华北东部中生代热体制转换及其构造意义*

付明希 胡圣标** 汪集旸

(中国科学院地质与地球物理研究所,北京 100029)

摘要 华北东部新生代沉积中心区受新生代快速沉积的影响,前新生代地层于现今处于最高 古地温,前期的古地温信息已不复存在,但新生代沉积厚度较小的相对隆起区或古-中生代残留 盆地中,前第三纪不同构造层内的镜质体反射率(*R*_o)古温标数据所记录中生代古地温信息未被晚 期热事件所叠加覆盖,从而使得前新生代的古地温信息得以保存.根据华北东部盆地古、中生代 构造层中镜质体反射率恢复的古地温梯度和古热流结果表明:华北东部中生代中晚期(J₃-K₁)相对 于中生代早期和现今具较高的古地温梯度(40~55 /km)和古地表热流(>80 mW/m²).中生代中晚 期较高的古热流意味着该时期的"热"岩石圈厚度只有 50~55 km,较中生代早期"热"岩石圈厚度 (135~148 km)显著减薄.华北东部中生代中期地表热流变更发生在~110 Ma,它所对应的深部构 造-热过程应发生在中侏罗世(~160 Ma).

关键词 华北东部 热体制 地表热流 "热"岩石圈厚度 岩石圈减薄

近年来众多的证据揭示华北东部岩石圈厚度、物质组成和热状态在显生宙存在明显的变更.早古生代含金刚石的金伯利岩及其捕虏体和新生代的碱性 玄武岩及其幔源橄榄岩包体对比研究表明^[1-8],华北 东部显生宙早期岩石圈厚度较大且稳定,其厚度应 在金刚石稳定带的深度范围(180~200 km),且岩石圈 地幔物质组成以亏损的方辉橄榄岩为主;相对而言, 晚期(白垩纪以来)岩石圈厚度明显减薄(<80 km),物 质组成以富集的二辉橄榄岩为主.从岩石圈热状态 的演化看,显生宙早期(古生代和中生代早期),华北 东部的岩石圈热状态类似于稳定的地盾和大陆克拉 通地区的热状态,其地表热流应在 40~50 mW/m²范 围内^[9];根据地表含石榴子石橄榄岩和碱性玄武岩中 挟带的辉岩温压计获得的岩石圈热状态信息表明, 新生代早期以高地表热流(~80 mW/m²)为特征^[2,10,11]; 相对于现今的实测地表热流(~63 mW/m²)^[12,13],新生 代早期的岩石圈明显要更"热".由于华北东部中生代 玄武岩浆分布较少,这些证据主要来自古生代和新生 代,而中生代华北东部发生大规模构造-岩浆活动及构 造体制转换反映出与岩石圈深部过程密切相关^[14-17],

** 联系人, E-mail: sbhu@mail.igcas.ac.cn

²⁰⁰³⁻⁰⁶⁻⁰⁸ 收稿, 2003-11-04 收修改稿

^{*} 中国科学院知识创新项目(编号: KZCX1-07)、国家重点基础研究发展规划项目(编号: G1999075504)及国家自然科学基金项目(批准号: 40172100)共同资助

因此有关中生代岩石圈热状态的信息对认识华北东部 显生宙岩石圈变更的动力过程尤为重要.

岩石圈热状态的变化是区域和深部构造演变的 反映. 华北东部岩石圈减薄与同期岩石圈热结构的 变化必然影响地壳表层的温度分布特征,从而为盆 地内地层中的古温标所记录. 通过盆地热史恢复, 可 追溯中生代岩石圈热状态的演变,提供有关华北东 部岩石圈减薄的地热学证据及热-构造演化过程的 信息. 华北东部盆地热体制研究虽开展较早, 但尚无 对华北东部中生代热体制的系统研究,以往工作局 限在新生代沉积盆地中, 样品多为取自第三纪盆地 沉积中心的新生界地层,较少涉及前第三纪层位,所 获古地温仅代表新生代以来的热状况[18~20],即使有 中生界样品也由于这些地区在新生代时达到最大埋 深而经历最高地温,致使地层所记录的早期地温信 息已被后期更高温度叠加覆盖. 通过近些年工作, 我 们在华北东部第三纪沉积中心以外中生代残留盆地 中及第三纪隆起区发现了一些记录有中生代热历史 的古温标钻井剖面, 它们提供了有关华北东部岩石 圈热状态演化的更为直接和系统的证据.

本文基于华北东部盆地古生代、中生代地层中的 古温标数据,着重恢复了中生代的热历史,揭示了华 北东部中生代热体制的转换过程,在此基础上,重建 了不同地质时期的岩石圈"热"岩石圈厚度,目的是为 华北东部岩石圈减薄提供地热学的证据和为减薄的 构造-热过程及其机理的研究提供约束参数.

1 盆地热史恢复的原理

热史恢复的目的是恢复不同地质时期的古地表 热流,而恢复盆地古热流的关键在于是否存在使古 温标所记录的早期热史信息得以保存的构造-热演化 条件.在沉积盆地构造热演化过程中,地层中一些有 机质、矿物、流体包体等能够记载所经历的古地温信 息(称作古温标或古地温计),并保存至今.据它们的 热动力学反应机理,可定量反演地层受热史和地层 达到最高古地温时的古热流.其中在油气盆地中比 较丰富的是镜质体反射率(*R*_o)数据,它是一种很好的 最高古地温计.目前已有多种有关镜质体反射率的 动力学模型提出^[21-23],其中较为成熟的是"EASY% R。"模型^[23],该模型目前在国际上广为接受和采用. 利用古温标动力学模型进行热史反演又有不同的实 现方法,包括随机反演法,古热流法和古地温梯度 法124~261. 鉴于华北东部盆地历经多期构造运动, 存在 多期剥蚀, 热演化史复杂, 本次研究将采用古地温梯 度法来进行盆地热史恢复. 古地温梯度法的基本原 理是,在多期构造-热活动地区,不同构造层达到最 高古地温的地质时间(t_i)可能不同.如果某一构造层 在早期所经历的最高古地温高于后期所经历的最高 古地温,即未发生后期的热叠加和覆盖,那么处于最 高古地温时的古温度会被作为最高古地温计的R。值 所记录并得以保存,根据R。值与温度和时间关系的 动力学模型[23],即可计算出该构造层各样品对应的 古温度值,从而得到当时的古地温剖面并恢复出样 品所在构造层达到最高古地温时的古地温梯度 (dT/dz),再由剥蚀面处古温度(T_i)与古地表温度(T_s)的 差值可计算出相应不整合面上的剥蚀量(E): $E=(T_t-T_s)/(dT/dz)$ (图 1). 根据所获得的剥蚀量,即可 进行埋藏史恢复并得到不同层位达到最高古地温时 的古孔隙度,由古孔隙度和现今岩石样品热导率及 相应时刻的古地温梯度即可计算出当时的古热流值.

2 古温标数据分析

华北东部自三叠纪以来历经印支运动、燕山运 动、喜马拉雅山运动,使得古、中生界地层残缺不全, 有限的古、中生界残留地层中,除位于现今隆起区的 外,保存较全的又都不同程度地被新生界地层埋藏, 使部分地层中镜质体反射率反映的古地温信息遭受 改造.但基于古温标的热史恢复方法只能反演出地 层到最高古地温时及其后的热史^[27,28],需要特殊地 热地质条件来保障.地层经历的最高古地温主要受 控于地层古埋深和古热流,因此后期埋藏过程对古 温标所记录的早期古地温是否能保存具有决定性作 用.

图 2 代表了华北东部的 4 种基本埋藏样式, a 和 b 两种埋藏条件下可以从中生代构造层中的古温标得 到早期的古地温和热史信息;对于埋藏条件 c, 它可 能保存了中生代的古地温信息,也可能只记录现今 的地温,这取决于中生代的古热流是否高于现今,如

图 1 不同构造层古温标记录的最高古地温与古地温梯度和剥蚀量的关系[27]

图 2 前第三纪地层的 4 种基本埋藏样式

果中生代的古热流高于现今,尽管现今埋深大,中生 代的地温仍可能高于现今;而对于埋藏条件 d,它不 可能记录过去的古地温,持续增加的埋藏深度使得 地层于现今达到最高地温.

本次研究在华北东部古生代、中生代保存较全的 盆地区共收集了 50 口钻至前第三纪层位的钻井及相 关数据资料. 对数据进行分析后从中选取了 12 口钻 井进行中生代热史恢复(图 3).这些钻井内不同构造 层的镜质体反射率值分别反映中生代早、中-晚期的 热状态.其*R*。剖面又分为两类:一类为古生代、中生

代和新生代各层位齐全,不同时期的热状态的记录完整(如义 135 井,图 4(a));另一类代表层位不全,但保存有非现今达到最高古地温时的热状态记录(如邓 5 井,图 4(b)).

3 热史恢复结果及"热"岩石圈厚度

3.1 古地温梯度和剥蚀量

根据不同构造层的镜质体反射率数据和镜质体 反射率动力学模型,即可同时得到不同构造层达到 最高古地温时的古地温梯度和剥蚀量^[24-26].采用古 地温梯度法进行的华北东部 12 口钻井热史恢复和剥 蚀量计算结果见表 1.

由热史恢复结果可以看出,华北东部的古地温 梯度演化趋势为:中生代早期低(<31℃/km,平均 26.6℃/km),中生代中晚期较高(34~55℃/km,平均 46℃/km),现今略高(31~35℃/km,平均 33.6℃/km). 华北东部中生代早期的地温梯度与克拉通内盆地地 温梯度较一致,反映当时的深部构造热活动较弱;中

图 4 代表性钻井R。数据随深度的分布及其与构造层的关系

表 1 华北东部钻井不同构造层达到最高古地温时的古地温梯度、剥蚀量和古热流

地区	井名	现今		中生代中期(J ₃ -K ₁)			中生代早期(T2-3)		
		地温梯度	热流	地温梯度	热流	剥蚀量	地温梯度	热流	剥蚀量
		/℃ • km ⁻¹	$/\mathrm{mW} \cdot \mathrm{m}^{-2}$	/℃ • km ⁻¹	$/\mathrm{mW} \cdot \mathrm{m}^{-2}$	/m	$/^{\circ}C \cdot km^{-1}$	$/\mathrm{mW} \cdot \mathrm{m}^{-2}$	/m
济阳坳陷	义 135 井	34.3	63	55.8	109	1663	20.8	50	5354
	义 155 井						31	52	3484
	桩 11 井	35	65	45	86	1201			
沧县隆起	泊古1井	31	58	46.3	88	1727			
	沧参1井			41.3	79	2692			
冀中坳陷	胜1井						26	46	2300
临清坳陷	新巨5井						28	55	1451
	馆深1井			51	99	1460			
	堂古5井	32	58	46	94	903			
济源凹陷	邓 5 井	34	65	49	103	1029			
周口盆地	南 6 井	34	57				27	56	3020
	周参 11 井	35	58	34	64	5850			
平均值		33.6	61	46	90	2066	26.6	52	3122

生代中期的地温梯度则与活动裂谷盆地地温梯度相 当,表明深部构造热活动相当强烈.

从剥蚀量上看,华北东部地区晚侏罗世-早白垩 世不整合面上的剥蚀量为 0.9~5.9 km,平均 2066 m; 中-晚三叠世不整合面上的剥蚀厚度在 1.5~5.3 km 之 间,平均 3122 m.华北东部盆地区中生代早期和中晚 期均存在 2~3 km 的剥蚀量,部分可能与挤压造山作 用有关,但更多地可能反映了区域深部构造热活动 引起的均衡调整在地表的响应.

3.2 古地表热流

由于盆地内沉积层的压实作用,不同层位由于其 热导率的不同,地温梯度也不相同,通常表现为随深 度减小,因此,地温梯度不是表征盆地热状态的理想 参数,相对而言,地表热流代表了地温梯度与热导率 的乘积,是一个更能表达盆地或岩石圈热状态的综合 热参数.各钻井不同地质时期恢复的古热流见表 1.

整体上看,中生代早期热流较低(<60 mW/m², 平均 52 mW/m²),中生代中晚期最高(>80 mW/m²,平 均 90 mW/m²),现今热流为 63 mW/m².现今全球大 陆地区平均热流 65 mW/m²,活动裂谷热流值^[29]85 mW/m²,前寒武地盾及稳定克拉通盆地热流较低,平 均值为 40 mW/m².华北东部中生代早期的热流值略 高于前寒武地盾,具有克拉通盆地热流特征;中生代 中期的热流值与现今活动裂谷带相似,这一时期的 高热流与同期发育的剧烈岩浆成矿作用相对应,表 明深部的壳幔作用直接导致了来自深部地幔的能量 和物质向地壳表层迁移.华北东部现今热流值接近 现今全球大陆地区平均热流值,表明经历了中、新生 代的构造热活动后,地热场正趋向平衡.

3.3 "热"岩石圈厚度

"热"岩石圈指以热传导方式进行热传递的岩石 圈层,其下为以热对流为主的软流圈^[9].确定古地表 热流后,在岩石圈内,依据一维热传导方程^[30]即可得 到不同地质时期岩石圈内的地温随深度的分布曲线, 它们与地幔绝热线或地幔岩石固相线的交点所处的 深度即为"热"岩石圈厚度.本文取以下两条地幔绝热 线来限定"热"岩石圈厚度的上、下限^[31]:

 $T_1 = 1200 + 0.5 \ z = 1300 + 0.4 \ z.$

根据研究区现有的地壳结构研究成果^[32],将地 壳采取上、中、下三分的方案,并将上地壳再分为沉 积盖层和地壳基底,加上岩石圈地幔,共5层.沉积 盖层又细分为古生界、中生界、新生界.现今地壳厚 度取 34 km.中生代早期地壳厚度据中生代早期 50 mW/m²热流值可对其进行估算,由大陆地区的地幔 热流值最低不小于13 mW/m²[33]</sup>,中国大陆的地壳平 均生热率的上限值^[34](1.3 μW/m³)及地壳生热率平均 值(0.85 μW/m³),可推算得华北东部中生代早期地壳 厚度为 43 km,该值相当于中国中部克拉通地区(如 鄂尔多斯盆地)现今的地壳厚度.中生代中晚期的地 壳厚度可能存在一定减薄,但相对于早期仍有一定 继承性,除了沉积盖层的变化外,盖层以下的分层沿 用中生代早期的模型(表 2).

沉积层中热物性参数由实测值的给定.中、下地 壳热导率取 2.5 W/m・K^[18],岩石圈地幔的热导率取 值 3.4 W/m・K^[9]. 沉积盖层以下的地壳生热率的分 布以指数模型: *A*(*z*)=*A*₀exp(-*z/D*)表达,*D*值据地壳属 性取为 8~14 km,顶部生热率(*A*₀)取 1.26 μW/m³,岩 石圈地幔的生热率采用 0.03 μW/m^{3 [31]}.

鉴于"热"岩石圈定义的传导性质和中生代中晚 期华北东部存在强烈的岩浆活动,古温标所记录的 古热流中包含有热对流的成分,该时期的古热流取 其下限(80 mW/m²),其他时刻的古地表热流取钻井 恢复结果的平均值.中生代早期、中生代中晚期古热 流和现今相应岩石圈结构参数计算所得地温曲线及其 与地幔绝热线的交点所示的"热"岩石圈厚度见图 5.

计算结果表明, 华北东部中生代岩石圈经历了 显著的变更. 中生代早期的岩石圈已经历了一定减 薄, 从早古生代的 180~200 km^[1.8]减薄到了 135~148 km, 此后至中生代中晚期, 岩石圈进一步减薄到 50~55 km, 但由于热平衡作用现今的岩石圈厚度已 增厚至 73~81 km. 现今的"热"岩石圈厚度与其他地 球物理探测所确定的华北东部岩石圈厚度相一致^[35], 说明该地壳模型及所取参数具有一定的合理性. 中 生代中晚期相对于早期岩石圈厚度的减薄量达 85~93 km, 减薄幅度超过一半以上, 因此, 地热学证据也印 证了许多学者据岩石地球化学证据得出的华北东部 岩石圈在燕山期存在巨厚减薄^[1.6-8, 16, 36]过程的结论. 需要指出的是, 岩石圈深部温度和"热"岩石圈

				化乙 午日	山不即地	元年的自然初日	上学致			
	沉积层				上地壳		中地壳		下地壳	
	厚度	E/km	热导率/W・mK ⁻¹	生热率/µW・m ⁻³	厚度/km	热导率/W・mK ⁻¹	厚度/km	热导率/W・mK ⁻¹	厚度/km煮	热导率/W・mK ⁻¹
中生代	Mz	3	2	1.26	6	2.2	11	2.5	22	25
早期	Pz	1 3.6	0.97	0	2.5	11	2.5	22	2.3	
中生代	Mz	2	2	1.26	6	2.3	11	2.5	22	2.5
中晚期	Pz	1	3.6	0.97				2.5		2.5
现今	Cz	5.5	1.6	1.22	6	2.3	9	2.5	11	
	Mz	1.5	2	1.26						2.5
	Pz	1	3.6	0.97						

表 2 华北东部地壳结构与热物性参数

图 5 不同地质时期岩石圈内地温分布及其与地幔 固相线的关系

厚度的计算存在一定的不确定性,首先是地表热流 的不确定性,通常热流测量的误差在10%左右,它可 能导致 50℃的深部温度的误差或大约 15 km的岩石 圈厚度误差;其次是深部热物性参数,包括热导率和 生热率值的影响,但它们的影响相对是次要的,并且 不会改变温度和厚度的侧向变化趋势.此外,上地幔 固相线也会对岩石圈厚度的确定产生影响.通常地热 学方法获得的"热"岩石圈厚度的误差在15%左右^[37].

4 结论与讨论

华北东部中生代热体制发生由早期较低热流到 中晚期高热流的转变,反映了中生代以来岩石圈热 状态的变更及强烈地深部构造-热过程.依据不整合 面的时间跨度, 近地表中生代热体制转换时间限定 在晚侏罗世-早白垩世(~110 Ma). 需要特别指出的是, 近地表沉积层中所记录的热状态转换时间应明显晚于 深部岩石圈地幔乃至软流圈中的热扰动时间, 因为深 部热扰动传递到地表需要一定的时间(岩石圈热松弛 时间或岩石圈热时间常数). 岩石圈热松弛时间的长短 取决于热扰动的深度、规模和岩石圈内热传递的方式. 如果深部热扰动仅仅通过热传导而最终达到热平衡, 那么热松弛的时间可能长达 100 Ma 以上. 事实上, 与 热扰动相伴随的岩浆活动和热流体对流大大加速了热 松弛的时间. 对岩浆活动和热流体对流大大加速了热 松弛的时间. 对岩浆活动和热流体对流大大加速了热 松弛的时间. 对岩浆活动和热流体对流大大加速了热

从地热学的角度,华北东部岩石圈经历了从中 生代早期的135~148 km 到中晚期的50~55 km,其相 对减薄量为85~93 km,达50%以上,因此,地热学研 究结果印证了岩石地球化学研究结果提出的华北东 部存在中生代岩石圈巨厚减薄的结论,并且中生代 中晚期岩石圈减薄应该主要发生在岩石圈地幔.

此外, 华北东部中生代热体制转换与强烈的地 表剥蚀过程相伴随, 这对限定深部岩石圈减薄过程 的机理具有重要意义. 一些学者指出, 华北东部古生 代稳定存在的克拉通岩石圈地幔在中新生代被具大 洋地幔性质的显生宙地幔所置换^[31], 乃至华北克拉 通下地壳在中生代也发生置换作用^[38]或者存在地幔 拆沉作用^[39]或者去根作用^[16]. 无论何种减薄过程, 它必须能够合理解释古温标所记录的岩石圈热状态 的变迁及不同地质时期地表较大量的剥蚀.

致谢 有关石油公司提供了样品和钻井资料, 邵济安

教授和评阅人提出了宝贵的修改意见, 在此一并致谢.

参考文献

- Griffin W L, Zhang A D, O'Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M E J, Chung S L, Lou C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia, 1998, AGU Geodynamic Series 27: 107~126
- 2 Xu X S, O'Reilly S Y, Griffin W L, et al. The nature of the Cenozoic lithosphere at Nushan, Central Eastern China. In: Flower M E J, Chung S L, Lou C H, eds. Mantle Dynamics and Plate Interactions in East Asia. AGU Geodynamic Series 1998, 27: 167~195
- 3 池际尚,路风香,主编.华北地台金伯利岩及古生代岩石圈地 幔特征.北京:科学出版社,1996.1~146
- 4 Song Y, Frey F A. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta, 1989, 53: 97~113 [DOI]
- 5 Tatsumoto M, Basu A R, Huang W K, et al. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: Enriched components EM1 and EM11 in subcontinental lithosphere. Earth Planet Sci Lett, 1992, 113: 107~128 [DOI]
- 6 Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, eds. Magmatic Processes and Plate Tectonics. Geol Soc Spel Pub, 1993, 76: 71~81
- 7 Fan W M, Zhang H F, Baker J, et al. On and off the North China craton: Where is the Archaean keel? J Petrol, 2000, 41: 933~950 [DOI]
- 8 Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china-evidence, timing and mechanism. Phys Chem Earth (A), 2001, 26: 747~757
- 9 Morgan P. The thermal structure and thermal evolution of the continental lithosphere. In: Pollack H N, Murthy V R, eds. Structure and Evolution of the Continental Lithosphere. Phys Chem Earth: Pergamon Press, 1984. 107~193
- 徐义刚,林传勇,史兰斌.中国东部上地幔地温线及其地质意义.中国科学,B辑,1995,25(8):874~881
- 11 史兰斌,林传勇,陈孝德,等.由包体推导德河北汉诺坝下地 壳-上地幔地温线及其地质意义.地震地质,2000,22 (1):37~46
- 12 Wang J Y, Li N S, Wang J H, et al. Geothermics in China. Beijing: Seismological Press, 1996. 1~60
- 13 Hu S B, He L J, Wang J Y. Heat flow in the continental area of China: A new data set. Earth and Planetary Science Letters, 2000, 179: 407~419 [DOI]
- 14 赵 越,杨振宇,马醒华.东亚大地构造发展的重要转折.地 质科学,1994,29(2):105~119
- 15 赵 越.燕山地区中生代造山运动及构造演化.地质论评, 1990, 36(1): 1~13
- 16 邓晋福, 莫宣学, 赵海岭, 等. 中国东部岩石圈根/去根作用与 大陆"活化"——东亚型大陆动力学模式研究计划. 现代地质, 1994, 8(3): 349~356
- 17 邵济安, 牟保磊, 何国琦. 华北北部在古亚洲域与古太平洋域 构造叠加过程中的地质作用. 中国科学, D辑, 1997, 27(5):

390~394

- 18 陈墨香, 主编. 华北地热. 北京: 科学出版社, 1988. 1~218
- 19 杨绪充.含油气区地下温压环境.东营:石油大学出版社, 1993.1~242
- 20 周中毅,潘长春,主编. 沉积盆地古地温测定方法及其应用. 广州:广东科技出版社,1992.1~182
- 21 Waples D W. Time and temperature in petroleum formation: Application of lopatin's method to petroleum exploration. AAPG Bulletin, 1980, 64: 916~926
- 22 Wood D A. Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method: Implications for petroleum exploration. AAPG Bulletin, 1988, 72: 115~134
- 23 Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 1990, 74: 1559~1570
- 24 Bray R J, Green P F, Duddy I R. Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: A case study from the East Midlands of England data from Alaska and the southern North Sea. In: Hardman R S P, eds. Exploration Britain: Geological Insights for the Next Decade. Geological Society of London Special Publication, 1992, 67: 3~25
- 25 胡圣标,张容燕,周礼成.沉积盆地热史恢复方法.勘探家, 1998,3(4):52~54
- 26 O'Sullivan P B. Thermochronology, denudation and variations in palaeosurface temperature: A case study from the North Slope foreland basin, Alaska. Basin Research, 1999, 11: 191~204
- 27 胡圣标, 汪集旸. 利用镜质体反射率数据估算地层剥蚀厚度. 石油勘探与开发, 1999, 26(4): 42~45
- 28 施小斌, 汪集旸, 罗晓容. 古温标重建沉积盆地热史的能力探 讨. 地球物理学报, 2000, 43(3): 386~392
- 29 Allen P A, Allen J R. Basin Analysis: Principles and Applications. Oxford: Blackwell Scientific Publicatons, 1990. 282~305
- 30 Carslaw H S, Jaeger J C. Conduction of heat in solids. Oxford: Oxford University Press, 1959. 510
- 31 Rudnick R L, McDonough W F, O'Connell R J. Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 1998, 145: 395~411 [DOI]
- 32 马杏垣,刘昌铨,刘国栋.江苏响水至内蒙古都拉地学断面. 地质学报,1991,65(3):199~215
- 33 Jaupart C, Mareschal J C, Cuillou-Frottier L, et al. Heat flow and thickness of the lithosphere the Canadian shield. J Goephys Res, 1998, 103: 15269~15286 [DOI]
- 34 汪 洋, 汪集旸, 邓晋福, 等. 中国大陆地壳和岩石圈铀、钍、 钾丰度的大地热流约束. 地球物理学进展, 2001, 16(3): 21~30
- 35 刘国栋.中国大陆岩石圈结构与动力学.地球物理学报,1994, 37(增刊):65~81
- 36 郑建平. 华北东部地幔改造作用和置换作用-单斜辉石激光探 针研究. 中国科学, D辑, 2000, 30(4): 373~382 [摘要] [PDF]
- 37 Pasquale V, Cabella C, Verdoya M. Deep temperatures and lithospheric thickness along the European geotraverse. Tectonophysics, 1990, 176: 1~11 [DOI]
- 38 翟明国.华北克拉通中生代下地壳置换:非造山过程的壳幔交换.岩石学报,2002,18(1):1~8
- 39 高 山,张本仁,金振民.秦岭-大别造山带下地壳拆沉作用. 中国科学,D辑,1999,29(6):532~541