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Investigation of Dynamic Multivariate Chemical Process Monitoring* 
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Abstract  Chemical process variables are always driven by random noise and disturbances. The closed-loop con-
trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on 
statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense 
of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not 
affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will 
cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false 
alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove 
the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve 
the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-
lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in 
Tennessee Eastman challenge process illustrate the advantages of the proposed approach. 
Keywords  multivariate statistical processes control, subspace identification, false alarms rate, dynamic processes 

1  INTRODUCTION 
With the advent of improved instrumentation and 

automation, chemical processes now produce large 
volumes of information which are highly correlated. 
Several multivariate statistical methods have been de-
veloped to identify the correlations between variables 
and create a reduced set of variables in the orthogonal 
axes that capture most of the variability in the collected 
information. One of most popular MSPC methods is 
principal component analysis (PCA), which has also 
been applied to chemical processes[1―6]. 

However, PCA is based on the assumption that 
the process variables are independent and identically 
normally distributed (IID), that is, stationary or un-
correlated in time[5―8]. In practice, this assumption is 
always violated, as chemical process variables are 
driven by random noise and disturbances. Due to the 
feedback control, the impact of disturbances propa-
gates to both the input and output variables. Thus the 
variables move around the steady state and exhibit 
some degrees of auto and cross correlation. 

In order to monitor the process dynamics, PCA 
has been extended to include the time-series structures 
of variables[8―11]. Among these extensions, dynamic 
PCA (DPCA) by Ku et al.[8] is widely adopted and can 
be treated as a multivariate AR-like time series mod-
eling approach. Although applications in Tennessee 
Eastman[8] and some batch processes monitoring[12] 
have demonstrated the efficiencies of dynamic PCA, it 
is proved recently that dynamic PCA cannot eliminate 
the auto and cross correlations of variables[13]. If a 

dynamic PCA is used, the score variables will be auto 
and cross correlated even when the process variables 
are neither auto nor cross correlated. In other words, 
dynamic PCA will always induce the dynamics into 
the score variables. In order to overcome this question, 
Kruger et al. involved ARMA filters to remove the 
auto-correlations from the PCA scores. But unfortu-
nately, as demonstrated in this article, the 
cross-correlations still remain in the filtered score 
variables and independent assumptions are still not 
satisfied. 

The contributions of this article are as follows. 
First, the influences of auto and cross correlations of 
process variables on dynamic PCA are investigated 
through synthetic Monte Carlo experiments. It is re-
vealed that the presence of auto and cross correlations 
will cause the false alarms rate (type Ⅰ error rate) to 
deviate from its theoretic value, but will not always 
result in higher false alarms rate as mentioned in lit-
eratures. More precisely, the average FAR is not af-
fected by the time-series structures. Second, criterions 
to determine whether variables are auto or cross cor-
related are introduced. The ARMA filtering approach 
suggested by Kruger et al.[13] is shown to be ineffi-
cient to reduce the cross correlations of PCA scores. 
Third, a subspace identification modeling approach 
combined with PCA is proposed to remove the entire 
dynamics from the score variables. A novel informa-
tion based criteria is presented to determine the order 
of relative state-space model. Fourth, the effectiveness 
of proposed approach is demonstrated using the   
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Tennessee Eastman process. Finally, some remarks 
and conclusions are presented. 
 
2  PERFORMANCE   INVESTIGATION   OF 
DYNAMIC PCA 

This section provides a brief overview of dy-
namic PCA and studies the false alarm rate perform-
ance of dynamic PCA. 
 
2.1 Dynamic principal component analysis 

Given the measurements, normal operating proc-
ess data are collected and put in a two-dimensional 
data matrix N n×∈X  with N samples and n variables. 
PCA decomposes the data matrix X in terms of r lin-
ear principal components with r n≤ : 

T T

T

= +

= +

X XPP XPP

TP E
            

(1)
 

where n r×∈P and N r×= ∈T XP  are defined as the 
principal component loadings and scores, respectively. 
P  contains the retained principal component direc-
tions. E is the residual matrix. A more detailed analy-
sis of PCA can be found in Ref.[5]. 

When PCA is applied to monitor a process, two 
complementary statistics, that is, Hotelling T2 and Q 
are commonly used: 
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where 1 2diag[ , , , ]rλ λ λ= ⋅ ⋅ ⋅Λ  and jλ  are the eigen-
values of the correlation matrix of X and the upper α 
confidence control limit for Q is approximated as 
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1 3 2(2 / 3 )θ θ θ  and cα is the standard normal α confi-
dence control limit. 

Dynamic PCA arranges the process variables to 
form an autoregressive (AR) structure: 

( ) ( 1)
0 1[ ] N d d n− × +

− −= ∈⋅⋅⋅ dX X X X    (4) 

where X  is an augmented set of variables, represent-
ing an AR model structure of order d and the sub-
scripts 0, 1, d refer to the backshifts applied. PCA is 
applied to X  and the corresponding T2 and Q statistics 
can be obtained. 

It is demonstrated by Kruger et al.[13] that the re-
tained scores variables are autocorrelated irrespective 
of whether the process variables are autocorrelated or 
not. 

2.2  Performance investigation of dynamic PCA 
Type Ⅰ error rate or false alarms rate refers to 

the percentage of statistics violating its confidence 
bound when monitoring normal operating process. For 
PCA, the ideal type Ⅰ error rate for T2 statistic is 
equal to the significant level. In practice, false alarms 
rate is one of the most important parameters to deter-
mine, too high false alarms rate will result in poor 
acceptance among shop-floor personnel while too low 
rate will make the monitoring system insensitive to 
potential process or sensor faults. 

It is argued by Kruger et al.[13] that the applica-
tion of dynamic PCA to process monitoring will result 
in higher T2 false alarms due to the auto and cross 
correlations in process variables. In this section, 
through the Monte Carlo experiments, it is revealed 
that, in the sense of average performance, the T2 type 
Ⅰ error rate of dynamic PCA coincides with the theo-
retic value α. 

Example 1 
For the sake of comparison, the same process 

described in Ref.[8] is studied: 

1 1k k k− −= +z Az Bv  

k k k= +y z f                (5) 
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, kz  and 

kf  are the process outputs/states and measurement 

noise, respectively. The input variables kv are defined 
as follows: 
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and kw is a random noise with zero mean and 

unit/identity variance. The measurement noise kg is 

added on the input variables kv to form measured input 

ku . The initial states follow a normal distribution, 

0 ~ ( , )vN 0v Σ , 0 ~ ( , )zN 0z Σ where v =Σ
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satisfy the following discrete Lyapunov equation[14]: 
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The measurement noises are chosen as normally 
distributed variables. 
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The simulations are performed on MATLAB® 6.5 
and repeated 400 times. For each simulation, a total 
number of 2000 samples of y and u are generated. The 
first 1000 samples T

1 2 1000[ ]= ⋅⋅⋅Y y y y and =U  
T

1 2 1000[ ]⋅ ⋅ ⋅u u u are selected as the reference data and 
the retained 1000 samples serve as testing data to evalu-
ate the false alarms rate (FAR) of dynamic PCA. The 
augmented data set 999 8

0 0 1 1[ ] ×
− −= ∈X Y U Y U  are 

constructed to establish dynamic PCA model. Similar 
to Ku et al.[8], five principal components are chosen. 

A typical monitoring result of DPCA for the test-
ing normal process data is given in Fig.1. The influ-
ence of process dynamics is characterized by the con-
secutive false alarms between the 200th and 300th 
sample in T2 control chart. The simulation FAR results 
on testing data are provided in Table 1. 

 

 
Figure 1  T2 control and Q control charts for testing data 

using dynamic PCA (Solid line represents the 99% 
control limit) 

In Table 1, α is the corresponding significance 
level to determine the control limit. Mean and Std rep-
resent the mean and the standard deviation of FAR, 
respectively. Max and Min denote the maximum and 
minimum typeⅠ error rate in the total 400 simulations. 

Examining the T2 FAR values, it can be seen that 
the mean of FAR agrees with the theoretic value. The 
presence of auto and cross correlations makes the FAR 
depart from its mean value apparently. In the worst 
case, the actual FAR is almost 7.5% less than α (when 
α=0.15). As α increases, the influence of variables 
dynamics becomes more and more serious. Compari-
son given in the following section will revel that dy-
namic PCA does not outperform conventional PCA 
method and further improvement of dynamic PCA can 
be obtained through combining PCA and subspace 
identification algorithm. 

The Q FAR values are also listed in Table 1. The 
averages of Q FAR are biased because Eq.(3) is an 
approximation of the real distribution. Nevertheless, 
compared with T2 statistic, the Q still performs better 
considering the value of Std. As defined in Eq.(3), Q 
is the sum of square of last 8－5=3 components. In the 
following section, it is shown that the last three com-
ponents are less correlated than the first five ones. 
Therefore Q is less affected by the process dynamics. 
 
3  SUBSPACE IDENTIFICATION BASED PCA 

This section shows that the use of an ARMA filter 
for each score variable may not be effective in remov-
ing cross-correlations between the score variables. In 
order to remove the auto and cross correlations between 
score variables simultaneously, a subspace identifica-
tion approach is presented. Before that, a discussion on 
correlation issues is given first in subsection 3.1. 
 
3.1  Auto and cross correlation coefficients and 
ARMA-based PCA  

Consider a set of random time series 

1 2[ , , , ]ru u u= ⋅ ⋅ ⋅u , the auto and cross covariance co-
efficient is defined as 
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Table 1  FAR of 400 Monte Carlo experiments 
T2 FAR Q FAR α 

Mean Std Min Max Mean Std Min Max 
0.01 0.0103 0.0055 0 0.0340 0.0107 0.0040 0.0020 0.0240 
0.02 0.0203 0.0082 0.0020 0.0520 0.0215 0.0060 0.0060 0.0430 
0.05 0.0503 0.0142 0.0180 0.1110 0.0539 0.0098 0.0310 0.0890 
0.10 0.0998 0.0208 0.0480 0.1660 0.1061 0.0143 0.0690 0.1550 
0.15 0.1499 0.0260 0.0750 0.2230 0.1576 0.0173 0.1180 0.2140 
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where Cov[ ( ), ( )]i ju t u t τ−  is the cross covariance 
between ui and uj, N is the number of samples. For 
multi-normally distributed random variables (inde-
pendent), , ( ) 0i jρ τ =  when 0τ ≠ . 

The auto and cross correlation coefficients can be 
defined in a similar manner except that the covariance 
is replaced by correlation. In the following sections, it 
is assumed that the process is stationary and the vari-
ables are zero-centred, so the correlation coefficient 
equals the covariance coefficient and both of them are 
denoted as ACFs. 

The following two theorems are introduced to de-
termine whether variables are auto or cross correlated. 

Theorem 1 
Suppose ( )iu t  is a Gauss white noise sequence 

(so independent) and .N M  Then the auto-correla-
tion coefficient , ( )i iρ τ  is approximately normally 

distributed, that is, , ( ) ~ (0,1),i iN Nρ τ 1 Mτ≤ ≤ . 
Theorem 2  
Suppose ( )iu t  is a Gauss white noise sequence 

and independent of ( )ju t  and .N M  Then the 

cross-correlation coefficient , ( )i jρ τ  is approxi-

mately normally distributed, that is, , ( ) ~i jN ρ τ  

, ,( ) ( ) (0,1),1
M

i i j j
m M

m m N Mρ ρ τ
=−

⋅ ⋅∑ ≤ ≤ . 

The detailed proof of Theorem 1 and 2 refers to 
Ljung[15]. The condition of Theorem 2 can be relaxed 
as ( )iu t  being the linear combination of time-shifted 
Gauss white noises. Some other useful criterions to 
test the auto and cross correlations between random 
time series are also given in the same reference. 
Theorem 1 and 2 are adopted because they are easier 
to implement[16]. 

In Fig.2, the ACFs of the principal components 
by dynamic PCA application in Example 1 are given. 
The shadow area represents 99% confidence intervals 
which are computed through Theorem 1 and 2. It is 
evident that the first five principal components (scores, 
bottom left corner of Fig.2) chosen by dynamic PCA 
to calculate T2 are both auto and cross correlated sig-
nificantly. In contrast, the left three components (top 
right corner of Fig.2) relating to Q statistics are less 
correlated as mentioned in section 2.2. 

In order to overcome the deficiencies of dynamic 
PCA, Kruger et al.[13] incorporate ARMA filters in the 
PCA analysis. The ARMA based PCA method applies 
traditional PCA method to original data matrix X first 
and r ARMA filters are identified to remove the 
auto-correlations of each score variable. Although the 
auto-correlations are efficiently eliminated, the 
cross-correlations still exist and the filtered scores are 
not independent yet. In Fig.3, the ACFs of filtered 
four scores in Example 1 are plotted. The order of 
ARMA filters are chosen according to Kruger and 
listed in Table 2. From Fig.3, it can be seen that the 
filtered Score1 is still cross-correlated with the other 
three scores and does not satisfy the independent con-
dition. 

 
Figure 2  ACFs of scores by dynamic PCA (time lag=1) in Example 1 
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Table 2  ARMA orders for score variables by ARMA-PCA 
in Example 1 

PC number AR order MA order 

1 7 0 

2 6 1 

3 8 3 

4 3 1 

 
3.2  Subspace identification-based PCA (SI-PCA) 

As mentioned above, Kruger’s ARMA-PCA ap-
proach ignores the cross-correlations of score vari-
ables. This will lead to ARMA models with higher 
orders than necessary. In Example 1, the underlying 
model order is 4 while the AR orders in Table 2 are all 
larger than 4 except for the last score variable. 

To describe the auto and cross correlations si-
multaneously, one should consider that the ARMA 
approach can be extended to multivariate case and a 
multivariate time-series model should be established. 
However, the multivariate ARMA model is much 
more difficult to analyze because all the coefficients in 
univariate model will become matrices and the model 
complexity will grow rapidly as the model order in-
creases[17]. 

An alternative approach to analyze multivariate 
time series is state-space modelling. As argued by 
Ljung[16] that “Generally speaking, it is preferable to 
work with state-space models in the multivariate case, 
since the model structure complexity is easier to deal 
with” and any linear model structure (ARX, ARMA 
etc.) can be represented by state-space model. 

A state-space model for time series is given by 

1k k k+ = +z Az Ke  

k k k= +t Cz e              (10) 

where 1r
k

×∈t  is the corresponding time series, 
1nz

k
×∈z  is the vector of state variable, A, C are the 

system matrices, K is the Kalman gain. Note that there 
are no inputs in this model. The residuals of 
state-space model 1r

k
×∈e , which are assumed IID, 

are employed to process monitoring instead of corre-
lated scores. 

Subspace identification (SI) algorithms have 
been widely adopted to identify the state-space model 
from input-output data because it does not need itera-
tive, nonlinear optimization as maximum likelihood 
method and SI is very easy to implement[18]. 

For subspace algorithms, it is crucial to estimate 
the state kz  which is defined as a linear combination 
of past outputs 

T T T T
1 2[ ]k k k k d− − −= ⋅ ⋅ ⋅p t t t  

k k=z Jp                (11) 
where d is the number of lags as mentioned in dy-
namic PCA. Once J is determined, the zk can be cal-
culated by Eq.(11) and the state-space matrices can be 
estimated by linear squares regression. Different ap-
proach to calculate J distinguishes various derivations 
of subspace algorithms including CVA, N4SID and 
PLS etc. For example, CVA calculates J from the ca-
nonical loading between the conditional future and the 
past outputs. More details about subspace identifica-
tion algorithms refer to Ref.[14]. 

To determine the order of system in Eq.(10), a 
number of approaches have been proposed. For in-
stance, N4SID determines the system order by check-
ing the singular values. Akaike information criterion 
(AIC) is also employed to determine the model order 
automatically. In this context, however, the purpose of 
modeling is to remove the auto and cross correlations 

 
Figure 3  ACFs of filtered scores by ARMA-PCA in Example 1 



Chinese J. Ch. E. (Vol. 14, No.5) 

October, 2006 

564 

from the score variables as much as possible, that is, 
reduce the ACFs , ( )i jρ τ  of ek as close to zero as pos-
sible when 0τ ≠ . To this end, the following Akaike-like 
information criterion is suggested 

2
lg[ ( )]

p
AICx V nz

N
= +          (12) 

  2
,2

1 1
0

1
( ) ( )

2

r r M

i j
i j M

V nz
Mr τ

τ

ρ τ
= = =−

≠

= ∑∑ ∑     (13) 

where p is the number of estimated parameters in 
Eq.(10), N is the length of modeling data and 

M=3×nz is the maximum time lag. 
2 p
N

 is included 

to avoid over-fitting. The system order nz is then se-
lected to minimize the AICx objective function. 

Once the state-space model is identified and the 
residual ek is generated, we have the following T2 sta-
tistic 

  
2

2 T 1
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=
− ∑S e e is the correlation matrix of 

ke . 
Note that not all scores are necessarily included 

in the state-model. If a score is independent on itself 
and other scores, it should be excluded to reduce the 
complexity of state-space model. In this situation, the 
T2 statistic will become 
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S
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is the correlation ma-

trix of ˆke  and kt . ˆke  is the residual of auto and cross 

correlated scores k̂t  and kt  is the independent part. 

3.3  Dynamic process monitoring framework 
based on SI-PCA 

The procedures of offline and online monitoring 
using SI-PCA are as follows. 

Offline: develop the normal operating condition 
model (NOC) 
 (1) Collect the operating data set during normal 
operation in X. 
 (2) Apply PCA to X and obtain the score vari-

ables k̂
k

k

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

t
t

t
. The number of components can be 

determined by cross validation or other criteria. The 
independence of excluded principal components rela-

tive to Q statistic should also be checked. If dynamics 
exist, state-space model can also be employed. 

(3) Subspace identification method in section 3.2 is 
employed to remove the dynamics of k̂t . The confidence 
interval of T2 statistic is determined based on the residual 
ˆke , kt  from Eq.(15) and Q statistics from Eq.(2). 

Online monitoring 
(1) For new observation, obtain the score values 

via T
k k=t P x . 

 (2) Apply the identified subspace model to cal-
culate the residual ˆke . 

(3) Determine the T2 and Q statistics and com-
pare with the confidence intervals. 
 
4  APPLICATION 
4.1  Application in Example 1 

To investigate the performance of SI-PCA, the 
new approach is also applied to monitoring the proc-
ess described in Example 1.  

Since all the principal components are auto and 
cross correlated as depicted in Fig.4, all four scores 
are chosen and there is no Q statistic for Example 1. 
Half of the training data (500 samples) are used to 
estimate the values of parameters and the other half 
serve as validating data to determine the model order 
and the residual covariance matrix by applying Eq.(12) 
and Eq.(15). 

The identified state-space matrices are 

0.8712 0.3598 0.0145 0.1322
0.4414 0.5138 0.1168 0.3705
0.0387 0.4187 0.3546 0.2463
0.0117 0.0158 0.2218 0.3195

−
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−

− −

⎡ ⎤
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6.6158 21.6087 3.6322 9.4871
28.4087 0.8583 2.1548 1.8765
0.7248 5.0136 0.4425 3.2668
0.1470 0.0674 4.0356 1.2017
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=
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0.0100 0.0134 0.0006 0.0051
0.0221 0.0021 0.0035 0.0024
0.0076 0.0067 0.0071 0.0006
0.0029 0.0096 0.0331 0.0353
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⎡ ⎤
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In contrast to ARMA-PCA, a four-order 
state-space model is enough to remove the auto and 
cross correlations. The ACFs of residuals are plotted 
in Fig.5. Fig.6 shows a typical monitoring result of 
SI-PCA of normal operating process. There are no 
longer consecutive false alarms in T2 control chart as 
dynamic PCA does. 

Four hundred Monte Carlo experiments are also 
performed and the T2 FAR results for normal operat-
ing data of PCA, dynamic PCA, ARMA-PCA and 
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SI-PCA are listed in Table 3. The numbers of principal 
components for each method are 4, 5, 4, and 4, re-
spectively. Hence there are no Q statistics for PCA, 
ARMA-PCA and SI-PCA approaches. 

It is interesting to note that all methods’ average 
FAR coincide with the theoretic value and the conclu-
sion might be misleading if we compare the perform-

ance of two approaches only by a single experiment. 
With respect to the standard deviation of FAR, dy-
namic PCA does not outperform PCA because the 
scores of DPCA are still significantly auto and cross 
correlated as depicted in Fig.2. The ARMA-PCA has a 
better performance compared with the PCA and the 
dynamic PCA due to the fact that auto correlations are 
eliminated in the filtered scores. The proposed SI-PCA 
approach outperforms all the other methods at any 
significance level α. In general, the actual FAR rate of 
SI-PCA is closer to theoretic value. 

In the following section, a realistic application of 
SI-PCA to detect the process abnormal behavior is 
presented. 
 
4.2  Tennessee Eastman process 

Since the introduction in 1993 by Downs and 
Vogel[19], Tennessee Eastman (TE) process has been 
widely studied in the literatures[8,20―23]. The TE model 

 
Figure 4  ACFs of PCA score variables in Example 1 

 
Figure 5  ACFs of residuals by SI-PCA in Example 1 

 
Figure 6  T2 control chart for testing data in Example 1 

using SI-PCA (Solid line is the 99% control limit) 
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includes five process units: a reactor, a condenser, a 
vapour-liquid separator, a recycle compressor and a 
product stripper. There are 41 measurements and 12 
manipulated variables. The process is open-loop un-
stable and requires regulatory controllers. TE process 
includes 20 programmed disturbances including 
composition step change in reactants, random reactor 
cooling water inlet temperature random disturbance 
and valve sticking etc. Detailed description about the 
operation of the TE process can be found in Ref.[19]. 

In this article, Ricker’s TE simulator based on 
MATLAB® 6.5 was used to generate the dataset. The 
closed-loop control strategy of Ricker[22] was also 
adopted. The reference dataset to construct NOC 
model includes 2000 samples of 22 continuously 
measured variables which were recorded at 0.1h in-
terval. 

It is somewhat cumbersome to plot the ACFs of 
all the 22 variables. In Fig.7, only the auto-correlation 
coefficients of variables are illustrated. It can be seen 
that ten variables are strongly auto-correlated includ-
ing feed A (Var1), reactor pressure (Var7), purge rate 

(Var10), separator temperature (Var11), separator pres-
sure (Var13), stripper pressure (Var16), stripper tem-
perature (Var18), compressor power (Var20), reactor 
outlet coolant temperature (Var21), and separator outlet 
coolant temperature (Var22). 
 PCA was first applied to the NOC data and 15 
scores which explain that 87.6% of total variation 
were retained. The auto-correlation coefficients of 
scores are illustrated in Fig.8, not only the variation 
information but also the dynamic information are 
concentrated in the first five scores. 

Based on the criterion presented in section 3.2, a 
five-order state-space model was identified to remove 
the dynamics efficiently. Fig.9 confirms that residuals 
are no longer auto or cross correlated. In contrast, the 
ARMA-PCA had to use 20-order filters to remove the 
auto-correlations of the first two scores. 

To demonstrate the capability of SI-PCA to de-
tect abnormal behavior, excessive variation of the re-
actor cooling water temperature was simulated (dis-
turbance type 11) to generate a fault dataset. The fault 
dataset also contains 2000 samples and the fault was 

Table 3  T2 FAR of 400 Monte Carlo experiments 
Mean (FAR) Std (FAR) 

α 
PCA Dynamic PCA ARMA-PCA SI-PCA PCA Dynamic PCA ARMA-PCA SI-PCA 

0.01 0.0098 0.0103 0.0105 0.0100 0.0050 0.0055 0.0042 0.0037 
0.02 0.0196 0.0203 0.0205 0.0199 0.0074 0.0082 0.0063 0.0054 
0.05 0.0485 0.0503 0.0511 0.0499 0.0124 0.0142 0.0116 0.0096 
0.10 0.0973 0.0998 0.1015 0.0997 0.0186 0.0208 0.0172 0.0135 
0.15 0.1470 0.1499 0.1522 0.1498 0.0235 0.0260 0.0212 0.0165 

 
Figure 7  Auto-correlation plots of original variables for TE process 
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injected after the 1000 sample. 
 The T2 control chart is presented in Fig.10 and 
the data around the control limit are zoomed in Fig.11 
for clear illustration. The last 1000 values of T2 statis-
tic produce an excessive number of violations. There-
fore, SI-PCA detects the out-of-control situation cor-
rectly. 

 
Figure 10  T2 control chart for reactor cooling water 

excessive variation by SI-PCA 

 
Figure 11  Zooming in the data of Fig.10 
around the 99% control limit (solid line) 

5  CONCLUSIONS 
This article studies the influences of process dy-

namics on FAR of statistical process control. It is 
shown that the presence of auto and cross correlation 
will cause the actual FAR to deviate from its theoretic 
value. Applications illustrate that two improved PCA 
methods, dynamic PCA and ARMA-PCA, do not  

 
Figure 8  Auto-correlation plots of PCA scores for TE process 

 
Figure 9  ACFs of residuals by SI-PCA for process 
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remove the effects of time-series structures of vari-
ables. 

Motivated by the above facts, a subspace identifi-
cation approach-based PCA (SI-PCA) is proposed to 
remove the auto and cross correlations of score vari-
ables simultaneously. Akaike information-like criterion 
is introduced to determine the state-space model. Nu-
merical examples demonstrate that SI-PCA can re-
move the auto and cross correlations efficiently and 
the FAR of SI-PCA coincides more with the theoretic 
value respecting to the standard deviation of FAR. 

Application in TE process fault detection reveals 
that the SI-PCA is also efficient in detecting the proc-
ess abnormal behavior, that is, SI-PCA does not com-
promise the type Ⅱ error or missing fault detection 
performance. 
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