exists another measure in D | c which does not have an atom at 1 then a
contradiction will occur and the result will be established. Take φ = 1 − ǫ with ǫ > 0 and
such that σ∗

1([φ, 1]) = 0. Define c̃k = φ−kck, k = 0, . . . ,m. As D | c is non-degenerate and (6)
and (7) are continuous, we may take ǫ sufficiently small so that D | c̃ is also non-degenerate.
Let σ̃∗

2 be the extremising measure in D | c̃ which has an atom at 1. The measure σ̃∗
2(φ−1dρ)

is in D | c and does not have an atom at 1. By construction, this measure is different to σ∗
1

and hence there is more than one measure in D | c which does not have an atom at 1. Having
arrived at a contradiction, it follows that there is no k for which (12) holds and the result now
follows.
The following theorem is a direct result of lemmas 1 and 2.

Theorem 3. Let φ < 1. The measure in Dφ | c which maximises prediction error is σ∗
1,φ. The

measure in Dφ | c which minimises the prediction error is σ∗
2,φ.

The space D | c introduces a problem since the covariance sequence will not necessarily be
in ℓ1. To overcome this problem we first show that ψ(σ) is continuous with respect to weak
convergence of σ. We then consider the limit of the extremising measures σ∗

1,φ, σ∗
2,φ as φ → 1.

Lemma 4. Let σj be a sequence of measures converging weakly to σ. Then ψ(σj) → ψ(σ).

Proof. (See Proposition 4.1 (ii) of [14]) We need to show that for any ǫ > 0 there exists a
J ∈ N such that for all j ≥ J

∣

∣

∣

∣

∫ π

−π

log

[

f(ω;σ)

f(ω;σj)

]

dω

∣

∣

∣

∣

< ǫ

Take δ > 0, as a family of functions of ρ on [0, 1], parameterized by ω, g(ω; ρ) is bounded and
uniformly continuous for all |ω| > δ. Applying Theorem 3.2 of [16] we have f (ω;σj) → f (ω;σ)
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uniformly on |ω| > δ. As f (ω;σ) is bounded away from zero we may apply the dominated
convergence theorem to obtain

lim
j→∞

∫ π

δ

log

[

f(ω;σ)

f(ω;σj)

]

dω = 0.

Applying the bounds (3) and (4) we can show that the integral
∫ δ

0

log

[

f(ω;σ)

f(ω;σm)

]

dω

can be made arbitrarily small by taking δ sufficiently small. The result follows.

Lemma 5. Let V (σ) be a weak neighbourhood around σ ∈ D | c. Then there exists a measure

σ̃ ∈ V (σ) such that σ̃ ∈ Dφ | c for some φ < 1.

Proof. It follows from the definition of the Prohorov metric that for φ < 1 but sufficiently
large the measure σ(φ−1dρ) is in V (σ).

Lemma 6. The sequence of extremising measures {σ∗
1,φ} and {σ∗

2,φ} converge weakly to σ∗
1

and σ∗
2 , respectively, as φ → 1.

Proof. For any φ′ < φ ≤ 1 it is obvious that Dφ′ | c ⊆ Dφ | c. From Lemma 2 and Theorem 7 of
[11] it follows that for any j ∈ N, Eσ∗

1,φ
ρj is bounded and decreasing as φ → 1. Therefore, the

moments converge for all j ∈ N and so the measures must converge weakly. That the limiting
measure is σ∗

1 follows from Lemma 5 since if σ̃ ∈ Dφ | c, φ < 1 is in a weak neighbourhood of
σ∗

1 then
Eσ̃ρj ≥ Eσ∗

1,φ
ρj ≥ Eσ∗

1
ρj ,

and σ∗
1,φ must also be in a weak neighbourhood of σ∗

1 . A similar argument applies for {σ∗
2,φ}.

Theorem 7. The measure in D | c which maximises the prediction error is σ∗
1 . The measure

in D | c which minimises the prediction error is σ∗
2 .

Proof. Let σ∗ be the measure in D | c which maximises ψ(σ). From Lemma 4 and Lemma
5 it follows that for any ǫ > 0 we can find a φ < 1 and a measure σ̃φ ∈ Dφ | c such that
ψ(σ∗) − ǫ ≤ ψ(σ̃φ). From Theorem 3 ψ(σ∗) − ǫ ≤ ψ(σ∗

1,φ) and applying Lemma 4 and
Lemma 6 it follows that ψ(σ∗) − ǫ ≤ ψ(σ∗

1). As this holds for all ǫ > 0 we can conclude
that ψ(σ∗) = ψ(σ∗

1) and hence σ∗
1 is the measure which maximises prediction error. A similar

argument holds for minimising the prediction error.
To conclude we briefly describe how the extremising measures can be constructed from the
given covariances c0, . . . , cm. First define the polynomials ∆n(t) and ∆n(t) for n = 2k by the
determinants,

∆n(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c0 c1 · · · ck−1 1
c1 c2 · · · ck t
...

...
ck ck+1 · · · c2k−1 tk

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ∆n(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 − c2 · · · ck−1 − ck 1
c2 − c3 · · · ck − ck+1 t

...
...

...
ck − ck+1 · · · c2k−2 − c2k−1 tk−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and for n = 2k + 1 by the determinants,

∆n(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 c2 · · · ck 1
c2 c3 · · · ck t
...

...
ck+1 ck+2 · · · c2k tk

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ∆n(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c0 − c1 · · · ck−1 − ck 1
c1 − c2 · · · ck − ck+1 t

...
...

...
ck − ck+1 · · · c2k−1 − c2k tk

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Define the polynomials Pn(t) and Pn(t) by

Pn(t) =

{

[∆n(t)]
2
, if n is even,

t [∆n(t)]
2
, if n is odd;

Pn(t) =

{

t(1 − t)
[

∆n(t)
]2

, if n is even,

(1 − t)
[

∆n(t)
]2

, if n is odd;

From Theorem 20.2 of [13], the location of the atoms in the measures σ∗
1 and σ∗

2 are given by
the distinct roots of the polynomials Pm+1(t) and Pm+1(t), respectively. The mass associated
with each atom in the measure can then be determined from the linear system

w1ρ
k
1 + . . . + wrρ

k
r = ck, k = 0, 1, . . . ,m,

where ρ1, . . . , ρr are the locations of the atoms (see section 2.3 for the number of atoms in the
extremising measures). This system will be uniquely solvable provided D | c contains at least
one measure.
As an example, consider the case of m = 2. The polynomial determining the locations of the
atoms of σ∗

1 is

P 3(t) = t(c1t − c2)
2.

Therefore, σ∗
1 has one atom at 0 and another at ρ = c2/c1. The moment constraints determine

the measure to be

σ∗
1(A) =

c2 − c2
1

c2
χA(0) +

c2
1

c2
χA

(

c2

c1

)

.

Similarly, the polynomial determining the location of the atoms of σ∗
2 is

P 3(t) = (1 − t)((1 − c1)t − (c1 − c2))
2.

The measure σ∗
2 is then

σ∗
2(A) =

(1 − c1)
2

1 − 2c1 + c2
χA

(

c1 − c2

1 − c1

)

+
c2 − c2

1

1 − 2c1 + c2
χA (1) .
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