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ASSESSMENT OF INFLUENCE OF INDIVIDUAL
OBSERVATIONS ON PREDICTION MEAN SQUARE
ERRORS IN VARIABLE SELECTION PROBLEMS

Hidekazu Takeuchi*

A new influence measure is proposed to assess the influence of individual ob-
servations on prediction mean square errors (PMSE) in variable selection problems.
It is based on the estimated PMSE which consists of Cook’s distance and Mallows’
CP statistic. Another interpretation of Cook’s distance is also given through the
expression of the new influence measure. Illustrative examples show the effectiveness
of the new influence measure.

Key words and phrases: Cook’s distance, influence measure, influential observation,
Mallows’ CP statistic, regression diagnostics, sensitivity analysis.

1. Introduction

Here we consider the detection of influential observations in variable selection
problems in linear regression. Many studies have been published on the detection
of influential observations. Cook and Weisberg (1982) and Chatterjee and Hadi
(1988), for example, propose some influence measures for each observation in case
of fixed variable subsets. A representative influence measure is Cook’s distance
proposed by Cook (1977).

Some papers deal with the detection of influential observations when the vari-
able subsets are not fixed. Weisberg (1981) derives an influence measure based
on CP statistic suggested by Mallows (1973). The influence measure allocates CP

value to individual observations and consists of residual and leverage parts, as is
usual in standard regression diagnostics. Léger and Altman (1993) propose an in-
fluence measure, which is Cook’s distance computed from the difference between
predicted values of the response variable, based on selected variable subsets with
all observations and without one observation. They give a sensitivity analysis
combined with the variable selection problem, where they take up Mallows’ CP

statistic and step-wise regression procedures such as forward selection and back-
ward elimination. Gupta and Huang (1996) introduce an influence measure as
an alternative to Cook’s distance to detect influential observations. They derive
a measure of goodness of fit for the fitted models to select important variable
subsets.

In this paper, we extend the above influence measures to assess the influence
of an observation on prediction mean square errors for the selected variable sub-
set. In usual regression diagnostics with Cook’s distance, we detect influential
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observations based on the difference between predicted values of the response
variable with and without one observation as in e.g. Léger and Altman (1993).
From the different viewpoint with the Léger and Altman’s measure we derive a
new influence measure. Based on the estimated prediction mean square errors
we assess the influence of individual observations. We derive the new influence
measure along the same line as in the derivation of Mallows’ CP statistic in the
variable selection problem. So through the new influence measure based on the
CP type criterion we propose an influence detection procedure to assess the in-
fluence of individual observations on the estimated prediction mean square errors
with relation to the variable selection problem. Surprisingly the new influence
measure consists of Cook’s distance and Mallows’ CP statistic. Based on the
expression of the new influence measure, we also give another interpretation of
Cook’s distance, which may be of independent interest.

In Section 2 we give notation and definition. In Section 3 we propose the
new influence measure on the estimated prediction mean square errors. We also
propose an assessment procedure using the new influence measure. In Section 4
we give illustrative examples. Finally in Section 5 we give some comments on
the new influence measure.

2. Notation and definition
We consider a standard linear regression model, yyyyyyyy = XXXXXXXXββββββββ + εεεεεεεε, where yyyyyyyy is

an n × 1 vector of a response variable, XXXXXXXX is a full-rank n × q known matrix of
predictor variables, ββββββββ is a q× 1 vector of unknown parameters, and εεεεεεεε is an n× 1
vector of random errors with mean vector, E(εεεεεεεε) = 00000000, and variance-covariance
matrix, Var(εεεεεεεε) = σ2IIIIIIII. Here σ2 is an unknown variance and IIIIIIII is a unit matrix.
The ordinary least squares estimator of ββββββββ is given by β̂βββββββ = (XXXXXXXX ′XXXXXXXX)−1XXXXXXXX ′yyyyyyyy, and
an unbiased estimator of the variance σ2 is given by σ̂2 = eeeeeeee′eeeeeeee/(n − q), where
eeeeeeee = (IIIIIIII −HHHHHHHH)yyyyyyyy is the vector of residuals. In this definition HHHHHHHH is the hat matrix
defined as HHHHHHHH = XXXXXXXX(XXXXXXXX ′XXXXXXXX)−1XXXXXXXX ′, of which the i-th diagonal element is denoted by
hii. Following the usual notation in the case deletion diagnostic procedure let a
subscript (i) denote the omission of the i-th observation. For example we have
the estimator of the variance with the i-th observation deleted as

σ̂2
(i) =

n− q − t2i
n− q − 1

σ̂2,

where ti = ei/(σ̂
√

1 − hii) with the i-th element of eeeeeeee, ei.
Also for a variable subset, P , with p predictor variables, XXXXXXXXP , we get some

statistics as follows: We have σ̂2
P = eeeeeeee′PeeeeeeeeP /(n− p) = RSSP /(n− p), where eeeeeeeeP =

yyyyyyyy −XXXXXXXXP β̂βββββββP = (IIIIIIII − PPPPPPPP )yyyyyyyy with β̂βββββββP = (XXXXXXXX ′
PXXXXXXXXP )−1XXXXXXXX ′

Pyyyyyyyy and PPPPPPPP = XXXXXXXXP (XXXXXXXX ′
PXXXXXXXXP )−1XXXXXXXX ′

P .
We denote β̂βββββββP with the i-th observation deleted as

β̂βββββββP (i) = (XXXXXXXX ′
P (i)XXXXXXXXP (i))

−1XXXXXXXX ′
P (i)yyyyyyyy(i) = β̂βββββββP − ePi

1 − pii
(XXXXXXXX ′

PXXXXXXXXP )−1xxxxxxxx′Pi,

where xxxxxxxxPi is the i-th row vector of XXXXXXXXP , ePi is the i-th element of eeeeeeeeP and pii is
the i-th diagonal element of PPPPPPPP .
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A representative influence measure is Cook’s distance proposed by Cook
(1977). For a variable subset P , Cook’s distance is defined by

CDPi ≡
(β̂βββββββP − β̂βββββββP (i))

′XXXXXXXX ′
PXXXXXXXXP (β̂βββββββP − β̂βββββββP (i))
pσ̂2

P

(2.1)

=
(ŷyyyyyyyP − ŷyyyyyyyP (i))

′(ŷyyyyyyyP − ŷyyyyyyyP (i))
pσ̂2

P

=
t2Pi

p
· pii
1 − pii

,

where ŷyyyyyyyP = XXXXXXXXP β̂βββββββP , ŷyyyyyyyP (i) = XXXXXXXXP β̂βββββββP (i) and tPi = ePi/(σ̂P
√

1 − pii). Cook’s dis-
tance has some interpretations as follows: From the first expression of (2.1)
Cook’s distance, CDPi is based on the weighted distance between β̂βββββββP and β̂βββββββP (i).
From the second expression of (2.1), CDPi is interpreted as an influence mea-
sure based on the difference between the predicted values ŷyyyyyyyP and ŷyyyyyyyP (i). Note
that Léger and Altman (1993) utilize the second expression of (2.1) to introduce
Cook’s distance as a diagnostic measure conditionally on the selected model. In
the unconditional case they propose another Cook’s distance measuring the in-
fluence of individual observations based on the difference between the predicted
values of the response variable with and without the i-th observation as

(2.2) Du
i ≡ (ŷyyyyyyyS − ŷyyyyyyyS(i))′(ŷyyyyyyyS − ŷyyyyyyyS(i))

pσ̂2
,

where ŷyyyyyyyS is the predicted vector based on the p variables selected with all ob-
servations and ŷyyyyyyyS(i) is the predicted vector based on the variable subset selected
with the i-th observation deleted. The third expression of (2.1) shows that CDPi

enables us to detect influential observations through outlier and leverage effects.
Now we concisely introduce Mallows’ CP statistic given by

(2.3) CP ≡ RSSP

σ̂2
+ 2p− n,

since we employ the similar derivation to have a new influence measure. Mallows
(1973) derives (2.3) as an estimator of

(2.4) ΓP =
∑n

j E(ŷPj − θj)2

σ2
=

SSBP +
∑n

j V (ŷPj)
σ2

,

where ŷPj is the j-th element of ŷyyyyyyyP , θj is the j-th element of θθθθθθθθ = E(yyyyyyyy) and
SSBP = (ηηηηηηηη − θθθθθθθθ)′(ηηηηηηηη − θθθθθθθθ) = θθθθθθθθ′(IIIIIIII − PPPPPPPP )θθθθθθθθ is the sum of squared biases with ηηηηηηηη =
E(ŷyyyyyyyP ) = PPPPPPPPθθθθθθθθ. (2.4) is based on the total sum of mean squares of the prediction
errors,

∑n
j E(ŷPj − θj)2, and hereafter we denote it as PMSE (prediction mean

square errors). Since E(RSSP ) = (n−p)σ2+SSBP we replace SSBP by RSSP−
(n − p)σ2. Furthermore, from V (ŷPj) = pjjσ

2, if we replace σ2 by σ̂2 in (2.4),
then we obtain (2.3) as an estimator of (2.4).
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3. A new influence measure
Léger and Altman (1993) propose an influence detection procedure using

Cook’s distance based on the difference between the predicted values based on
selected models with all observations and without one observation out of them.
Although they emphasize the use of the squared distance based on the above
predicted values, we take an influence detection procedure based on the esti-
mated PMSE as in Section 3.1. Since our influence measure enables us to assess
the influence of individual observations on the estimated PMSE, it will give a
different diagnosis than the one of Léger and Altman (1993). We will give some
comments on the difference between their and our influence assessment proce-
dures through illustrative examples given in Section 4. Furthermore, we will see
that the proposed influence measure surprisingly consists of Cook’s distance and
the usual Mallows’ CP statistic.

3.1. Main results
In the similar way to the derivation of the CP statistic given by (2.3), we

derive a new influence measure as follows: For the case when a variable subset
P is selected, if the i-th observation is deleted, we define

(3.1) ΓP (i) ≡
∑n

j E(ŷPj(i) − θj)2

σ2
=

SSBP (i) +
∑n

j V (ŷPj(i))
σ2

,

where ŷPj(i) = xxxxxxxxPjβ̂βββββββP (i). (3.1) corresponds to (2.4). Note that the numerator of
(3.1) is PMSE when the i-th observation is deleted and that it is decomposed as

(3.2)
n∑
j

E(ŷPj(i) − θj)2 =
n∑

j �=i

E(ŷPj(i) − θj)2 + E(ŷPi(i) − θi)2,

where ŷPi(i) = xxxxxxxxPiβ̂βββββββP (i). The first term of (3.2) is PMSE other than the i-th
observation and the second term is the one for the i-th observation when the i-th
observation is deleted from the data set to estimate ββββββββP .

We note that we include PMSE of the i-th observation in (3.2) in the similar
way to the derivation of some influence measures such as Cook’s distance given by
(2.1) or (2.2) proposed by Léger and Altman (1993). To make the fair comparison
of the influence of individual observations, we do think it necessary for us to have
the second term in (3.2).

Now we propose a new influence measure as an estimator of (3.1). We derive
the estimator to separate the expression into some parts with relation to influence
detection measures in the same way as in Takeuchi (1994). As is shown in
Appendix, we can show that an estimator of (3.1) is given by

(3.3) CT
Pi = CP + p

σ̂2
P

σ̂2
CDPi,

where CP is the same Mallows’ CP statistic for the selected variable subset P as
(2.3) and CDPi is the same Cook’s distance as (2.1). Surprisingly the measure
consists of Cook’s distance and Mallows’ CP statistic in itself. Note that CP is
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independent of the deletion of the observation and that for the common variable
subset P , CT

Pi is not less than CP because CDPi ≥ 0.
In a variable selection procedure, we must identify an optimal variable subset

P to detect the influence of individual observations. Then we specify a variable
selection criterion to select the optimal variable subset. Léger and Altman (1993)
select the optimal variable subset with each observation deleted by using a spec-
ified variable selection criterion in the unconditional Cook’s distance. Note that
in the conditional Cook’s distance the variable subset for each observation is
common since the optimal one is selected in advance by using a specified variable
selection criterion. Therefore, for each observation we select an optimal variable
subset P in all variable subsets by using a specified variable selection criterion in
the variable selection procedure. Our variable selection procedure basically uses
the same CP criterion in the unconditional Cook’s distance.

It is quite interesting that we can give another interpretation of Cook’s dis-
tance given by (2.1) through the expression of (3.3). Suppose that the variable
subset P in (3.3) is fixed. Then the first term, CP statistic, is a constant on the
right-hand side of (3.3). The coefficient of the second term, pσ̂2

P /σ̂
2, is also a

positive constant. We can consider that Cook’s distance measures the influence
of the i-th observation on the estimated PMSE. It will mean that PMSE in (3.1)
with the i-th observation deleted is larger as CDPi is larger.

In addition we may say that by employing (3.3) we assess the influence of
individual observations on the squared distance from the predicted value based
on the selected variable subset P to the true model since (3.3) is an estimator
of (3.1). Usual regression diagnostics with Cook’s distance may detect influen-
tial observations on the difference between the predicted values of the response
variable with and without the i-th observation as in Léger and Altman (1993).
Various influence measures based on the predicted values will be constructed in
this manner. Thus our new influence measure will give a different diagnosis than
theirs.

3.2. Assessment of influence
There are some approaches to assessing the influence of individual observa-

tions in variable selection problems. Léger and Altman’s (1993) influence as-
sessment procedure, which is one of representative approaches, consists of two
stages. In the first stage, using a specified variable selection criterion, they select
an optimal variable subset with each observation deleted. In the second stage,
they calculate Cook’s distance given by (2.1) or (2.2) for each observation to
assess the influence of individual observations.

We employ CT
Pi given by (3.3) to assess the influence of individual observa-

tions on the estimated PMSE. Our influence assessment procedure consists of
the following three steps.

Step 1 We select an optimal variable subset P with the i-th observation
deleted by using a specified variable selection criterion for all
observations.
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Step 2 For the selected variable subset P we have CT
Pi by calculating

CP , σ̂2
P and CDPi.

Step 3 We may judge the i-th observation to be influential if the value
of CT

Pi can be regarded as large.
Note that if for all observations a common variable subset happens to be selected,
then we actually take the usual diagnostic procedure based on Cook’s distance
only.

In Step 1 we will use the usual Mallows’ CP criterion to select an optimal
variable subset for each observation. In Step 2 we calculate all fundamental
statistics with relation to the new influence measure CT

Pi given by (3.3). In
Step 3 we assess the influence of individual observations for the selected variable
subset through the new influence measure. Therefore Steps 1 and 3 correspond
to the variable selection and the influence detection procedures respectively.

In Step 3 we have no exact criterion to judge the observation to be influen-
tial. Usual regression diagnostics in general compare relative values of influence
measures for each observation, or compare them with proper guidelines derived
from various properties of the influence measures. We basically use the value
of the minimum CP as a guideline. However it is not always the best guideline
for real data sets. In practice we may use a rough-and-ready procedure to pay
attention to the observation with CT

Pi > CP∗, where CP∗ denotes the second
minimum CP value in all variable subsets, since it is clear that CT

Pi is larger than
the minimum CP . Thus by comparing with the second minimum CP value we
can assess the influence of the i-th observation on the estimated PMSE. This
rough-and-ready procedure may give an efficient guideline to assess the influence
of individual observations in Step 3.

4. Illustrative examples

We give four examples to illustrate the effectiveness of the new influence
measure given by (3.3). Applying our influence assessment procedure given in
Section 3.2 to the following data sets we give some comments on the new influence
measure. For all the examples we use Mallows’ CP criterion as the specified
variable selection one in Step 1.

4.1. Artificial data
In this section we give two remarkable examples based on artificial data sets

to show some basic properties of the new influence measure. The first example
is the simple regression case and the second one is the multiple regression case.
4.1.1. Example 1

This data set is shown in Table 1. In simple regression there are (n =) 6
observations. For the variable subset P = {X1}, CP = 2.000 is the minimum.
For the variable subset P = {None(X0)}, i.e. intercept only, CP = 3.458(= CP∗)
is the second minimum.

In Table 2 we summarize the result of our influence assessment procedure
given in Section 3.2. In Step 3 the observations No. 1, No. 5 and No. 6 can be
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Table 1. Simple Regression Data.

No. X y

1 0.95 1.78

2 1.04 1.95

3 2.03 1.95

4 1.99 2.15

5 3.06 1.99

6 3.00 2.25

Table 2. Assessment of Influence.

No. Subset P CT
Pi Du

i

1 (X0) 3.574 2.078

2 X1 2.202 0.101

3 X1 2.053 0.027

4 X1 2.259 0.129

5 X1 3.666 0.833

6 (X0) 3.581 2.098

regarded as influential. Applying the rough-and-ready procedure with the second
minimum CP , CP∗, in Step 3, we also get the same three influential observations.

For comparison we apply the Léger and Altman’s influence assessment pro-
cedure with the usual CP statistic as the variable selection criterion. As a result
of the unconditional Cook’s distance, Du

i , given by (2.2) the observations No. 1,
No. 5 and No. 6 may be regarded as influential since they have Du

i > 0.800,
whereas the other observations have Du

i < 0.130 as in Table 2. However Du
5 for

the observation No. 5 may not be regarded as influential in their procedure since
it is smaller than half the values of Du

1 and Du
6 . Therefore, the observation No. 5

can be regarded as influential in our procedure, whereas it may not be so in their
procedure.

Furthermore in the conditional Cook’s distance, CDPi, given by (2.1) we have
CDP1 = 0.376 and CDP6 = 0.408 for the optimal variable subset P = {X1}.
The other observations have the same values as the unconditional Cook’s distance
Du

i given in Table 2 in simple regression. Thus the observation No. 5 may be
regarded as the most influential in the conditional Cook’s distance and also in
our procedure.

The observation No. 5 is the largest in CDPi and CT
Pi. On the other hand, the

observation No. 6 is so in Du
i . Therefore we may consider that for the observation

No. 5 the estimated squared distance between the true model and the predicted
value in CT

Pi is much larger than the squared distance between the predicted
values based on the selected models with all observations and without the one
out of them in Du

i .
4.1.2. Example 2

This data set is shown in Table 3. There are (n =)8 observations with 2
predictor variables. For the variable subset P = {None(X0)}, i.e. intercept only,
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Table 3. Multiple Regression Data.

No. X1 X2 y

1 0.00 2.00 2.00

2 0.95 3.73 2.00

3 1.05 0.27 2.02

4 1.98 0.00 3.00

5 2.01 4.00 2.10

6 3.00 3.72 2.20

7 3.02 0.25 2.25

8 3.98 2.00 2.30

Table 4. Assessment of Influence.

No. Subset P CT
Pi Du

i

3 X2 2.583 4.340

4 X1 3.788 1.855

7 X2 1.954 2.678

CP = 1.683 is the minimum in all variable subsets. For the variable subset
P = {X2}, CP = 1.832(= CP∗) is the second minimum. For the variable subset
P = {X1}, CP = 2.822 is the third minimum. For the variable subset P =
{X1, X2}, CP = 3.000 is the maximum.

We summarize the main result of the sensitivity analysis with (3.3) through
our influence assessment procedure in Steps 1 and 2 as in Table 4. The other
observations except the ones listed in it have the CT

Pi’s between 1.683 and 1.694
for the variable subset P = {None(X0)}. So we can regard the observations
No. 3, No. 4 and No. 7 as influential in Step 3. Applying the rough-and-ready
procedure with the second minimum CP in Step 3, we also get the same three
influential observations.

For comparison we apply the Léger and Altman’s influence assessment pro-
cedure in the same way as in Section 4.1.1. In the unconditional Cook’s distance
the observations No. 3, No. 4 and No. 7 may be regarded as influential since they
have Du

i > 1.855, whereas the other observations have Du
i < 0.090. In the condi-

tional Cook’s distance we have CDP3 = 0.009, CDP4 = 0.110 and CDP7 = 0.000
for the optimal variable subset P = {None(X0)}. The other observations have
CDPi < 0.010. Thus the observation No. 4 only may be regarded as influential
in the conditional Cook’s distance.

The observation No. 3 is the largest in Du
i . The observation No. 4 is the

largest in CDPi and CT
Pi. On the other hand, the observation No. 7 is the

smallest in CDPi, whereas it is the second largest in Du
i and is the third in CT

Pi.
In addition we may say that the observation No. 7 is regarded as influential in Du

i ,
although it can not be always regarded as large in CT

Pi. Then the three influence
measures may assess the influence of individual observations from the different
viewpoints of the squared distance based on the predicted value as discussed in
Section 4.1.1.
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4.2. Real data
We give two well-known real data sets to exemplify the effectiveness of the

new influence measure.
4.2.1. Longley data

This data set as in Longley (1967) is often used in regression analysis. There
are (n =)16 observations with 6 predictor variables, where X1 is the implicit
price deflator for the gross national product, X2 is the gross national product,
X3 is the unemployment, X4 is the size of armed forces, X5 is the noninstitu-
tional population 14 years of age and over, and X6 is the calendar year. The
response variable y is the total derived employment. For the variable subset
P = {X2, X3, X4, X6}, CP = 3.240 is the minimum in all variable subsets. For
the variable subset P = {X3, X4, X5, X6}, CP = 4.606(= CP∗) is the second
minimum. For the variable subset P = {X3, X4, X6}, we have CP = 6.239,
which is the sixth minimum.

We summarize the result of our influence assessment procedure in Steps 1
and 2 as in Table 5. From it the observations No. 5, No. 10 and No. 16 can
be regarded as influential in Step 3 since they have larger values than the other
observations. Applying the rough-and-ready procedure with the second minimum
CP in Step 3, we also detect the same influential observations No. 5, No. 10 and
No. 16 because CT

P5, C
T
P10 and CT

P16 have larger values than CP∗.
For comparison we apply the Léger and Altman’s influence assessment pro-

cedure with the usual CP statistic as the variable selection criterion. In the un-
conditional Cook’s distance, the observations No. 5, No. 10 and No. 16 may be
regarded as influential since they have Du

5 = 0.387, Du
10 = 1.199 and Du

16 = 1.352,
respectively. The other observations have Du

i < 0.172. In the conditional
Cook’s distance the observations No. 4, No. 5, No. 6, No. 10, No. 15 and No. 16
may be regarded as influential since they have CDP4 = 0.178, CDP5 = 0.461,
CDP6 = 0.109, CDP10 = 0.361, CDP15 = 0.205 and CDP16 = 0.303 for the opti-
mal variable subset P = {X2, X3, X4, X6}, respectively. The other observations
have CDPi < 0.075 for the same variable subset. In particular we may pay at-
tention to the observations No. 5, No. 10 and No. 16. Therefore the observations

Table 5. Assessment of Influence.

No. Subset P CT
Pi Du

i No. Subset P CT
Pi Du

i

1 X2, X3, X4, X6 3.554 0.063 11 X2, X3, X4, X6 3.240 0.000

2 X2, X3, X4, X6 3.282 0.008 12 X2, X3, X4, X6 3.241 0.000

3 X2, X3, X4, X6 3.254 0.003 13 X2, X3, X4, X6 3.261 0.004

4 X2, X3, X4, X6 3.988 0.150 14 X2, X3, X4, X6 3.258 0.004

5 X2, X3, X4, X6 5.177 0.387 15 X2, X3, X4, X6 4.101 0.172

6 X2, X3, X4, X6 3.696 0.091 16 X3, X4, X6 8.001 1.352

7 X2, X3, X4, X6 3.507 0.054

8 X2, X3, X4, X6 3.269 0.006

9 X2, X3, X4, X6 3.240 0.000

10 X3, X4, X6 7.232 1.199
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No. 5, No. 10 and No. 16 may be also regarded as influential in their procedure.
We basically get the same conclusion from both their and our procedures.
4.2.2. Fuel data

We utilize the same data set as in Léger and Altman (1993). The data set is
called the Fuel Data by Weisberg (1985, pp. 36–37 and 126). There are (n =)50
observations with 4 predictor variables, where X1 (TAX) is the motor fuel tax
rate, X2(DLIC) is the percent of population with driver’s licenses, X3(INC) is
the average income, and X4(ROAD) is the miles of federal-aid primary highways.
The response variable y is the motor fuel consumption. For the variable subset
P = {X2, X3}, CP = 2.517 is the minimum in all variable subsets. For the
variable subset P = {X2, X3, X4}, CP = 3.313 (= CP∗) is the second minimum.
For the variable subset P = {X1, X2, X3}, CP = 3.526 is the third minimum.

Following our influence assessment procedure given in Section 3.2 we sum-
marize the main result of the sensitivity analysis with (3.3) as in Table 6. For
the variable subset P = {X2, X3}, the CT

Pi’s have the values between 2.517 and
2.663 except for the five observations listed in it.

From Table 6 we can regard the observations No. 19, No. 40, No. 45, No. 49
and No. 50 as influential in Step 3. Applying the rough-and-ready procedure
with the second minimum CP in Step 3, we can reduce these five observations to
the ones No. 40, No. 49 and No. 50.

For comparison we apply the Léger and Altman’s influence assessment pro-
cedure in the same way as in Section 4.2.1. In the unconditional Cook’s distance
the observations No. 40, No. 49 and No. 50 may be regarded as influential since
they have Du

40 = 0.876, Du
49 = 1.066 and Du

50 = 2.403, respectively. The other ob-
servations have Du

i < 0.200. In the conditional Cook’s distance the observations
No. 19, No. 40, No. 45, No. 49 and No. 50 may be regarded as influential since
they have CDP19 = 0.201, CDP40 = 0.344, CDP45 = 0.164, CDP49 = 0.367 and
CDP50 = 0.325 for the optimal variable subset P = {X2, X3}, respectively. The
other observations have CDPi < 0.050 for the same variable subset. In particular
we may pay attention to the observations No. 40, No. 49 and No. 50. So in their
procedure the above three observations may be regarded as influential.

The order of the three observations to be regarded as influential in their
procedure is different from the one in our procedure. The most influential ob-
servation is No. 50 in Du

i and CT
Pi and is No. 49 in CDPi. The second one is

No. 40 in CT
Pi, No. 49 in Du

i , and No. 50 in CDPi. The third one is No. 49
in CT

Pi and is No. 40 in Du
i and CDPi. Therefore our procedure using the new

Table 6. Assessment of Influence.

No. Subset P CT
Pi Du

i

50 X1, X2, X3 6.968 2.403

40 X2, X3, X4 4.654 0.876

49 X2, X3, X4 4.394 1.066

19 X2, X3 3.113 0.199

45 X2, X3 3.005 0.163
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influence measure may give the different influence assessment than theirs from
the different viewpoints of the prediction as in Section 4.1.

5. Concluding remarks
We propose a new influence measure based on the estimated PMSE. The

new influence measure has an interesting expression. Surprisingly, the new in-
fluence measure consists of Cook’s distance and Mallows’ CP statistic. We may
consider that apart from the constant terms Cook’s distance measures the in-
fluence of each observation on the estimated PMSE. A major advantage is that
the new influence measure enables us to assess the influence of individual obser-
vations on the estimated PMSE in variable selection problems. From another
viewpoint, employing the new influence measure based on the estimated PMSE
we can investigate the influence of individual observations on the distance from
the predicted value to the true model.

The illustrative examples in Section 4 show the effectiveness of the new in-
fluence measure. Our influence assessment procedure using the new influence
measure may assess the influence of individual observations from viewpoints dif-
ferent from the Léger and Altman’s (1993) one. However if an observation is
regarded as influential in either influence assessment procedure, then it may have
a large influence on the squared distance employed in the procedure. Therefore
both influence assessment procedures may be important to assess the influence
of individual observations in the variable selection problem.

Appendix: Derivation of (3.3)
In the similar way to the derivation of Mallows’ CP statistic given by (2.3)

we can derive (3.3) as follows: From (3.2) we have
n∑
j

E(ŷPj(i) − θj)2 =
n∑

j �=i

V (ŷPj(i)) + V (ŷPi(i))

+
n∑

j �=i

[E(ŷPj(i)) − θj ]2 + [E(ŷPi(i)) − θi]2.

Since we have

V (ŷPj(i)) = σ2xxxxxxxxPj(XXXXXXXX ′
P (i)XXXXXXXXP (i))

−1xxxxxxxx′Pj ,

and
V (ŷPi(i)) = σ2xxxxxxxxPi(XXXXXXXX ′

P (i)XXXXXXXXP (i))
−1xxxxxxxx′Pi,

we get
n∑
j

V (ŷPj(i)) = trace σ2XXXXXXXXP (XXXXXXXX ′
P (i)XXXXXXXXP (i))

−1XXXXXXXX ′
P

= σ2 trace
[
PPPPPPPP +

1
1 − pii

XXXXXXXXP (XXXXXXXX ′
PXXXXXXXXP )−1xxxxxxxx′PixxxxxxxxPi(XXXXXXXX ′

PXXXXXXXXP )−1XXXXXXXX ′
P

]

= σ2
(
p +

pii
1 − pii

)
.



54 J. JAPAN STATIST. SOC. Vol.32 No.1 2002

Defining ηj(i) = E(ŷPj(i)) and ηi(i) = E(ŷPi(i)), we get the following n×1 vector,

ηηηηηηηη(i) = E(ŷyyyyyyyP (i)) = E(XXXXXXXXP β̂βββββββP (i))

= E(XXXXXXXXP β̂βββββββP ) − E(ePi)
1 − pii

XXXXXXXXP (XXXXXXXX ′
PXXXXXXXXP )−1xxxxxxxx′Pi

= ηηηηηηηη − E(yi) − E(ŷPi)
1 − pii

XXXXXXXXP (XXXXXXXX ′
PXXXXXXXXP )−1xxxxxxxx′Pi

= ηηηηηηηη +
ηi − θi
1 − pii

XXXXXXXXP (XXXXXXXX ′
PXXXXXXXXP )−1xxxxxxxx′Pi,

where yi and ηi are the i-th elements of yyyyyyyy and ηηηηηηηη respectively. Then from XXXXXXXX ′
P (ηηηηηηηη−

θθθθθθθθ) = −XXXXXXXX ′
P (IIIIIIII − PPPPPPPP )θθθθθθθθ = 00000000 we have

n∑
j

[E(ŷPj(i)) − θj ]2 =
n∑

j �=i

(ηj(i) − θj)2 + (ηi(i) − θi)2

= (ηηηηηηηη(i) − θθθθθθθθ)′(ηηηηηηηη(i) − θθθθθθθθ)

= SSBP +
pii

(1 − pii)2
(ηi − θi)2.

Therefore we can reduce (3.1) to

ΓP (i) =
SSBP +

pii
(1 − pii)2

(ηi − θi)2

σ2
+ p +

pii
1 − pii

.

Following the derivation of the CP statistic given by (2.3) we substitute the
unbiased estimators for the parameters. From E(RSSP ) = (n − p)σ2 + SSBP

and E(e2
Pi) = (1− pii)σ2 +(ηi− θi)2 we replace SSBP by RSSP − (n− p)σ2 and

(ηi − θi)2 by e2
Pi − (1 − pii)σ2 respectively. Then we get

(A.1) Γ̂P (i) =
RSSP

σ2
+ 2p− n + p

σ̂2
P

σ2
· 1
p

(
ePi

σ̂P
√

1 − pii

)2 pii
1 − pii

.

Setting σ2 = σ̂2 in (A.1) we have (3.3) as an estimator of (3.1).
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