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Abstract

Multirate multivariable predictive control system with the sampling mechanism that adjusts the plant

inputs only once but detects the plant outputs several times during a period is examined. The IMC structure of the
system is derived, and its robust stability and zero steady state error characteristics are analyzed. A new control
algorithm is developed by adding the variation of the outputs to the index performance. The simulation results
show that the method is effective and has zeros steady-state error.
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1 INTRODUCTION

In synthesizing a multiple-input multiple-output
digital control system, it is usually assumed that both
the plant input updating and the plant output mea-
surement are performed at the same constant rate and
in a synchronous way. However, this hypothesis is
often not realistic or necessary in the technological
and/or economical sense. These may be due to the
following fact!!l:

(1) One or more sensors take significant time to
conduct the measurement of some output variables,
while other outputs are easily available without time
and rate limitation.

(2) The same sensor is periodically switched to
measure different plant variables at different times, or
all the plant outputs are measured at the same time
and rate but the measurements are transmitted to the
control processing unit sequentially.

(3) Technological constraints prevent one from
computing and/or updating the control components
at a desired sampling period, while the output mea-
surement is available with no rate or time limitations.

It is then natural to resort to multirate control
schemes(2791.  The digital controller which incorpo-
rates periodical time-varying mechanisms is classified
into the three classes: the first class employs a special
type of sampling mechanism which changes the plant
input several times and detect the plant output only
once during a period Tp; The second employs another
type of sampling mechanism which changes the plant
input only once but detects the plant output several
times in Tp; The third employs the ordinary sampling
mechanism which changes the plant input and detects
the plant output simultaneously, but also employs a
periodical time-vary digital system as the controller.

The predictive control is a new control algo-

Received 2000-04-11, accepted 2001-03-15.
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rithm developed from industrial process control late
in the 1970’s.
the multirate system has received more and more
attention(®*~'%. In order to eliminate the effect of
model mismatch and disturbances, the self-tuning
mechanism has been employed®1%, and the model pa-
rameters are modified as soon as the output is avail-
able. Most of these researches are based on the par-
ameter model. Ling and Lim extended the state space
GPC to the multirate controllers and proposed the
multirate-input controller (MRIC) and the multirate
output controller (MROC)!7].

The internal model control (IMC) is an effective
tool to design and analyze the predictive control sys-
tem, but there are few papers on the IMC structure
of multirate predictive control systems. In this paper,
the multirate-output predictive control for multivari-
able systems with the sampling mechanism changing
the plant input only once but detecting the plant out-
put several times in a period is studied. The IMC
structure of the above system is deduced on this basis.
Taking advantage of the quality of the IMC, the char-
acteristics of the robust stability and the zero-steady-
state are analyzed. To reduce overshoot of the control
system, the weight on the variation of the predictive
outputs is added to the quadratic objective function.
The simulation results indicate that the method is ef-
fective.

Applying the predictive control to

2 MULTIRATE-OUTPUT MULTIVARIABLE
PREDICTIVE CONTROL

Considering the following n inputs n outputs sys-
tem:

(1) The base-sampling period is 7p. For simplicity
of notation, 7o is assumed to be 1. The sampling pe-
riod of the output y; is T;(¢ = 1,...,n). The ith input
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action is performed at the period Ty. T; is considered
as an integer.

(2) The step response model at sampling period g
is known.

(3) To zl,c.m(Tl, Tg, ..
lease common multiple)
2.1 The predictive model

Assume the model time horizon is NTp, the step
response coefficients of the gth output y, to the ith
input u; at the base period 7, are {a%*,a%", ... ,&‘}éTo}.
Choose the predictive horizon to be PTy and the con-
trol horizon to be MTp, the predicted value of the gth
output at instant k + j can be written as

-» Tp) (“L.c.m” means the

n j

Ym,q(k+371k) = yoq(k+3lk)+ DD af Aui(k+5—1)
i=1 [=1

(1)

for Aui(k+d)=0 (d> MTp),

¢g=12,...,n, j3j=12,...,PT

where ¢, o(k + j|k) denotes the value of the gth out-
put y, at time k + j, predicted at time k. yo 4(k + j|k)
means the initial value of the gth output y, at time
k + j, which is calculated based on the information
known at time k. Awu;(k + j — l) is the ith control
increment at time k+ j —I. Then the output equation
can be rewritten in vector form

Ym(k+1) = yo(k +1) + AAu(k) (2)
where

Ym(k+1) =[yn 1 (k+1),yma(k+1),--,
T (k+1)]"
Ym,i(k + 1) =[ymi(k + 1/k), ym,i(k + 2/k), - -,
Ymi(k + PTo/k)]" i=1,.,n
Yok +1) =[yg(k+1),yg2(k +1),--,
yg:n(k+ 1)]T
Yoi(k+1) =(yoi(k + 1/k),yo:(k + 2/k), -+,
v,i(k+ PTo/k)]" i=1,..,n
Au(k) =[Au] (k), uF (k), -, Aul (k)]
Auj(k) =[Au,-(k), Auj(k+1),---,
Auj(k+MT, - 1)]T j=1,.,n

Ay Ap - A,

Az Az - Agg
A= ) . )

Aﬂl An2 Ann
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A1)

ay
ay ay
A,ﬁj =
nij s ij aij
Apr, @pTy-1 APTy—MTo+1

The matrix A consists of A;;(1=1...n,j=1...n).
In order to eliminate the effect of model mismatch, the
predicted output equation should be modified using
the error between the model outputs and the system
outputs at current time. Then the predictive equation
is described as follows

y,(k+1) = yo(k+1) + AAu(k) + He(k) (3)
where

ety = [0~ Uma®), 1a(8) ~yma(®).]"
T yﬂ(k) - ym,n(k)

H =diag{H;}, i=1,...,n

H; = [ hii, hi2, -+, hipr, ]T

H; is the weighting vector for the e(k). Then the
predictive outputs from time k + 1 to k + P can be
calculated.
2.2 Optimization strategy

In the predictive control, rolling optimization is an
important feature. Appropriate inputs are selected so
that the predicted outputs over the predictive horizon
would follow the reference trajectories as closely as
possible. In other words, the manipulated variables
are determined to minimize the following quadratic
objective function

Jp =[ypk+1) —yr(k + 1)]"Qy, (k + 1)
yr(k+1)] + AuT (k) AAu(k) (4)

T
yp(k+1)=[yR (k+1), ¥Rk + 1), -, yR(k +1)]
.
yri{k + 1/k),yri(k + 2/k),

©,YR,i(k + PTy/k)
i=1

ypi(k+1)=

R 1}

Substituting (3) into (4), J, can be rewritten as
— AqT
Jy = AuT (k)W Au(k) + 2tT (k)Au(k)  (5)
where
W =ATQA + A
t(k) = ATQlyo(k + 1) + He(k) — yp(k + 1)]

Q and A are weighting matrixes for predicted error
and control moves respectively. Because the input ac-
tions are performed at rate Tp, the components Au;(7)
of input vector Au(k) should satisfy with the following
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condition. In other words, the following constraints
should be added to the quadratic objective function:

If g7 # sTy(s is integer) then
Au;(jy=0 (i=1,...,n)

After calculating the inputs, only the first changes
in the inputs Aw;(k)(i = 1, n) are performed. The
next optimization will be done at the time (k + 1)Ty.

3 IMC STRUCTURE
3.1 IMC structure of multirate predictive con-
trol

Internal model control (IMC) is often used to anal-
ysis the predictive control system. So we can also use
it to analyze the multirate predictive control. Define
the vector

Au(k) = [Aﬁ,'(k) ATL (k) Aur (k)]
Ai(k) = 21&:(!-:?01 Awi(kTy +To) - T
ui(kTo + (M — 1)Tp)
(k- 1) = [Tk - 1) @k —1) - k-]
N [wikTo - NTo) wilk— (N - )Tp)]"

wilk 1) = [ u;(kTo — To) ]

Then the output predictive equation can be described
as

yp(k +1) = Aoii(k — 1) + AA%(k) + He(k) (6)

;lo={}i:;} t=1,...

i={ﬁij},i=l,v-',n, j=1,--,n
ay
| @ &
3:';3 53:_1 aig—f\"fﬁl
"i‘f.' = [ Azi 1)To+1 &:f—l)'f‘w? A;}o ]

Using the same method described in this paper,
the control variables can be obtained

Adi(k) = (ETQK 4 )\)_1 A Qlyplk+ 1)—
Aou(k — 1) — He(k)) (7)

Then the ith-input increment Awu;(kTy) is

Au;(kTo) = dF [y gk + 1) — Agu(k — 1) — He(k)]
i=1,....n (8)

where d is the [(i — I)M + 1]th line vector of the ma-

trix (A QA +A)” IA Q. In the multirate predictive
control proposed in this paper, the control variables
are not changed during the period T}, so the following
equation should be satisfied

Au;(kTy) =ui(kTo) — ui(kTp — 1)
=ui(kTo) — uwi(kTo — Tp)
=(1 — 27 T0)u;(kTp) (9)

Define: u(k) [ui (kTo) ug(kTy) ---
then Eq. (8) can be rewritten as

(1—2""°) u(k)

un(kTo)]",

= | | wr(k+1) = Aok — 1) — He(k))

-D [yn(k +1) - Agti(k — 1) - He(k)] (10)

in which
Agu(k — 1)
z[z_TO]
- z(zTo)
= Ag . u(k)
z(z~To)
Fi1(z~To) Fi2(z~To) Fin(2~To)
Fa1(2~To)

Fap(z~To) Fan(z~T0)

-'Tn)

Fln-P1on(z ~To) Fin- Pro}z{z_TD ) Fine pgin(2

u(k) = F(z~To)a(k) (11)

&E’To - &ETO ~Tp+1 &ET(.HTUH - &:E'To—z’l},+1 &';J;"oﬂ é"gﬁl é;{:+l
;i:)i _ éf-f}q;. - &irfrn,—r.,m azj'ro+2 ar.,+2 a:f:.ﬁz
0 ’ .. .
&HR - &j\Jl-"fb—To-i—P‘Ih &;3?9+PTU - a¥u+PTu &;Ju+m[,
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T
2(z~To) = [ ,=NTo  ,~(N-1)To ,~To }
—Toy _ (ali Alg ~NT,
Fij(z77°) = (aRr, — ANy -To+8)7 °+
N Al ~(N=1)To
(BRTy—To+t — CNT, 2Ty +2)? +

T 15 - TR
et (“2:5"04-: - af.o*_t]z My aTjn—{-tz T
i=(1-1)PTy+t, te(l, PTy], l€(l, n

If we assume the setpoints of the controlled vari-
ables are invariant during the period Tp substituting
Eq. (11) to Eq. (10}, we obtain

w(kTp) = [F(z~™)| 7 [D(z" ™)y, (k+ P) - DHe(k)]
(12)
where

T
vr1 (kTo + PTo) yr2(kTo + PTy) - jl

(k+P) =
ur(ktF) [yrn(kTe+PTo)

F(z7T) = [1-z"T)I, + DF(z2~ )],

(assume the inverse of F'(z~7°) existing)

D) = [di(z™™) do(z™™) - (™))

From Eq.(12), it can be said that the multirate
predictive expressed in this paper has the same struc-
ture as the IMC system. Now the method used to
analysis the IMC system can be applied to the mul-
tirate predictive control system, such as the robust
stability and the zero steady state features.

3.2 The robust stability

According to the characteristics of IMC systems,
when the model is accurate, the close-loop stability
only depends on the stability of the controller and the
actual system. When the model is mismatched, we can
regulate the parameters of the feedback filter to assure
the stability of the close loop system. From Eq. (12),
we can obtain that if the roots of det F(z~T0) = 0 are

El(z—To) —

August, 2001

[ (diy +diz+-- + dy(1o-1))2"FT0 + (digy + di(rosr) + -+ + diary—1)) 2~ PV o4 1
ot (dip-1y1o) T di(P-1)To+1) +*** + d1(PTo-1))2 " ° + di(pT2)
(da1 + da2 + - -+ + dy(my—1)) 2~ P70 + (dom, + dy(mys1) + -+ + dagamy—1)) 2P0+

o (dogp-1ymo) + doy(P-1)To+1) + - + da(PTy—1)) 2" T° + da(pry)

(dny +dn2+ -+ -+ dn(To_l))z_PT" + (dnTg + dn{'f‘u-i—l) i dn(gfo__n)z_(p_l)?o‘l‘

ot (daf(P-1)10]) + du{(P-1)To41) + - + dn(PTy-1))2" T + du(pry)
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located at the inside of unit circle, the control system

is stable.

3.3 Zeros steady-state errors characteristic
The error equation of the closed system is

y(kTy) =G[I + F'DH(G - G)|"'F~'Dy,+
{1 -G +F'DH(G - (‘;)]—IF—IDH}z
(13)

when the system is close to steady-state, k — oo,
271 = 1, so we can obtain

F(1) = DF(1)
dyy  diz di(n* PTo)
| dz da(n* PTy)
| dny dn2 dn(n* PTy)
Fi(1) F12(1) Fin(1)

F(1) Fp2(1) Fn(1)

| Flneproy (1) Finepry)2(1) Fin-pro)n(1)

[ g11 12 1n ~11 ~12 ~1n
d d d aANT, ONT, ANT,
21 2 n ~21 ~22 ~2n
d d? d? aANT, ONT, ANT,
el n2 T ~1l ~7d ~ T
__d d d NT, @NT, UNTo
= DG(1)

d7 = dy((j-1)PTo+1) + dif(i-1)PTos2) + - - + difjPTy)
D(1)=D
If set H =

[11

di%_g(epro, €pT,, " €PT,), €PT, =
1 } , then DH = D. Therefore
y(o0) = y,.(0)

that is the steady-state error is zero to the step re-
sponse and disturbance.
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4 AN IMPROVED ALGORITHM

In a general way, the performance index is de-
pendent on the weight on the error between the set-
points and the predictive outputs and the weight on
the future variation of the control variables. By this
strategy, only the tracking problem and the future
variations of control variables are considered, and the
variation of controlled variables is not taken into ac-
count. System overshooting and oscillating occur fre-
quently. So, the weight on the variations of controlled
variables is added to the quadratic performance index
in this paper. That is

Jp =ep(k + 1) Qep(k + 1) + AuT (k)AAu(k)+
ey(k +1)"dey(k+1) (14)

ep(k+1)=y,(k+1)-yglk+1)
ey(k +1) =y, (k+1) —yg(k+1)

vi(k), yi(k + 1/k),
oyl + P = 1/k), y2(k),
s yn(k+ P —1/k)

Yalk+1) =

@ is the weighting matrix on the variations of the con-
trolled variables. To minimize the performance index
(14) with respect to Awu(k) , the future control vari-
ables can be calculated.
4.1 Demonstration 1

Consider the following 2 inputs and 2 outputs mul-
tirate system

e—3s 6—23
| =4 "
Gm(.‘j) — ].QS tsl 8-‘) + 1
e 1
5s+1 10s+1
0.5¢~% 1.5~ %
155 + 1 8s+1
G =
p(s) 2¢ s 0.5
T 5s+1 10s+1

Gn(s), Gp(s) are the transfer function of the model
and the system respectively. The sampling periods
of the output y; and y, are 1, 2, the input actions
uy and ug are performed at the period of 2 and 2.
The initial values of the outputs are 0, and the set-
points of the outputs are 2, 1. The control horizon is
6 and the predictive horizon is 24. The performance
index is showed as Eq.(5), where the weighting ma-
trixes are: Q = diag(1,1...,1), A = diag(1,1,...,1),
& =diag(50,50,. .. 50).

40 60 80
t*15,s

(a) no model mismatch

80

v, C

80

(b) Model mismatched
The step response curves for multirate
DMC system
—— using the improved algorithm, A=diag(1,1,---,1)
-+ using the conventional quadratic performance index,
A=diag(1,1,---,1)
— - — using the conventional gquadratic performance index,
A=diag(50,50,- - -,50)

Figure 1

Two cases are studied in the simulation: one is
no model mismatch [Gp(s) = Gm(s)], the other is
mismatched model. The simulation results are de-
scribed in Fig. 1. The dotted line express the response
curves, which are obtained by using the conventional
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quadratic performance index. The solid lines express
the response curves using the improved algorithm.
The dashdot lines are obtained by using the conven-
tional quadratic performance index, but the weighting
matrix A is diag(50,50,...,50).

From the Fig. 1, we observe that the responses re-
sorting to the method presented in this paper show
small overshoot and short transient time. When the
model mismatch is existing, the control system can
also track the change of the setpoints. Increasing the
weight on the increments of manipulated variables can
also reduce the overshoot, but the response speed will
become slower and the transient time will increase.
4.2 Demonstration 2

We consider another practical example, an atmo-
spheric distillation column process with the product
of 2.5 million ton per year (see Fig.2).

TIC103
Top reflux
FIC107

Reflux accumulator

FC

FIC112
Fraction 1

TIC107| 1

FIC113
Fraction 2

FIC114

Fraction3

tmospheric distillation column

l_é

TIC109

Stripping column Pump Valve

Figure 2 The flow chart of atmospheric distillation
column

The atmospheric distillation column deals with the
crude oil directly. It separates crude oil into several
products. The top product is naphtha and the other
products become the feeds of the following workshop
section. The qualities of products are controlled indi-
rectly by means of controlling their temperatures for
some reasons. The top temperature is controlled by
the method of soft measure. So, we adopt the mul-
tivariable advance control system where temperature
TIC107 and temperature TIC108 are regarded as con-
trolled variables (CVs), the setpoints of the flow-rate
FIC112 and the flow-rate FIC113 are regarded as ma-
nipulated variables (MVs). The model of the above
system is the following

0.524 1208 0
_ | 313s+1
Gm(®) = | ) g67e-1200 65261200
367s+1  677s+1

The sampling periods of the output y;, and y; are 15s,
30s, the input actions u; and us are performed at

August, 2001

the periods of 30s and 30s. The initial values of
the outputs are 0°C, and the setpoints of the out-
puts are 2°C, 1°C. The control horizon is 60s and
the predictive horizon is 450s. The performance in-
dex is showed as Eq.(5), where the weighting ma-
trixes are: Q=diag (1,1,...,1), A =diag(1,1,...,1),
@$=diag(100,100,. . .,100).

Considering the case of model match [Gp(s) =
Gm(3)], the simulation results are described in Fig. 3.
The dotted line express the response curves which are

i 1 1
0 50 100 150 200

-1
uy, t*h

1 I 1
0 50 100 150 200

100 15.0 200
t*x15,s

Figure 3 The response curves of the atmospheric
distillation column
— using the improved algorithm, A=diag(1,1,---,1)
------ using the conventional quadratic performance index,
A=diag(1,1,--+,1)
- — -— using the conventional quadratic performance index,
A=diag(50,50, --,50)
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obtained by using the conventional quadratic perfor-
mance index with A=diag(1,1,...,1). The solid lines
express the response curves using the improved al-
gorithm. The dashdot lines are obtained by using
the conventional quadratic performance index, but the
weighting matrix A is diag(5,5,...,5).

Figure 3 shows that the control performance re-
sorting to the method presented in this paper is bet-
ter than other methods. The transient process time is
shortened and the overshoot is reduced. The steady-
state errors are zeros to the step response.

NOMENCLATURE
{6';'- s &;i A &1‘;,1.0 the step response coefficients of the
qth output y4 to the ith input

u; at the base period mp

dyf the [(i — 1)M + 1]th line vector of
the matrix (A QA +A)'A Q

H; the weighting vector for the predicted
error

Jp, Iy, the quadratic objective function

MTy the control horizon

PTy predictive horizon

Q the weighting matrixes for predicted
error

T; sampling period of the output y;

To sampling period of the input,
To=lem(T1, Ta, -+, Th)

Yo (k+ 1) the predictive output vector at time
k

Ym.q(k + jlk) the predictive value of the gth output
yg at time k + j, predicted at time k

yrik+1) the setpoint vector at time k

vo,q(k + 7|k) the predictive initial value of the gth

output yq at time k + j, predicted at
time k

279

yo(k+ 1)  the predictive output initial vector at
time k

A the weighting matrixes for control
moves respectively

T the base-sampling period

& the weighting matrix on the variations
of the controlled variables

REFERENCES

1

o

£

o

-3

o

=]

Colaneri, P., Scattolini, R., Schiavoni, N., “Stabilization of
multirate sampling-data linear system”, Automatic, 26 (3),
377—380 (1990).

Hagiwara, T., Fujimura, T., Araki, M., “Generalized
multirate-output controllers”, Int. J. Control, 52 (3), 597—
612 (1990).

Scattolini, R., “Self-tuning control of systems with infre-
quent and delayed output sampling”, IEEE Proceedings,
Part D, 135 (4), 213—219 (1988).

Araki, M., Yamamoto, H., “Multivariable multirate
sampled-data systems: State-space description, transfer
characteristics, and nyquist criterion”, IEEE Trans. Au-
tomat. Contr., AC-31 (2), 145—154, (1986).

Moore, K. L., “Capabilities and limitation of multirate con-
trol schemes”, Automatic, 29 (4), 941—951 (1993).

Oh, J., H., Park, 1., O., “Multi-rate generalized predic-
tive control for multi-variable systems”, Proc. Inst. Mech.
Engrs, Part 1, 207, 253260 (1993).

Ling, K. V., Lim, K. W., “A state space GPC with exten-
sion to multirate control”, Automatic, 32 (7), 1067—1071
(1996).

Ohshima, M., “Multirate multivariable model predictive
control and its application to a polymerization reactor”,
Int. J. Control, 59 (3), 731—742 (1994).

Scattolini, R., “Multi-rate self-tuning predictive controller
for multi-variable systems”, Int. J. Systems Sci., 23 (8),
13471359 (1992).

Carini, P., Micheli, R., Scattolin, R., “Multirate self-tuning
predictive control with application to binary distillation col-
umn”, Int. J. Systems Sci., 21 (1), 51—64 (1990).

Chinese J. Ch. E. 9 (3) 273 (2001)





