Fe-Co-Nb三元系相图的1173 K等温截面

周果君 刘华山 刘立斌 金展鹏

(中南大学材料科学与工程学院 长沙 410083)

摘要 根据扩散偶局部平衡原理,用电子探针微区成分分析,测定了 Fe-Co-Nb 三元系 1173 K 的等温截面相图.结
 果表明,Fe-Co-Nb 三元扩散偶在 1173 K 时生成 Fe₇Nb₆、Fe₂Nb 和 Co₇Nb₆、Co₃Nb、Co₂Nb 五种中间化合物.
 Fe₇Nb₆ 与 Co₇Nb₆ 形成连续固溶体 (Fe,Co)₇Nb₆. Fe-Co-Nb 三元系的 1173 K 等温截面由 αFe+αCo+Co₃Nb, αFe+Co₃Nb+Co₂Nb, αFe+Fe₂Nb+Co₂Nb, Fe₂Nb+Co₂Nb+(Fe,Co)₇Nb₆ 四个三相区组成,没有发现三元化合物.
 关键词 材料科学基础学科,Fe-Co-Nb,扩散偶,等温截面,相图
 分类号 TG113 文章编号 1005-3093(2008)01-0042-04

The isothermal section of Fe–Co–Nb ternary system at 1173 K

ZHOU Guojun LIU Huashan LIU Libin JIN Zhanpeng*

(School of Materials Science and Engineering, Central-South University, Changsha 410083)

Manuscript received March 12, 2007, in revised form August 17, 2007.

* To whom correspondence should be address, Tel:(0731) 8877732, E-mail: jin@mail.csu.edu.cn

ABSTRACT The isothermal section of Fe–Co–Nb ternary system at 1173 K was determined by means of the diffusion triple and electron microprobe analysis. The results indicate that there are five binary intermetallic phases of Fe₇Nb₆, Fe₂Nb, Co₇Nb₆, Co₃Nb and Co₂Nb in Fe–Co–Nb ternary system at 1173 K. Fe₇Nb₆ and Co₇Nb₆ formed into a continuous solid solution (Fe,Co)₇Nb₆. Four three–phase regions of α Fe+ α Co+Co₃Nb, α Fe+Co₃Nb+Co₂Nb, α Fe+Fe₂Nb+Co₂Nb, Fe₂Nb+Co₂Nb+(Fe,Co)₇Nb₆ exist in the isothermal section. No ternary compound is observed.

KEY WORDS foundational discipline in materials science, Fe–Co–Nb, diffusion triple, isothermal section, phase diagram

Fe-Co 基合金材料是一种性能良好的软磁材 料^[1-4],但是其脆化不利于应用.为了降低其脆化, 将 V、Cr、Ni、Nb 等合金元素添加进去.这些合金元 素一方面与 Fe-Co 合金中的杂质反应改善了合金的 软磁性能;另一方面与 Co 形成 Co₃X 局部无序区,从 而提高了 FeCo-X 系合金的延伸率^[5].同时,Fe-Co 合金中加入 Nb 形成 C-N 化合物,细化晶粒,可提高 Fe-Co 合金的力学性能^[6].

Toffolon 和 Servant^[7] 对 Fe–Nb 二元相图做过热 力学计算,发现 Fe–Nb 二元系存在 Fe₂Nb 和 Fe₇Nb₆ 二个中间化合物,其中 Fe₇Nb₆ 的成分还不确定, Zelaya 等^[8] 将其命名为 Nb₁₉Fe₂₁. Ohnuma 等^[9] 的实 验和热力学优化结果表明, Fe–Co 二元系有一个非常 尖的 α/γ 相界,没有任何中间化合物. Hari Kumar 等^[10]对 Co-Nb 二元系重新进行了完整优化评估, 发现该二元系在 1173 K 温度下有 3 种中间化合物: Co₃Nb、Co₂Nb 和 Co₇Nb₆.对于 Fe-Co-Nb 三元系 相图, Panteleimonov^[11]只研究了 1273 K 温度等温 截面. 本文采用扩散偶技术和电子探针微区成分分 析方法确定 Fe-Co-Nb 三元系 1173 K 的等温截面.

1 实验方法

先制作 Fe-Co 二元扩散偶:在 GLEEBLE-1500 型热模拟机上将 Fe 块和 Co 块压焊,在 1173 K 温度 以 4 MPa 压力扩散焊接 10 min(用氩气流保护),冷 却至室温. 再将制备好的 Fe-Co 二元扩散偶与纯 Nb 块在 1173 K 和 3 MPa 压力下扩散焊接 10 min (用 氩气流加以保护),冷却至室温.最后将制备好的 Fe-Co-Nb 三元扩散偶样品密封在抽真空后充氩气的石

²⁰⁰⁷ 年 3 月 12 日收到初稿; 2007 年 8 月 17 日收到修改稿. 本文联系人: 金展鹏, 院士

英管中, 放入管式热处理炉中在 1173 K±2 K 下退火 1440 h, 然后水冷到室温.

用电子探针 (JXA-8800R, Japan, Electron Optics Ltd., Tokyo) 分析扩散偶样品的微区成分.

2 结果与讨论

根据图 1 并对照表 1 中的电子探针成分分析数据, Fe-Co-Nb 三元扩散偶在 1173 K 形成了 5 个扩

图 1 1173 K 时 Fe-Co-Nb 三元扩散偶的背散射照片 (a) 和相区分布 (b)

Fig.1 Back–scattered electron images (a) and schematic diagram of Fe–Co–Nb diffusion triple at 1173 K (b)

表 1 EPMA 测定 1173K 时 Fe-Co-Nb 扩散偶的结线数据 (摩尔分数)

Table 1 Equilibrium data determined by EPMA in the Fe–Co–Nb system at 1173K (mol fraction)

$\rm Nb/(Fe,Co)_7Nb_6$						$\rm Co_2Nb/(Fe,Co)_7Nb_6$					
Co	Nb	Fe	Co	Nb	Fe	Co	Nb	Fe	Co	Nb	Fe
0.012	0.961	0.027	0.098	0.494	0.408	0.668	0.310	0.022	0.527	0.471	0.002
0.006	0.959	0.035	0.065	0.491	0.444	0.638	0.307	0.055	0.504	0.469	0.027
0.017	0.960	0.023	0.403	0.491	0.106	0.597	0.304	0.099	0.448	0.462	0.090
0.015	0.961	0.024	0.178	0.493	0.329	0.535	0.301	0.164	0.351	0.458	0.191
0.008	0.984	0.008	0.499	0.483	0.018	$ m Co_2Nb/lpha Fe$					
0.011	0.973	0.016	0.473	0.481	0.046	Co	Nb	Fe	Co	Nb	Fe
$\mathrm{Fe_2Nb}/(\mathrm{Fe,Co})_7\mathrm{Nb}_6$						0.565	0.272	0.163	0.534	0.022	0.444
Co	Nb	Fe	Co	Nb	Fe	0.599	0.271	0.130	0.548	0.025	0.427
0.005	0.337	0.658	0.006	0.469	0.525	0.532	0.271	0.197	0.462	0.038	0.500
0.012	0.339	0.649	0.008	0.477	0.515	$ m Co_3Nb/Co_2Nb$					
0.032	0.341	0.627	0.015	0.479	0.506	Co	Nb	Fe	Co	Nb	Fe
0.058	0.347	0.595	0.057	0.479	0.464	0.727	0.251	0.022	0.695	0.270	0.035
0.116	0.345	0.539	0.125	0.477	0.398	0.742	0.252	0.006	0.718	0.271	0.011
$ m lpha Fe/Fe_2Nb$						$ m lpha Fe/Co_3 Nb$					
Co	Nb	Fe	Co	Nb	Fe	Co	Nb	Fe	Co	Nb	Fe
0.114	0.018	0.868	0.072	0.271	0.657	0.601	0.018	0.381	0.696	0.251	0.053
0.072	0.016	0.912	0.033	0.272	0.695	0.582	0.020	0.398	0.690	0.251	0.059
0.013	0.017	0.970	0.009	0.268	0.723	$ m Co_3Nb/lpha m Co$					
0.029	0.016	0.955	0.013	0.276	0.711	Co	Nb	Fe	Co	Nb	Fe
0.162	0.032	0.806	0.091	0.270	0.639	0.735	0.249	0.016	0.951	0.021	0.028
0.235	0.029	0.736	0.106	0.272	0.622	0.721	0.251	0.028	0.943	0.019	0.038
m lpha Fe/lpha Co						$\rm Fe_2Nb/Co_2Nb$					
Co	Nb	Fe	Co	Nb	Fe	Co	Nb	Fe	Co	Nb	Fe
0.646	0.013	0.341	0.743	0.012	0.245	0.138	0.310	0.552	0.489	0.296	0.215

散层:在Fe-Nb的分界处为Fe₇Nb₆和Fe₂Nb中间化合物扩散层,在Co-Nb分界处为Co₇Nb₆,Co₂Nb和Co₃Nb三个中间化合物扩散层.该三元扩散偶所生成的化合物相与Co-Nb^[13],Fe-Nb^[14]以及Fe-Co^[9]二元相图吻合,没有发现三元化合物.

电子探针微区成分分析结果 (表 1) 表明, 中间相 化合物 Fe₂Nb 和 Co₂Nb 都具有一定的固溶度范围: 26.8%-34.7%Nb、27.0%-31.0%Nb. Co₃Nb 几乎为线 性化合物. Co 在 Fe₂Nb 化合物中的溶解度大约为 13.8%Co, Fe 在 Co₂Nb、Co₃Nb 化合物中的溶解度分 别大约为 21.5%Fe、5.9%Fe. 值得注意的是中间化合 物 Fe₇Nb₆ 与 Co₇Nb₆ 晶体结构相同 ^[13,14], Fe₇Nb₆ 与 Co₇Nb₆ 是有一定固溶度范围的化合物并形成连 续固溶体, 可将其表示为 (Fe,Co)₇Nb₆^[11].

根据图 1a 中沿垂直相界 L 方向进行微区成分分 析,得到一成分 – 距离曲线图 (图 2),并从相界两边 外推至相界得到局部平衡的相成分,即共轭线成分.

图 2 成分 - 距离曲线图

Fig.2 Composition-distance curve diagram

图 3 Fe-Co-Nb 三元系 1173 K 等温截面

Fig.3 The isothermal section of the Fe–Co–Nb ternary system at 1173 K

采用同样的方法,在扩散偶中可测得所需要的 一系列共轭线成分,这就是平衡两相的结线端点成 分.因为扩散偶中存在两个方向的浓度梯度,样品 中只存在单相区,不存在两相、三相混合区. 三 相平衡的结三角用虚线表示. 对照表 1 中的数 据和图 1,得到 Fe-Co-Nb 三元系 1173K 等温截 面(图 3).可以看出,Fe-Co-Nb 三元系 1173 K 等温截面存在 7 个单相区,9 个二相区和 4 个 三相区: αFe+αCo+Co₃Nb, αFe+Co₃Nb+Co₂Nb, αFe+Fe₂Nb+Co₂Nb, Fe₂Nb+Co₂Nb+(Fe,Co)₇Nb₆.

3 结 论

采用扩散偶技术和电子探针微区成分分析方法 测定了 Fe-Co-Nb 三元系 1173 K 等温截面,得 到了该三元系 1173 K 的相平衡关系图. 化合物 Fe₂Nb、Co₂Nb 都具有一定的固溶度范围,Co₃Nb 几乎为线性化合物. 具有一定固溶度范围的化合物 Fe₇Nb₆与 Co₇Nb₆形成连续固溶体 (Fe,Co)₇Nb₆. 该 三元系 1173 K 等温截面存在 7 个单相区,9 个两相区 和 4 个三相区: α Fe + α Co + Co₃Nb, α Fe + Co₃Nb + Co₂Nb, α Fe + Fe₂Nb + Co₂Nb, Fe₂Nb + Co₂Nb + (Fe,Co)₇Nb₆.

参考文献

- L.C.Zhang, M.Calin, F.Paturaud, J.Eckert, Deformation behavior and plastic instability of off-stoichiometric Co– Fe alloys, Scripta Materialia, 57, 7(2007)
- 2 Z.M.Zeng, H.X.Wei, L.X.Jiang, G.X.Du, W.S.Zhan, X.F.Han, High magnetoresistance in Co–Fe–B–based double barrier magnetic tunnel junction, Journal of Magnetism and Magnetic Materials, **303**, 219(2006)
- 3 W.S.Sun, X.B.Liang, T.Kulik, Formation and magnetic properties of Co–Fe–based bulk metallic glasses with supercooled liquid region, Journal of Magnetism and Magnetic Materials, 299, 492(2006)
- 4 T.G.Woodcock, R.Hermann, W.Loser, Development of a metastable phase diagram to describe solidification in undercooled Fe–Co melts, Computer Coupling of Phase Diagrams and Thermochemistry, **31**, 256(2007)
- 5 K.Kawahara, Effect of additive element on coldworkbility in FeCo alloys, J. Mater. Sci., 18, 1709(1983)
- 6 R.T.Finger, G.Kozlowski, Study on magnetic properties and mechanical properties of Fe–Co soft magnetic materials, J. Appl. Phys., 81, 4110(1997)
- 7 C.Toffolon, C.Servant, Thermodynamic assessment of the Fe–Nb system, Calphad, 24, 97(2000)
- 8 J.M.B.Zelaya, S.Gama, C.A.Ribeiro, G.Effenberg, Ironniobium phase diagram, Z.Metallkd., 84, 160(1993)
- 9 I.Ohnuma, H.Enoki, O.Ikeda, R.Kainuma, H.Ohtani, B.Sundman, K.Ishida, Phase equilibria in the Fe–Co binary system, Acta Materialia, **50**, 379(2002)
- 10 K.C.Hari Kumar, I.Ansara, P.Wollants, L.Delaey, Thermodynamic optimisation of the Co–Nb system, J. Alloys and Compds., 267, 105(1998)

- 11 L.A.Panteleimonov, O.G.Burtseva, V.V.Zubenko, The physicochemical investigation of interaction of elements of group VIII, Alloyed with niobium, Moscow University Chemistry Bulletin, **37**, 71(1982)
- 12 Z.P.Jin, A study of the range of stability of σ -phase in some ternary system, Scand. J. Metall., **10**, 279(1981)
- T.B.Massalski, H.Okamoto, P.R.Subramanian,
 L.Kacprzak, M.E.Kassner, *Binary Alloy Phase Dia*grams, 2, (USA, Materials Park, 1992) p.1211
- T.B.Massalski, H.Okamoto, P.R.Subramanian,
 L.Kacprzak, M.E.Kassner, Binary Alloy Phase Diagrams, 2, (USA, Materials Park, 1992) p.1732