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Abstract  A novel mathematical model for single particle slurry propylene polymerization using heterogeneous 
Ziegler-Natta catalysts has been developed to describe the kinetic behavior, the molecular weight distribution, the 
monomer concentration, the degree of polymerization, the polydispersity index (PDI), etc. This model provides a 
more valid mathematical description by accounting for the monomer diffusion phenomena at two levels as multi-
grain model counts, and obtains results that are more applicable to the conditions existing in most polymerizations 
of industrial interest. Considering that some models on the mesoscale phenomena are so complex that some existing 
modeling aspects have to be simplified or even neglected to make the model convenient for use in interesting engi-
neering studies, it is very important to put some effort into determining what sort of numerical analysis works best 
for these problems. For this reason, special attention is paid to these studies to explore an efficient algorithm using 
adaptive grid-point spacing in a finite-difference technique to figure out more practical mass transport models and 
convection-diffusion models efficiently. The reasonable outcomes, as well as the significant computation time sav-
ing, have been achieved, thereby displaying the advantage of this calculation method. 
Keywords  modeling and simulation, propylene polymerization, mass transfer, diffusion and convection 

1  INTRODUCTION 
Production of polyolefins is a multi-billion dollar 

business[1]. Owing to the relatively high complexity 
and multiscale nature[2] with respect to not only space 
but also time of the kinetic behavior and operation in 
polyolefin plants, decision making may rely on simu-
lations performed with complex mathematical models 
of the polymerization process. For this reason, a sig-
nificant number of articles have been published re-
garding the modeling and simulation of olefin polym-
erization reactors in the last two decades. One can 
associate different characteristic lengths and phenom-
ena with three different levels: macroscale, mesoscale, 

and microscale, respectively[3—5]. This article con-
centrates on the mesoscale phenomena. For more in-
formation on mesoscale models, the purely diffusional 
resistances with supported heterogeneous Ziegler-Natta 
catalyzed propylene polymerization have been mod-
eled in the form of the solid core model (SCM)[6,7], 
the polymeric flow model (PFM)[7,8], and later more 
elaborately in the form of the multigrain model 
(MGM)[6,9,10] and the polymeric multigrain model 
(PMGM)[11,12]. 

The MGM model of Floyd et al.[9] shown sche-
matically in Fig.1 considers the transport phenomena 
within the particle at two distinct levels, where both 
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Figure 1  Schematic diagram of particle growth in MGM and PMGM models 
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large scale diffusion through the macroparticle (Def) 
and microparticle diffusion (Ds) through the polymer 
film surrounding the catalyst fragments are considered. 
MGM is probably the most comprehensive one of the 
pure Fichian diffusional models, particularly since it 
can incorporate catalyst fragmentation, diffusional 
resistance, as well as active site heterogeneity, which 
are the three most important physicochemical effects. 
The major disadvantage of this model is that the 
computational times required to obtain the Polydis-
persity index (PDIs) are extremely high. This disad-
vantage makes this model inconvenient for use in in-
teresting engineering studies like the simulation of 
industrial reactors, optimization, control, etc. 

For this reason, studies on the PMGM model by 
Sarkar and Gupta[11,12] lead to the development of 
more diffusion that is negligible as shown in Fig.1, 
where microparticle diffusion, Ds, at the microparticle 
level is negligible, and a formulation similar to that of 
Laurence and Chiovetta[13] is adopted with specified 
size and porosity data. The main advantage of this 
model is that its solution method makes the computa-
tional rate improve significantly by employing 
clubbed shell computational algorithm (CSA)[12]. 
Unfortunately, some results from PMGM are not very 
applicable to the conditions existing in most polym-
erization of industrial interest, such as the monomer 
concentration at the centre of the particles drops very 
quickly to nearly zero, and remains there for over 2h 
of polymerization[3]; as well as PMGM assumes that 
the change of the number of microparticles does not 
lead to considerable change in the result, which differs 
from the Nagel’s research[6] while varying the initial 
radius of catalyst microparticle (Rc) with the initial 
particle radius of catalyst macroparticles (R0) constant. 

All models on the mesoscale phenomena pre-
sented above are pure Fickian diffusion models, most 
results of which agree reasonably well with the ex-
perimental measurement for both microparticles and 
macroparticles. However, as these fail to explain the 
intrinsic activity now attainable, the requirement for 
incorporating monomer convection, which is thought 
to be driven by the pressure gradient created by the 
monomer consumption within the particle, in such a 
model is essential[14]. 

The main purpose of this study, therefore, is to in-
troduce a modified model extended from the polymeric 
multigrain model with an improved algorithm to model 
industrial problems, where additional physicochemical 
effects and assumptions can be added as well as there is 
a high solving efficiency. The relevant outcomes, fig-
ured out from this modified model in the area of in-
troparticle mass transfer for slurry propylene polymeri-
zation with Ziegler-Natta catalyst, are more suitable for 
industrial application when compared with the original 
PMGM model of Sarkar and Gupta[11]. Additionally, 
this kind of algorithm, extended from PMGM[12] as an 
alternative method for solving the monomer conserva-
tion equations to accelerate the computational time 
significantly besides maintaining the results reasona-
bly, is further applied to the convection-diffusion 
model, which considers the monomer convection 

through interconnected pores in the macroparticle to 
explain some phenomenon that pure Fickian’s diffu-
sion model fails to reach under certain circumstance. 

2  THEORY 
2.1  Modified polymeric multigrain model 

The slurry propylene polymerization is consid-
ered to contrast with PMGM. The radii of the mi-
croparticle (Rc) are all assumed to be of the same 
value according to Kakugo’s experiment, which ad-
vances that all radii of the catalyst subparticle remain 
the same and unchanged after experiencing the in-
stantaneous fragmentation during the process of po-
lymerization[15]. The consideration is limited to ho-
mopolymerization, spherical catalyst particle, a single 
type of active site, isothermal, and negligible heat 
transfer[16,9,10], and the assumption of instantaneous 
rupture is retained, which is also employed by SCM, 
PFM, MGM and PMGM[16,17]. The case in which 
there is termination by transfer to hydrogen owing to 
its predominance is considered. Since the main objec-
tive of this article is to demonstrate the efficiency of 
the modified polymeric multigrain model with club-
bing, the simplified mechanism of Ziegler-Natta cata-
lyzed propylene polymerization is adopted, as shown 
in Table 1. 

Table 1  Simplified kinetic mechanism of Ziegler-Natta 
catalyzed propylene polymerization 

 Reaction 

initiation p
0 c 1

kP M P+ ⎯⎯→  

propagation p
c 1

k
n nP M P ++ ⎯⎯→  

termination tr
2 1

1 H
2

k
n nP D P+ ⎯⎯→ +  

where, P0 represents the unreacted active catalyst sites, 
while Pn, which is still attached to an active site, and 
Dn, which has at its end, a group from a chain transfer 
or deactivating agent, are the concentrations of the 
live and dead polymer of chain length n, respectively. 
Both rate constants for initiation and propagation are 
represented by kp. ktr represents the termination by 
chain transfer to hydrogen. 

The following well-known diffusion-reaction 
differential equations are obtained for the concentra-
tion of the monomer at any radial position, r, and time, 
t, in the growing porous spherical polymer particle for 
the fluid diffusion phenomena at two different scales: 

 2
pv2

M D M Rr
t r rr

∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠
       (1a) 

( 0, ) 0M r t
r

∂
=  =

∂
            (1b) 

( )ef p 1 b( , )MD r R t k M M
r

∂
=  = −

∂
     (1c) 

0( , 0) 0M r t M = = =          (1d) 
where, Rpv is the rate of reaction per unit volume in 
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the macroparticle, Def is the effective diffusivity of 
monomer in the macroparticle, k1 is the mass transfer 
coefficient in the external film, and Mb is the bulk 
monomer concentration in the reactor. M and M0 are 
the evolving and the initial monomer concentrations in 
the macroparticle, respectively. Rp is the radial posi-
tion at the macroparticle level of catalyst in this model 
as shown in Fig.1; since the catalyst fragments are 
assumed to be in a continuum of polymer also em-
ployed by Sarkar and Gupta[11] in PMGM, there is no 
macroparticle porosity term in Eq.(1) in contrast to 
that in MGM[9]. 

The radial profile of monomer concentration in 
the microparticle is the same as that for the SCM[6,7]: 

c 2 c
s2

1M M
D r

t r rr
∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠

          (2a) 

( )2 3c
c s c c pc

44 ,
3

M
R D r R t R R

r
∂

π = = π
∂

     (2b) 

( ) * *
c s ,M r R t M M Mη= = = ≤       (2c) 

( )c c0, 0M Mr t ==           (2d) 

where, Ds is the effective diffusivity of monomer in 
the microparticle, M* is the equilibrium concentration 
of monomer in the interface between micro- and 
macroparticles, Mc is the monomer concentration in 
the microparticle, Rpc is the rate of polymerization on 
the surface of the catalyst fragments, and Rs is the ra-
dius of the microparticle. The boundary condition 
Eq.(2b) allows for the possibility of sorption equilib-
rium at the surface of the microparticles. 

The rate of polymerization on the microparticles 
is generally given by: 

*
pc p SA( ) ( )R k t C t M=           (3) 

where, MSA is the concentration of monomer on the 
active site, and C*(t) is the time-dependent concentra-
tion of active sites on the surface of the microparticle. 

Using the quasi steady state approximation 
(QSSA) presented by Hutchinson[10], Mc is easily 
obtained as: 

*

c 2
*cc

p
ss

11
3D

MM
RR k C
R

η
=

⎛ ⎞−+ ⎜ ⎟
⎝ ⎠

       (4) 

where Mc is the monomer concentration at the catalyst 
surface in the microparticle, and η* represents the cor-
responding equilibrium constant for monomer absorp-
tion in the microparticle. Special attention must be 
payed to this point that the microparticle diffusion (Ds) 
through the polymer film surrounding the catalyst 
fragments is considered here as shown in Eq.(4), 
which is ignored by PMGM, and this is one of the 
contributions of this study.  

The number of small particles in any shell, Nn,i, is 
assumed to be unchanged during the polymerization 
processes and all catalyst subparticle radii for each 
microparticle in the ith shell at a given macroparticle 
radius are all assumed to be of the same size[9]. Eq.(1) 

is then rewritten in finite difference form to provide a 
set of ordinary differential equations (ODEs) for Mi, 
the monomer concentration at each of the c 2N +  dif-
ferent computational grid points as shown in Fig.2, 
and the ODEs are listed as follows: 

1 2 1
ef ,1 pv,12

1

M M M
D R

t r
∂ −

= −
∂ Δ

          (5a) 

2ef , 1
c, cg, c,

2
c, 1 c,c,

1 pv,
c, 1 c, c, c,

c

1 1

1 1
          

1 1
         

                        2,3, , 1

i
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i
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i i
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⎡ ⎛ ⎞∂ += −⎢ ⎜ ⎟Δ Δ∂ ⎝ ⎠⎣
⎛ ⎞+ +⎜ ⎟Δ ΔΔ⎝ ⎠

⎤⎛ ⎞− −⎥⎜ ⎟Δ Δ Δ⎝ ⎠⎦
= ⋅ ⋅ ⋅ +      (5b) 

( )

( )

c

c

c

c cc

c

c

c

c
c c

2
2

ef , 2
2

, 1 cg, 2c, +1

ef , 2
21

c, +1

b pv, 2
c, 1 cg, 2

2
                

2
               

2
               

N
N

Nl l

c N NN

N
N

N

l l
N

N N

M
M

t
Dk k

r Rr

D
M

r

k k
M Rr R

+
+

+

+ +

+

+

+
+ +

∂
= −
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⎡ ⎤

+ +⎢ ⎥ +Δ Δ⎢ ⎥⎣ ⎦
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×

   (5c) 

where, Rcg,i, Δrc,i, Def,i, Rpv,i can be computed through 
the hypothetical clubbed shell that was defined (as 
shown in Fig.2). 

According to Fig.2, the number of subparticles in 
the ith shell at time 0t = , Nn,i, is calculated using the 
porosity ε, which has been taken to be a constant, as in 
the early MGM[9] in the polymerization process, as-
sociated with close-packed sphere: 

n,1 1N =                  (6a) 

( )( )2
n, 24 1 1iN iε= − −   c2,3, ,i N= ⋅ ⋅ ⋅    (6b) 

To reduce the computational effort, the spherical 
shell is supposed to be clubbed together into a less 
number (Nc). The fewer spherical shells can be 
clubbed together in regions where the monomer con-
centration varies significantly with the radius of the 
macroparticle, and several shells can be put together 
where the variation of monomer concentration with 
location is not as server. Therefore, it can be expressed 
in the following forms by assuming that 6N −  can be 
divided by c 3N − : 

[ ]nn n
1

( ) ( 1)
a

j
N i N a i j

=

= − +∑ ,
c

6
3

Na
N

−
=

−
 

c1,2, , 3i N= ⋅ ⋅ ⋅ −             (7a) 

( ) ( ) ( )nn c n n5 4N N N NN N= +− −     (7b) 
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( ) ( ) ( )nn c n n1 3 2N N N NN N− = +− −    (7c) 

( ) ( ) ( )nn c n n1N N N NN N= +−      (7d) 

The total volume of polymer, Vi, and the volume 
of microparticle at the ith shell, Vs,i, all produced by 
catalyst particles are given by: 

* 3
p c, W pnn, c

d 40.001 /
d 3

i
i i

V
k C M MN R

t
ρπ⎛ ⎞= ⎜ ⎟

⎝ ⎠
   (8) 

S, * 3
p c, W pc

d 40.001 /
d 3

i
i

V
k C M MR

t
ρπ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

c1, 2, , i N= ⋅ ⋅⋅                (9) 
with Vi(t＝0) and VS,i(t＝0) being the initial total 
volume and the volume of every polymer microparti-
cle of ith volume, respectively. 

( )3
nn, c

4( 0) / ;1
3i iV t N R ε
π⎛ ⎞= = −⎜ ⎟

⎝ ⎠
 c1,2, ,i N= ⋅ ⋅ ⋅  (10) 

( ) 3
S, c

4
0

3iV Rt
π

==             (11) 

The Mc,i is the modified monomer concentration 
value of the catalyst surface in the microparticle at the 
ith hypothesis clubbed shell, Rch,i, computed by Eq.(4); 
the detailed form is expressed as follows: 

1
c, 2

c *c
p

s,s

11
3

i
i

i

M
M

RR k CRD

η +=
⎛ ⎞−+ ⎜ ⎟
⎝ ⎠

       (12) 

This point is amended to perfect PMGM by tak-
ing the factor of diffusion at the microparticle level 
under advisement. The detailed form of Eq.(4) origi-

nates from this reason. 
The hypothesis clubbed shells at any time, Rch,i, 

can be defined by:  
1/3

ch,
1

3
4

i

ji
j

VR
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟π⎝ ⎠

∑ ,    c1,2, ,i N= ⋅ ⋅ ⋅     (13) 

where, Rch,0＝0, and the radius of the microparticle at 
the ith clubbed shell is: 

1/3

s, s,
3

4i iR V⎛ ⎞= ⎜ ⎟
π⎝ ⎠

            (14) 

The finite difference grid points in the clubbed 
shell algorithm can now be assumed to be placed at 
the mid points of the hypothetical clubbed shells (see 
Fig.2). The grid point locations are thus given by: 

cg,1 0R =                (15a) 

h,1
cg,2 2

R
R =              (15b) 

 h, h, 1
cg, 1 h, 1 2

i i
i i

R R
R R −

+ −

−
= +    c2,3, ,i N= ⋅ ⋅ ⋅  (15c) 

c ccg, 2 h,N NR R+ =            (15d) 

The value of the distances between the grid 
points, which are used in Eqs.(5), are given by: 

h,1
c,1 2

R
rΔ =              (16a) 

c, cg, 1 cg,i i ir R R+Δ = −   c2,3, , 1i N= ⋅ ⋅ ⋅ +   (16b) 

To account for the resistance due to the presence 
of the solid catalyst fragments after completing all 

 
Figure 2  Catalyst subparticles distribution in the modified polymeric multigrain model with clubbing 

[Where a is calculated by Eq.(7a)] 
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previous work, an effective diffusivity is introduced 
into this equation. Most models have tried to relate the 
effective diffusivity, Def, to the value of the diffusivity 
of the component in the bulk phase of the reactor, Dl, 
using the following expression commonly used for 
heterogeneous catalysts: 

ef lD D ε
τ

= ⋅               (17) 

where, ε and τ are the porosity and tortuosity of the 
macroparticle, respectively. Note that owing to the 
macro-particle fragmentation and growth, it is very 
likely that both ε and τ are functions of time as well as 
the radial position. Sarkar and Gupta[11,12] corrected 
the diffusivity by a factor proportional to the amount 
of polymer in the particles, i.e. the term ε/τ of the 
above-mentioned equation, for a correction factor 
equal to the area-fraction of polymer (assumed to be 
the same as its volume fraction) in the macroparticle 
at any radial location. Thus, as the particle fills up 
with polymer, the effective diffusivity decreases as 
follows: 

cef ,1 ef , 2N lD D D+= =             (18a) 

3
c

ef ,2 nn,1 3
h,1

l
RD D N
R

=             (18b) 

( )cs, cc,
ef , 1

cs,

3 3 3
h, h, 1 nn, c

3 3
h, h, 1

i i
i l

i

i i i
l

i i

V V
D D

V

R R N R
D

R R

+

−

−

−
=

− −
=

−

   (18c) 

where, Dl is the diffusion of the monomer through 
pure polymer, and Vcs,i and Vcc,i are the volume of the 
ith hypothesis shell and the volume of the catalyst in 
shell i, respectively. Thus, the effective diffusion coef-
ficient considered here is changed at any time during 
particle growth in opposition to Floyd et al.[9]. 

The net rates of consumption of monomer per 
unit macroscopic volume at any radial location at the 
mean time are then figured out by: 

cpv,1 pv, 2 0NR R += =             (19a) 

 
* 3

p c,1 nn,1 c
pv,2 3

h,1

k C M N R
R

R
=          (19b) 

* 3
p c, 1 nn, 1 c

pv, 3 3
h, h, 1

i i
i

i i

k C M N R
R

R R
− −

−

=
−

       (19c) 

Therefore, the corresponding overall time-dependent 
particle polymerization rate, which is closely related 
to the reactor stability and safety, is given by: 

( )
c

c

*
nn, c,W p

=1
o

c nn,
i=1

0.001
N

i i
i

N

i

N MM k C
R

Nρ
=

∑

∑
     (20) 

2.2  Extended convection-diffusion model 
It may be universally acknowledged that most 

values obtained by pure Fick’s diffusion model at the 
mesoscale level agree reasonably well with the ex-
perimental measurements[18] for both microparticles 
and macroparticles. It is, however, important to point 
out that the diffusion coefficients may not be directly 
applicable to the dynamic and rather complex proc-
esses occurring during the growth of polyolefin parti-
cles. 

McKenna and Soares[19] first advances that un-
der certain circumstance, mass transport in the grow-
ing particles is not only by Fician diffusion alone, but 
also by convection, which is driven by the pressure 
gradient created by the monomer consumption within 
the particle. According to the significant number of 
open literature on this part, the convection and diffu-
sion can be modeled by two different ways, advec-
tion-dispersion model (ADM) and dusty gas model 
(DGM)[20,21]. In this article, the ADM model, based 
on simple linear addition of diffusion and convec-
tion[22], is mainly presented to confirm the efficiency 
of this calculational method using the clubbed shells 
algorithm mentioned above. The detailed model is 
presented as follows. 

It is considered that the growing polymer particle 
is also made up of spherical particles. Eq.(21) is used 
to describe the mass transport caused by both convec-
tion and diffusion with no inert gases, because gas 
phase propylene polymerization is done in the pres-
ence of a significant amount of inert gases for the 
most part, in which case, the convective mass transfer 
will probably be negligible. 

( ) ( )

( )

121 ef
2

gg

2
0 1 v

g g

1 1

1 1

x Px P D
r

R T rR T t rr

pB r x P RR T rμ

∂⎡∂ ∂ += ⎢ ∂∂ ∂ ⎢⎣
∂ ⎤

−⎥∂ ⎦

    (21) 

where, 
( )

2
0 s

2
9 1

B Rε
τ ε

=
−

  is the viscous flow pa-

rameter dependent on the porosity (ε) and tortuosity 
(τ); P is monomer pressure, Pa; μg is monomer viscos-
ity, Pa·s; Rv is the rate of reaction based on polymer 
volume, mol·m－3·s－1. The pore radius is considered to 
be the same as the radius of the final microparticle. 

When considering gas phase polymerization, it 
can be assumed that the gaseous monomer in the pores 
of the macroparticle behaves as an ideal gas with 
concentration M＝P/RgT; Eq.(21) is then finally re-
written as: 

g2
ef 0 v2

g

1 R TM MD B Mr R
t r rr μ

⎡ ⎤⎛ ⎞∂ ∂ ∂+= −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
  (22) 

Using our previous solution method, the clubbed 
shells algorithm, which has been proved to be able to 
improve the computational rate significantly, Eq.(22) 
is changed to the following form: 
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where, g 2
i s,

g 9 (1 ) i
R T

Rεβ
μ τ ε

=
−

 is an indicator of the 

monomer convection contribution in contrast with the 
diffusion. Then, the corresponding overall 
time-dependent reaction rate (g·g－1·h－1, based on cata-
lyst) is calculated as follows: 

( )
c

*
nn, c,W p

1
o

c c,
1

0.001
N

i i
i

N

i
i

N MM k C
R

Nρ

=

=

=
∑

∑
      (24) 

where, MW is the molecular weight of the propylene 
monomer and kp is the propagation rate constant 
(m3⋅mol－1⋅s－1). In the absence of diffusion limitations, 
its maximum possible value is obtained from the 
catalyst’s intrinsic reactivity by: 

*
p b W

max in
c

k C M M
R R

ρ
= =          (25) 

3  RESULTS AND DISCUSSION 
The simulation of this ODEs system on calcu-

lating the value of monomer concentration is solved 
using the Runge-Kutta-Fehlberg method[23]. This 
section is divided into three subsections for better 
discussion. The former two subsections explain sev-
eral developments of this modified PMGM model in 
comparison with the original PMGM model[11,12] on 
PDI, monomer concentration, and average degree of 
polymerization when changing some key relevant pa-
rameters. The overall polymerization rate and compu-

tational time are analyzed between the pure Fickian 
diffusion model and the convection-diffusion model in 
the last subsection. 

3.1  Comparison on PDI and monomer concentra-
tion 

Figure 3 shows the comparison of the cumulative 
polydispersity index (Qav) and the distribution of 
monomer concentration in the macroparticle between 
modified PMGM and PMGM for the reference condi-
tions in Table 2 also employed by Sarkar and Gupta[12]. 
In theory, the diffusion resistance abandoned by 
PMGM obviously exists and must be put up in the 
mesoscale model. The modified PMGM, however, 
revises it and can predict higher values of polydisper-
sity index from 6 to 25 when compared to that of 
PMGM (from 4 to 15) as shown in Fig.3(a) owing to 
the steeper modified monomer concentration profile as 

 
(a) Cumulative polydispersity index 

 
(b) Monomer concentration 

Figure 3  Comparison of the cumulative polydispersity 
index and monomer concentration 
—— PMGM; - - - - modified PMGM 

Table 2  Reference values of parameters for simulation of slurry polymerization of propylene 

Dl, 
m2·s－1 

Ds, 
m2·s－1 

Mb, 
mol·m－3 

Rc, 
m C*① kp, 

 m3·mol－1
ktr,  

m3/2·mol－1/2·s－1
H2, 

mol·m－3 
ρp, 

kg·m－3 
ρc, 

kg·m－3

1×10－10 1×10－12 4×103 2×10－7 1 0.5 0.186 1 900 2260 
① The unit of C* is active site based on 1m3 catalyst. 
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shown in Fig.3(b) in the catalyst macroparticles, which 
is more reasonable while talking in physics meaning. 

The monomer concentration at the macroparticle 
level of PMGM as shown in Fig.3(b) is not applicable 
to the conditions existing in most polymerization of 
industrial interest since the monomer concentration at 
the center of the particles drops very quickly to nearly 
zero and remains there for over 2h of polymeriza-
tion[3]. The proposed model modified it, which is dis-
played in Fig.3(b) with the dash-dot line, and the 
monomer concentration at the center of the particle is 
about 1800mol·m－3 after 1.5h polymerization reaction, 
which is closer to the industrial practice. 

3.2  Effect of the radius of the microparticle 
The results for the modified PMGM are gener-

ated under the conditions of changing the radius of 
microparticle (Rc) while keeping the initial particle 
radius (R0) as constant. The detailed descriptions of 
the material balance, the moment equation, the com-
putational method of PDI, and the measurement of 
MWD are well documented by open literatures in this 
area[9,24]. 

Nagel et al.[6] notes that the constant number of 
subparticles induced by the instantaneous rupture of 
catalyst macroparticle has a strong influence on the 
polydispersity. PMGM indicates, however, that there 
is not much change to the results under such circum-
stance. This result does not correspond to the actual 
physical process obviously. It is revised by this modi-
fied PMGM, and it can be observed from Fig.4 that 
Qav of the polymer decreases while DPav increases 
when R0 is lowered from 14.2 to 7.1μm in the condi-
tion that all other values are constant. The reason why 
DPav is higher for lower values of R0 is that the lower 
diffusional resistances encountered in smaller catalyst 
particles will make the difference of monomer con-
centration between the inside and outside of the parti-
cle diminish. It is also found that DPav is very sensitive 
to the parameter of Rc while retaining C* constant, 
namely, C* has no connection with the total surface 
area of the microparticle. Similarly, as seen in Fig.4, 
DPav and Qav go in an opposite direction; the former 
increases while the latter decreases while varying Rc 
from 0.3 to 0.1μm at the same value of R0. Thus, with 
single site catalysts, both larger initial catalyst parti-
cles and larger subparticles can give rise to high PDIs. 

3.3  Analysis for the reaction rate and the compu-
tational time 

Another interesting aspect of this investigation is 
the efficiency of the extended clubbed shells algo-
rithm, which enables a simpler mathematical repre-
sentation. It is, moreover, important to point out that 
the improved algorithm can easily be extended to 
model industrial problems where additional physico-
chemical effects are present, such as the studies of 
more practical convection-diffusion model in the last 
decade to explain some phenomena, which the pure 
Fickian’s diffusion model fails to reach under certain 
circumstance[3]. The comparison of the overall po-

lymerization rate, which is closely related to the reac-
tor stability and safety, between the Fickian model and 
the convective model is shown in Table 3. 

Table 3  Comparison of the peak overall polymerization 
rate between Fickian diffusion and convective model① 

Rin, 
g·g－1·h－1 

Ro of Fickian diffusion 
model, g·g－1·h－1 

Ro of convective 
model, g·g－1·h－1 

4.0×104 25×103(29×103) 37×103(38×103)
1×105 50×103(53×103) 95×103(96×103)

① Values in brackets are obtained by Veera[21]. 

Table 3 reveals that the Fickian diffusion model 
predicts low reactivity when compared to the convec-
tion-diffusion model for its high diffusional limita-
tions, and fails to interpret the high reaction rate now 
attainable, which is explicitly noted by McKenna and 
Soares[3]. Thus, all these peak values of reaction rates, 
25kgPP/60g catalyst per hour for the Fickian diffusion 
model, and 37kgPP/95g catalyst per hour for the 
Convective-diffusion model calculated from transport 
models with clubbed shells algorithm while adopting 
the typical parameter values suggested by Veera[20], 
are in substantial agreement with those discussed in 

 
(a) On the degree of polymerization 

 
(b) On the cumulative polydispersity index 

Figure 4  Effect of the change in Rc while 
maintaining R0 unchanged 

1—Rc＝0.3μm, R0＝14.2μm; 2—Rc＝0.2μm, R0＝14.2μm;
3—Rc＝0.1μm, R0＝14.2μm; 4—Rc＝0.1μm, R0＝7.1μm 
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Veera’s literature[21] on gas phase propylene polym-
erization, 29kgPP/53g catalyst per hour for the 
Fickian diffusion model and 38kgPP/96g catalyst per 
hour for the convective-diffusion model. Other rela-
tive detailed discussions and analysis about the con-
vective model are in progress since it is very impor-
tant and is worth deep research. 

Another main purpose of this subsection is to 
compare the computational time among the original 
PMGM model, the modified PMGM model, and the 
convection-diffusion model besides ensuring that the 
outcome is reasonable. The CPU time for solving 
these three models with the two different algorithms is 
listed in Table 4, where the CPU time of the three 
models with shell by shell algorithm and clubbed shell 
algorithm are reduced from 28s, 38s, 110s to 2s, 4s, 7s, 
respectively. It reveals the visible advantages of the 
clubbed shells algorithm, which implements very eas-
ily and accelerates the computation time significantly 
in contrast to the normal shell by shell algorithm, 
which is used by most researchers[6,7,11] to solve the 
mass transfer model. 

4  CONCLUSIONS 
The modified PMGM model has been advanced 

to amend some unreasonable conclusions of the 
PMGM model since the monomer concentration at the 
centre of the particles drops very quickly to nearly 
zero and remains there for over 2h of polymerization, 
while changing Rc does not lead to considerable 
change in the results with the single site catalyst. It 
has been found from this model, however, that DPav 
and PDI are very sensitive to the parameter of Rc 
when it has no connection with the total surface area 
of the microparticle. It is also shown that DPav and Qav 
go in opposite directions; the former increases 
whereas the latter decreases while reducing Rc and 
maintaining R0 as constant. 

Additionally, the idea of the clubbed shells algo-
rithm has been successfully applied to solve the dy-
namic equations with the expansion model of both the 
Fickian diffusion model and the convection-diffusion 
model. The improvement of this method is that it re-
quires far fewer discretizations in the space domain 
than normal finite differences and thus shortens the 
computational time significantly. Furthermore, it can 
easily be extended to work for more complex and 
practical industrial phenomenon and application while 
maintaining reasonable results simultaneously on 
mesoscale phenomena as shown in the present study, 
where the predictive values of some important pa-
rameters, such as the cumulative polydispersity index, 
are necessary for further macroscale reactor modeling 
researches of propylene polymerization. 

NOMENCLATURE 
C* catalyst active site concentration, mol site⋅m－3 

Def,i  effective macroparticle diffusion coefficient, at ith grid 
point, m2⋅s－1 

Dl monomer diffusivity in pure polymer, m2⋅s－1 

DPav degree of polymerization in the macroparticle 
Ds effective microparticle diffusion coefficient  
kl liquid film mass transfer coefficient, m2⋅s－1 

kp propagation rate constant, m3 ⋅mol－1⋅s－1 

ktr chain transfer rate constant, for H2, m3/2⋅ mol1/2·s－1 

Mb bulk monomer concentration, mol⋅m－3 

Mc,i modified monomer concentration at the catalyst surface 
in the microparticle, at the ith shell, mol⋅m－3 

Mi monomer concentration in the macroparticles, at the 
ith grid point, mol⋅m－3 

MW molecular weight of monomer, g⋅mol－1 

N number of EA shells 
Nc number of clubbed shells 
Nn,i number of catalyst subparticles in the ith hypothesis 

shell monomer units attached (based on catalyst), mol⋅m－3 

Nnn,i number of catalyst subparticle in ith clubbed monomer 
units attached (based on catalyst), mol⋅m－3 

Qav cumulative polydispersity index 
R0 initial particle radius of catalyst macroparticle at t＝0, m 
Rc radius of catalyst microparticle or fragment, m 
Rcg,i radius at the ith clubbed shell grid point 
Rch,i radius of the ith hypothetical clubbed shell 
Rg universal gas constant, Pa⋅m3⋅mol－1⋅K－1 

Rh,i radius of the ith hypothetical shell at original grid point 
RN+2 macroparticle radius, m 
Ro time-dependent reaction rate per kg catalyst, kg⋅s－1 

Rp radial position at the macroparticle level of catalyst, m 
Rpv rate of reaction per unit volume in the macroparticle, 

mol⋅m－3s－1 

Rpv,i rate of reaction per unit volume in the macroparticle at 
the ith grid point, mol⋅m－3s－1 

Rs,i radius of microparticle at the ith shell 
Rv rate of reaction based on polymer volume, mol⋅m－3s－1 

Δrc,i value of distances between the ith and (i+1)th clubbed 
shell grid point, m 

T temperature, K 
t time, h 
βi indicator of the monomer convection contribution 
ε porosity 
η monomer sorption coefficient 
μg monomer viscosity, Pa⋅s 
ρc density of catalyst, g⋅m－3 

ρp density of polymer, g⋅m－3 
τ tortuosity 
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