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RANDOM CLUSTERING BASED ON
THE CONDITIONAL INVERSE

GAUSSIAN-POISSON DISTRIBUTION

Nobuaki Hoshino*

The present article describes a Conditional Inverse Gaussian-Poisson (CIGP)
distribution, obtained by conditioning an inverse Gaussian-Poisson population model
on its total frequency. This CIGP distribution is equivalent to random partitioning
of positive integers, with the possibility for a number of applications in statistical
ecology, linguistics and statistical disclosure control to name a few. After showing
the marginal moments of the distribution, parameter estimation is discussed. Fitting
the CIGP distribution to some typical data sets demonstrates its applicability.

Key words and phrases: Disclosure risk, frequencies of frequencies, size index, species
abundance, superpopulation.

1. Introduction

The observation of various kinds of populations includes many instances
where the population consists of diverse groups with properties difficult to for-
mulate. To comprehend this complex nature populations, it is often useful to
focus upon the frequency structure of the population. This is a classical theme
in statistics, dating back to e.g. Neyman (1939). We will later discuss more exam-
ples in which counting the size of groups in a population is of great importance.
Models have been used to describe count data, and the present article proposes
a new model of this type.

The organization of the present article is as follows. Section 1.1 describes the
background. Section 1.2 derives the proposed model. Section 2 presents some
theoretical results on this model. Section 3 discusses the parameter estimation
of the model. Finally, Section 4 gives concluding remarks arising from the three
application results.

1.1. Modeling count data
We consider a population of size N consisting of J cells (groups, species).

In the following Fj , j = 1, . . . , J , denotes the number of individuals (size or
frequency) in the j-th cell. By definition, N =

∑J
j=1 Fj . The number of cells of

size i is denoted by Si. More specifically,

Si =
J∑

j=1

I(Fj = i), i = 0, 1, . . . ,
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where I(·) is the indicator function:

I(Fj = i) =

{
1, Fj = i,

0, Fj �= i.

In the statistical literature, (S0, S1, . . . ) is called size indices (Sibuya (1993)) or
frequencies of frequencies (Good (1953)). It also corresponds to the concept of
equivalence class (Greenberg and Zayatz (1992)).

Obviously

∞∑
i=0

Si = J,
∞∑
i=1

i · Si = N,(1.1)

where Si is a nonnegative integer. The point to note is that J includes empty
cells, which may represent unseen or extinct species.

For example, consider that a population is composed of J species, and Fj is
the number of the j-th species in stochastic abundance models. See Engen (1978)
for the context of statistical ecology. In addition to these examples, there are
myriads of examples in linguistics, where a writer is deemed to use a vocabulary
of J words, and each Fj expresses the frequency of the usage of the j-th word
in the writer’s text. The recent book by Baayen (2001) surveys developments on
this field to the present.

In some of the applications described, the interest lies in knowing the popu-
lation structure associated with size indices. In linguistics, S1 is the number of
hapax legomena, which are the words mentioned once only. In the area of dis-
seminating microdata, an individual that is unique in a population is expediently
considered to be identifiable. Thus S1, the number of “population uniques”, is a
typical index of the risk of privacy invasion. See Willenborg and de Waal (1996,
2000) for the context of statistical disclosure control. Another example occurs in
database merging. When databases overlap, an individual can appear more than
once, where Si is the number of i-fold appearances.

For practical purposes, it is necessary to estimate size indices based on sam-
ples. Engen (1978, Section 2.3) derived the unique unbiased estimator of Si under
simple random sampling without replacement. However, the variance of the es-
timator is impractically large. An estimator that has smaller variance requires
more information about a population; the insufficiency can be compensated by
assuming a distribution of size indices or a superpopulation. Following the em-
pirical Bayes method, the parameter values of a superpopulation are estimated
from samples, and E(Si) under those estimates is the estimate of Si. Therefore
the marginal moments of size indices are especially important.

The major way to construct a superpopulation for count data is to regard Fj

as an independent and identical mixed Poisson distribution. Then the population
size N is a random variable, but conditioning such a model on N results in a
distribution of a fixed number of individuals, which parallels a contingency table.
It is equivalent also to random partitioning of the positive integers. See Hoshino
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(2001) for a brief survey on existing models. The problem is that only a few
models of this type are known to be manageable because of the combinatorics
involved, and hence developing a new model of fixed size is of great importance.

If the distribution of Fj is closed under convolution, it is easy to derive the
distribution of N . Then the construction of a conditional model P(F1, F2, . . . ,
FJ |N) becomes logically straightforward. Among distributions that are closed
under convolution, the present article selects the inverse Gaussian-Poisson mix-
ture proposed by Holla (1966) and investigates its conditional model.

The inverse Gaussian distribution is well reviewed by Seshadri (1993, 1999).
In particular, Seshadri (1999) devotes its Section 7.1 to the Poisson mixture
of the inverse Gaussian distribution. It is a special case of the generalized in-
verse Gaussian-Poisson mixture proposed by Sichel (1971), which is, however, less
tractable. See Jørgensen (1982) for the generalized inverse Gaussian distribution.
Concerning the (generalized) inverse Gaussian-Poisson mixture, there is a certain
number of applications in statistical ecology and linguistics. Here we only men-
tion Sichel (1997) as an example, though his population model is different from
ours. Because the inverse Gaussian-Poisson mixture has been used to describe
populations, our approach seems to be promising for various applications.

1.2. The derivation of the Conditional Inverse Gaussian-Poisson dis-
tribution

The density of the inverse Gaussian (IG) distribution is for 0 < θ ≤ 1, α > 0,

f(λ;α, θ) =
(2
√

1 − θ/(αθ))(−1)/2

2K−1/2(α
√

1 − θ)
λ−3/2 exp

(
−

(
1
θ
− 1

)
λ− α2θ

4λ

)
,(1.2)

λ > 0,

where
K−1/2(α

√
1 − θ) =

√
π

2α
√

1 − θ
exp(−α

√
1 − θ)

is the modified Bessel function of the third kind of order −1/2. It is noteworthy
that the following discussion allows θ to be unity, where (1.2) reduces to the
density of a stable distribution with exponent 1/2. The reduced form is also called
reciprocal gamma, Pearson type 5 or inverted gamma. In modeling a population,
the IG distribution is important as a substitute for the log-normal distribution,
which is a representative heavy-tailed distribution. The main difference is that
the mixed distribution with the Poisson distribution is analytically tractable in
the case of the IG distribution.

Suppose that a random variable Y is distributed as the Poisson distribution
with mean λ, and let λ have density (1.2). Then the distribution of Y is

(1.3) P(Y = y;α, θ) =

√
2α
π

exp(α
√

1 − θ)
(αθ/2)y

y!
Ky−1/2(α),

y = 0, 1, 2, . . . ,
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where 0 < θ ≤ 1, α > 0. When θ = 1, (1.3) reduces to a special case of the
discrete stable distribution proposed by Steutel and van Harn (1979). Sichel
(1982) claimed that θ controls the upper tail of the distribution and α describes
the lower. We adopt Sichel’s parameterization because conditioning will remove
the power parameter θ of (1.3). See Seshadri (1999, Chap. 7.1) for other kinds
of parameterizations. The present article refers to (1.3) as the inverse Gaussian-
Poisson distribution and denotes it by IGP (α, θ).

For convenience, we cite two useful formulae of the modified Bessel function
of the third kind, whose argument takes only real and positive value in the present
article. First, from e.g. Watson (1944, Section 3.71),

Ky−1/2(α) =
√

π

2α
exp(−α)

(
y−1∑
i=0

(y − 1 + i)!
(y − 1 − i)!i!

(2α)−i

)
, y = 1, 2, . . . .

Second, as shown by Ismail (1977),

Kγ(α) ≈ 2γγγ exp(−γ)α−γ

√
π

2γ
(1.4)

when γ is large. Equation (1.4) is useful because the computation of the modified
Bessel function of the third kind requires more and more resources as γ → ∞.

When Fj , j = 1, 2, . . . , J, are independently and identically distributed as
IGP (α, θ),

P(F1, . . . , FJ) =
J∏

j=1

√
2α
π

exp(α
√

1 − θ)
(αθ/2)Fj

Fj !
KFj−1/2(α)

or

P(S0, S1, . . . ) = J !
∞∏
i=0

{√
2α
π

exp(α
√

1 − θ)
(αθ/2)i

i!
Ki−1/2(α)

}Si
1
Si!
.(1.5)

The conditional distribution of (1.5) givenN is the Conditional Inverse Gaussian-
Poisson (CIGP) distribution, which we will define in the next section. As men-
tioned before, it is easy to derive the exact distribution of the population size N
under the IGP model (1.5). The probability generating function of (1.3) is

G(z) = exp(α(
√

1 − θ −
√

1 − zθ)),(1.6)

which can be verified using the fact that
∑∞

y=0 P(y) = 1. Consequently, the sum
of J random variables that are independently identically distributed as IGP (α, θ)
is distributed as IGP (Jα, θ). That is,

(1.7) P(N) =

√
2Jα
π

exp(Jα
√

1 − θ)
(Jαθ/2)N

N !
KN−1/2(Jα),

N = 0, 1, 2, . . . ,

where 0 < θ ≤ 1, α > 0.
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2. On the property of the CIGP distribution

The main result of this section is to show the factorial moments of size indices
under the CIGP distribution, whose sampling distribution will also be discussed.

Dividing (1.5) by (1.7), the CIGP distribution is defined for α > 0 as

PJ(S0, . . . , SN |N)(2.1)

=
(

2α
π

)(J−1)/2 J !N !
JN+1/2KN−1/2(Jα)

N∏
i=0

{
Ki−1/2(α)

i!

}Si 1
Si!
,

where the argument satisfies (1.1). In contrast to IGP (α, θ), the CIGP distri-
bution owns only one parameter. The conditioning has removed θ, which makes
sense because N is sufficient for the power parameter of a power series distribu-
tion. In the following CIGP (α) indicates (2.1).

First of all, CIGP (α) is an analogue of the Dirichlet-multinomial mixture
proposed by Mosimann (1962). Rewriting (2.1) as P(F1, F2, . . . , FJ |N) may sug-
gest this point more clearly. Sibuya et al. (1964) noted that the conditional
model of the gamma-Poisson mixture (=negative binomial distribution) given N
equals the Dirichlet-multinomial mixture or multivariate negative hypergeomet-
ric distributions. Hoshino (2002a) investigates parallel relationships of the CIGP
distribution to those of the Dirichlet-multinomial mixture, based on Hoshino and
Takemura (1998)’s discussion. Both the negative binomial distribution and the
IGP distribution belong to the class of infinitely divisible distributions on the
nonnegative integers, and Hoshino (2002b) generalizes these relationships over
this class.

We next show the expectations of size indices. The following theorem reveals
some combinatorial facts as by-products; see Appendix.

Theorem 1. Suppose that size indices are distributed as (2.1). Then the
factorial moments are

E


 N∏

j=1

S
(rj)
j |N




=
(

2α
π

)r/2 N !J !KN−R−1/2((J − r)α)(J − r)N−R+1/2

(N −R)!(J − r)!JN+1/2KN−1/2(Jα)

N∏
j=1

(
Kj−1/2(α)

j!

)rj

,

where r =
∑N

j=1 rj ≤ J , R =
∑N

j=1 jrj ≤ N , and S(rj)
j = Sj(Sj −1) · · · (Sj − rj +

1).

Proof. For simplicity, here we evaluate E(Sj). Let us write

S(N) =


S = (S1, . . . , SN )

∣∣∣∣∣
∑
i≥1

iSi = N


 .
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Table 1. Expectations of size indices under N = 1000, J = 10000.

α E(S1) E(S2) E(S3) E(S4) E(S5)

0.1 391.01 89.14 37.05 19.20 11.13

0.5 749.38 92.10 15.92 3.31 0.76

1.0 823.11 74.44 7.85 0.94 0.12

10.0 896.38 48.77 1.94 0.06 0.00

50.0 903.21 45.93 1.59 0.04 0.00

Then

EJ(Sj |N)

=
∑

S∈S(N)

Sj PJ(S0, . . . , SN |N)

=

√
2α
π

(
Kj−1/2(α)

j!

)
N !KN−j−1/2((J − 1)α)(J − 1)N−j+1/2

(N − j)!JN−1/2KN−1/2(Jα)
(2.2)

×
∑

S∈S(N)

PJ−1(S0, . . . , Sj−1, Sj − 1, Sj+1, . . . , SN |N − j) I(Sj ≥ 1).

Since ∑
S∈S(N)

PJ−1(S0, . . . , Sj−1, Sj − 1, Sj+1, . . . , SN |N − j) I(Sj ≥ 1)

=
∑

S∈S(N−j)

PJ−1(S0, . . . , SN−j |N − j) = 1,

we obtain

EJ(Sj |N) =

√
2α
π

(
Kj−1/2(α)

j!

)
N !KN−j−1/2((J − 1)α)(J − 1)N−j+1/2

(N − j)!JN−1/2KN−1/2(Jα)
(2.3)

from (2.2). We have only evaluated E(Sj |N), but E (
∏N

j=1 S
(rj)
j |N) can be eval-

uated with the same argument.

Table 1 shows the expectations of size indices with parameter values α =
0.1, 0.5, 1, 10, 50 under N = 1000 and J = 10000. It is observable that E(Si) is
decreasing with respect to i; this is the pattern frequently found in applications.
The difference between the size indices of α = 10 and α = 50 appears very small
compared to that of α = 0.1 and α = 0.5.

When N is large, it is convenient to use an approximation to the expec-
tation of a size index. The following proposition shows asymptotic expressions
of E(S1|N), which is of great significance in applications. Equation (2.4) is an
immediate consequence of (1.4) and (2.3). The second expression (2.5) was sug-
gested by a referee. Section 4 exemplifies applications of these formulae.
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Proposition 1. Suppose that size indices are distributed according to (2.1).
Then, as N → ∞,

E(S1|N) ≈ exp(1 − α)
Nα(J − 1)

2
(N − 3/2)N−2

(N − 1/2)N−1
(2.4)

or

E(S1|N) = exp(−α)α(J − 1)/2 +O(N−1).(2.5)

Under CIGP (α), we now discuss the unconditional distribution of sample
size indices, which is called “sampling distribution”. Let us denote the sample
size by n; the sample size indices are similarly defined and denoted by (s0, s1, . . . ).
Because the CIGP distribution does not depend on the label of each individual,
Lemma 1 of Takemura (1999) ensures that the sampling distribution is the re-
sult of substituting n for N of the population distribution. In other words, the
distribution of n samples directly drawn from the infinite population is the same
as that of n samples drawn from the finite population of size N , which is in turn
drawn from the infinite population.

Theorem 2. Suppose that the distribution of population size indices is (2.1)
and denoted by P(S0, . . . , SN |N ;α). Let n samples be drawn with simple random
sampling without replacement from the population. Then the sample size indices
are distributed as P(s0, . . . , sn|n;α).

3. Parameter estimation

This section treats the estimation of α from samples that are distributed as
CIGP (α). The subjects are the Maximum Likelihood (ML) estimator and two
approximate estimators.

3.1. Maximum likelihood estimation
Given Theorem 2, the log likelihood of sample size indices is

L =
J − 1

2
log(2α) − logKn−1/2(Jα) +

n∑
i=0

si logKi−1/2(α) + Const.

In the following

Rγ(α) =
Kγ+1(α)
Kγ(α)

.

As noted in e.g. Seshadri (1999, p. 125),

∂ logKγ(α)
∂α

= −Rγ(α) +
γ

α
.(3.1)
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Using (3.1), we construct the ML estimator: the solution of dL/dα = 0. From
(1.1),

dL

dα
=
J − 1
2α

−
{
−Rn−1/2(Jα) +

n− 1/2
Jα

}
J +

n∑
i=0

si

{
−Ri−1/2(α) +

i− 1/2
α

}

= JRn−1/2(Jα) −
n∑

i=0

siRi−1/2(α).

The ML estimation obviously requires numerical evaluation. The Newton-
Raphson method is available based on the second derivative:

d2L

dα2
= J2

{
R2

n−1/2(Jα) +
2n
Jα

Rn−1/2(Jα)
}

−
n∑

i=0

si

{
R2

i−1/2(α) +
2i
α
Ri−1/2(α)

}
− J2 + J.

The starting value of such an iterative procedure may be given by the estimators
that will be discussed in Section 3.2.

3.2. Approximate estimation
The expectation of a sample size index is the result of substituting n for

N in (2.3). Based on this fact, the method of moments can apply, but it needs
numerical evaluation. Instead we derive easy-to-calculate approximate estimators
from existing estimators of the IGP distribution, though the property of these
approximations is not clear. See Section 4 for an empirical comparison of these.

The first to consider is an approximate moment estimator. If Y is a random
variable that is subject to IGP (α, θ),

E(Y ) =
αθ

2
√

1 − θ
and

V(Y ) =
αθ(2 − θ)
4(1 − θ)3/2

.

See the probability generating function (1.6). The sample average n/J substi-
tutes for E(Y ), and the sample variance

v =

n∑
i=0

(i− n/J)2si

J

substitutes for V(Y ). The solution to these simultaneous equations results in an
approximate estimator:

α̃ =
n
√
n(2Jv − n)
J(Jv − n)

.(3.2)
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Table 2. Frequency distribution of Oithona similis nauplii (Barnes and Marshall, 1951).

i si LNP GP NY CIGP

0 23 23.3 21.0 21.4 20.6

1 28 34.0 33.1 32.7 33.3

2 34 27.9 29.2 28.9 29.5

3 17 17.3 18.9 18.9 19.0

4 8 9.7 10.1 10.2 10.0

5 7 4.6 4.7 4.7 4.6

6 3 2.1 1.9 2.0 1.9

7+ 0 1.1 1.1 1.1 1.1

χ2(d.f.) 5.44(5) 5.26(5) 5.09(5) 5.41(6)

Sichel (1982) calculated asymptotic efficiencies for the joint estimation of
α and θ for the method of moments. However, the moment estimators were
inefficient when parameter values are typical in situations where IGP (α, θ) is
fitted to real data. Hence (3.2) may not be efficient in practice.

The second to consider is an approximation based on estimators proposed
by Sichel (1973). These estimators were efficient in the typical range of values
according to Sichel’s calculation. It leads to

ᾱ = −1
2
(log s0 − log J)

(
1 +

n/J

n/J + log s0 − log J

)
(3.3)

in our setting.

4. Application results and a conclusion

This section applies CIGP (α) to real data. The IGP distribution is known
to fit the claim frequency of insurance extremely well; see Willmot (1987) for
example. However, we dare to select three data sets from other areas. After
some discussions, the present article will conclude.

Table 2 Reid (1981) fitted Log-Normal-Poisson mixture (LNP), Gamma-
Poisson mixture (GP) and the Neyman type A (NY) distribution to plankton
data of n = 232 and J = 120 provided by Barnes and Marshall (1951). The
CIGP distribution is also fitted to the same data; the ML estimate appears to
be α̂ = 10.35, and the fitted values of size indices are the expectations under α̂.
The approximate moment estimate by (3.2) is α̃ = 4.49, and another estimate
by (3.3) is ᾱ = 6.50; these are not close to the ML estimate. The χ2 value of the
CIGP distribution is provided just for comparison and not suitable for the test
of fit.

Table 3 Stein et al. (1987) fitted the IGP distribution to William (1964)’s
lice data, where n = 7442 and J = 1083. The CIGP distribution can attain a
comparable fit to that of the IGP distribution, though these fits are not good in
this case. The approximate estimates are α̃ = 1.069 and ᾱ = 0.579.
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Table 3. Frequency distribution of lice (Williams, 1964).

Lice per head Number of heads IGP CIGP

0 622 585.50 585.70

1 106 188.49 188.18

2 50 77.36 77.18

3 29 41.85 41.75

4 33 26.77 26.71

5 20 18.91 18.87

6 14 14.25 14.22

7 12 11.22 11.20

8 18 9.12 9.10

9 11 7.60 7.59

10 11 6.45 6.45

11–12 13 10.44 10.43

13–14 14 8.13 8.13

15–16 9 6.56 6.56

17–18 11 5.43 5.44

19–21 17 6.63 6.64

22–24 12 5.33 5.34

25–28 15 5.70 5.71

29–33 11 5.57 5.59

34–40 15 5.91 5.93

41–48 13 5.03 5.05

49–60 8 5.45 5.49

61–76 4 5.00 5.05

77–102 4 5.23 5.29

103+ 11 15.15 15.30

α̂ by ML 0.645 0.644

θ̂ by ML 0.998

Table 4. Japanese Labor Force Survey data (Sai and Takemura, 2000).

i 1 2 3 4 5 6 7+ u

si 771 46 3 6 1 0 1 828

CIGP 760.94 56.65 8.43 1.57 0.33 0.07 0.02 828

Sichel (1982) remarked that the correlation between the ML estimators of
IGP (α, θ) is generally substantial in the useful range of values. Because it causes
numerical instability, Stein et al. (1987) proposed a reparameterization. In this
context, the CIGP distribution is valuable since it involves no numerical insta-
bility at a similar fit.

Table 4 Sai and Takemura (2000) anonymized Japanese Labor Force Sur-
vey data collected in December 1997 and calculated their size indices. We apply
the CIGP distribution to one of the sets, which is interesting because there seem-
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ingly exists no application of the IGP distribution to the inference of population
uniques. In this case, J = 5.644 × 1012 and n = 908. The ML estimate α̂
is 9.047 × 10−10; α̃ = 7.423 × 10−10 and ᾱ = 9.061 × 10−10. The number of
nonempty groups is denoted by u =

∑
i≥1 si. The population size N equals

1.028 million, where the exact value of E(S1|N) amounts to 2553.05 under the
ML estimate. Its approximate values by (2.4) and (2.5) are 2553.07 and 2553.06
respectively. Sai and Takemura’s discussion was equivalent to the evaluation that
S1

.= 3368.

Concluding remarks Fitting the CIGP distribution needs the informa-
tion of s0, but many data in practice have no information of s0. In such a case,
we can use the limiting distribution of CIGP (α) derived in Hoshino (2002a).
The estimate by (3.3) has been closer to the ML estimate than that of (3.2) in
our experiments, which suggests that ᾱ may be better than α̃ on real data. The
CIGP distribution can surely be a model of count data. In particular, it has mer-
its in being free from the numerical instability that occurs in the ML estimation
of the IGP parameters.

Appendix
An anonymous referee suggested the following multiple formulae of the mod-

ified Bessel function of the third kind of a half-odd integer order. Let J and N
be positive integers. When α > 0,

KN−1/2(Jα)

=

√
2α
π

(
J − 1
J

)N+1/2

(A.1)

×
N∑
j=0

(
N

j

)
Kj−1/2(α)KN−j−1/2((J − 1)α)(J − 1)−j

=

√
2α
π

(
J − 1
J

)N−1/2

(A.2)

×
N∑
j=1

(
N − 1
j − 1

)
Kj−1/2(α)KN−j−1/2((J − 1)α)(J − 1)−j+1

=
∑

(S0,S1,... ,SN )∈S∗

(
2α
π

)(J−1)/2 J !N !
JN+1/2

N∏
j=0

{
Kj−1/2(α)

j!

}Sj 1
Sj !

,(A.3)

where S∗ = {(S0, S1, . . . , SN ) |
∑N

j=1 jSj = N,
∑N

j=0 Sj = J }. Using (2.3), we
can show that

∑N
j=0 E(Sj) = J is equivalent to (A.1) and

∑N
j=1 jE(Sj) = N is

equivalent to (A.2). Equation (A.3) holds because the sum of the probability is
unity.
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