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ASYMPTOTIC EXPANSION UNDER DEGENERACY

Yuji Sakamoto* and Nakahiro Yoshida**

We will consider a stochastic expansion described by random variables whose
covariance matrix is asymptotically degenerate. Though the conventional approach
with Bhattacharya-Ghosh’s transform requires the nondegeneracy of the covariance
matrix, it is known that this method still works even in degenerate cases with the help
of the so-called global approach. In this paper, we explain this fact and also mention,
as an example, the third order asymptotic expansion of the maximum likelihood
estimator for the O-U process.
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mixing process.

1. Introduction

The fundaments of asymptotic expansion for semimartingales (such as jump
diffusions) and the theory of asymptotic expansions for statistics in the higher-
order inference for semimartingales both have already been established by a series
of papers.

Yoshida (1992a, 1993, 1996a) presented asymptotic expansions for a diffusion
process with small noises, and for a general perturbed model. Yoshida (1996b,
1997) derived distributional asymptotic expansions for martingales with appli-
cations, e.g., non-linear ergodic diffusions, volatility estimation for discretely ob-
served diffusion processes, and long-memory time series. This approach is called
the global approach. In this direction, Sakamoto and Yoshida (1998a) pre-
sented expansions of M -estimators for ergodic diffusion processes. They treated
non-linear diffusions, to say nothing of linear diffusions, and (exact and condi-
tional) maximum likelihood methods, and more generally M -estimators (robust
and non-robust; here “robust” means the control theoretic robustness that the
estimating functional is continuous with respect to the local uniform norms for
the input process).

Kusuoka and Yoshida (2000) derived and proved the validity of asymptotic
expansions for an ε-Markov process with mixing property. It covers diffusions
even with jumps and point processes. This approach is nowadays called the lo-
cal approach1. Due to this work, the next interest of “expanders” in this field
focused on derivation of expansions for statistical estimators and test statistics.
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Sakamoto and Yoshida applied Bhattacharya and Ghosh’s theory on transforma-
tion of asymptotic expansions, and presented expansion formulae, of course, with
validity when adopting the mixing ε-Markov process as the underlying stochastic
process constructing functionals. Sakamoto and Yoshida (1998b) gave the ex-
pansion of the maximum likelihood estimator for general diffusion processes (i.e.,
multidimensional non-linear and non-linearly parametrized). They extended it to
M -estimators for general statistical model and presented key expansion formulas
for numerous statistics in Sakamoto and Yoshida (1999)2.

Many applications have been reported: Sakamoto (2000) presented a trans-
formation formula for chi-square type expansions tailored to mixing ε-Markov
processes, and gave the precise expression of expansions in testing diffusion
processes; model selection problem through asymptotic expansion methods by
Uchida and Yoshida (2001, 2003a, 2003b); Kutoyants and Yoshida (2001) stud-
ied for nonparametric estimation; Sakamoto and Yoshida (2001) worked for clus-
ter processes. Other applications of related expansions are for example: general
expansion under random limits by Kashiwakura et al. (2002), application to
shrinkage estimators by Sakamoto and Yoshida (1996), conditional expansions
for Lévy driving SDE and filtering by Yoshida (2001b). Option price expansion
by Yoshida (1992b) and a series of papers by Kunitomo and Takahashi (1998,
2001) and others. Details will appear in Yoshida (2003).

Bhattacharya and Ghosh’s transform method requires that the random vec-
tor which is used to express a stochastic expansion of a statistic in question
satisfies a kind of non-degeneracy. Only the O-U (Ornstein-Uhlenbeck) pro-
cess may seem exceptional because of the complete linearity. Concerning the
asymptotic expansion of its maximum likelihood estimator and, more generally,
M -estimators, the second order expansion does not have any problem: the cases
are explained in Yoshida (1997) and Sakamoto and Yoshida (1998a). Though
it may apparently have a problem for the third order expansion, it is also cov-
ered by the existing general third order result if we use a simple result presented
in this paper. Since, as the reader will find below, the idea is very simple (in
some sense similar to the technique used in Yoshida (1997)) but quite useful,
this fact has been common among experts in this field, as Remark of Uchida and
Yoshida (2001) mentioned it, since the annual meeting of the Japan Statistical
Society in 2000’s summer at latest.

It was backing the validity of the third order expansion for the O-U process
as a simple corollary, and in fact it is nothing but the formula obtained by the
formal application of the general result.

Thus far, we briefly reminded the reader of progress in distributional asymp-
totic expansion theory for semimartingales. The Malliavin calculus features in
that theory. On the other hand, we should comment that Professor Mykland’s
expansions are not distributional but his work (Mykland, 1992) inspired one of
the author to find a martingale distributional expansion by means of the Malli-

2 This manuscript is still unpublished, but has already been well circulated among researchers of this

field and has been applied to various problems.
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avin calculus.
The aim of this note is to introduce a simple but useful result mentioned

above. Moreover, it extends the global approach, one of the fundamental method-
ologies in the theory of asymptotic expansion for semimartingales. Also, we hope
this note will help the reader recognize the real front of this field.

2. Result

Let (W, H, P ) be a (partial) r-dimensional Wiener space : W = W (1) ×
W (2) and P = P (1) ⊗ P (2), where (W (1), H, P (1)) is a usual Wiener space and
(W (2),B, P (2)) is a probability space. Denote by Dp,s the Sobolev space of Wiener
functionals equipped with a Sobolev norm ||·||p,s, and denote by σF the Malliavin
covariance of a Wiener functional F on W . For any M , γ > 0, let E(M, γ) be the
set of measurable functions f : R

d → R such that |f(x)| ≤ M(1 + |x|γ) for all
x ∈ R

d. For any T > 0, let XT be an R
d-valued Wiener functional admitting an

asymptotic expansion, more precisely, suppose that there exists a signed measure
ΨT such that for any f ∈ E(M, γ), E[f(XT )] = ΨT [f ] + ō(sT ), where sT is a
given sequence tending to 0 as T → ∞ and ō(sT ) = o(sT ) uniformly in E(M, γ).
Define ST by ST = XT + sT YT for another R

d-valued Wiener functional YT . For
the basic notions of the Malliavin calculus, see Ikeda and Watanabe (1989).

For notational simplicity, we here focus our attention to Wiener functionals,
however it is also possible to show a similar result for Wiener-Poisson functionals.

Theorem 2.1. For m ∈ N and positive numbers M, γ, �1 and �2, suppose
that m > γ/2 + 1, �1 ≥ �2 − 1 and �2 ≥ (2m + 1) ∨ (d + 3). Assume that (1)
supT ||YT ||p,	2 + supT ||XT ||p,	2 < ∞ for any p > 1, (2) (XT , YT ) d→ (X∞, Y∞)
for some random variables X∞ and Y∞. In addition, assume that there exists
a functional ξT such that (3) supT ||ξT ||p,	1 < ∞ for any p > 1, (4) P [|ξT | >
1/2] = O(sα

T ) for some α > 1, (5) supT E[1{|ξT |<1}(detσXT
)−p] < ∞ for any

p > 1. Then for any f ∈ E(M, γ),

E[f(ST )] = ΨT [f ] + sT

∫
Rd

f(x)g∞(x)dx + ō(sT ),(2.1)

where

g∞(x) = −∂x

(
E[Y∞ | X∞ = x]pX∞(x)

)
.

Proof. Let ηT = sT (|σXT
|2d + |σYT

|2d)(detσXT
)−2, and ψT = ψ(ξT )ψ(ηT )

for a function ψ ∈ C∞ such that ψ(x) = 1, |x| < 1/2, ψ(x) = 0, |x| > 1, 0 ≤
ψ(x) ≤ 1 for any x ∈ R. Then it follows that for q = (1 + α)/2 and q′ > 1
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satisfying 1/q + 1/q′ = 1,

|E [f(ST )] − E [ψT f(ST )]| ≤ ||1 − ψT ||q||f(ST )||q′

≤
(
P [|ξT | > 1/2]1/q + P [|ξT | ≤ 1/2, ηT > 1/2]1/q

)

× M
(
1 + ||ST ||γγq′

)

= Ō
(
s
α/q
T

)
+ Ō

(
s2
T

)
= ō(sT ).

For any f ∈ E(M, γ), one can choose a sequence φn ∈ S such that ∂jφn → ∂jf
in C−2m, j = 0, 1, 2. Put FT,u = XT +usT YT , 0 ≤ u ≤ 1. Taylor’s formula yields

E [ψT φn(ST )] = E [ψT (φn(XT ) + sT ∂φn(XT )YT )]

+ s2
T

∫ 1

0
du(1 − u)E

[
ψT ∂2φn(FT,u)

[
Y ⊗2

T

]]
.

If ηT < 1, then for some constant c independent of T ,

detσFT,u
≥ detσXT

− csT

(
|σXT

|2d + |σYT
|2d

)1/2
>

(
1 − cs

1/2
T

)
detσXT

.

Therefore, for sufficiently large T , the IBP formula can be applied to FT,u with
the trancation functional ψT , and it holds that there exists T0 > 0 such that

sup
T>T0, n∈N

∣∣∣E [
ψT ∂i∂jφn(FT,u)Y i

T Y j
T

]∣∣∣
= sup

T>T0, n∈N

∣∣∣E [
A−2m∂i∂jφn(FT,u)ΨFT,u

2m

(
ψT Y i

T Y j
T

)]∣∣∣ ≤ Cf < ∞

for some positive constant Cf depending only on f , which implies

s2
T

∫ 1

0
du(1 − u)E

[
ψT ∂2φn(FT,u)

[
Y ⊗2

T

]]
= Ō

(
s2
T

)
.

Since E[ψT φn(XT )] → E[ψT f(XT )], n → ∞ and E[ψT ∂φn(XT )YT ] →
E[ψT ∂f(XT )YT ], where two limits are generalized expectations, we see that

E [f(ST )] = ΨT [f ] + sT E [ψT ∂f(XT )YT ] + ō(sT ).

Therefore, it remains to show that

E [ψT ∂f(XT )YT ] →
∫

Rd

f(x)g∞(x)dx.

From the IBP formula, it is easy to show
∣∣E [

ψT iueiuXT YT

]∣∣ ≤ (1 + |u|)−(	2−2).
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Therefore, we can define

gT (x) :=
1

(2π)d

∫
e−iuxE

[
ψT iueiuXT YT

]
du

and

g∞(x) :=
1

(2π)d

∫
e−iux

E
[
iueiuX∞Y∞

]
du.

Moreover, by using the IBP formula over R
d, we can also show that for any

multi-index n,

sup
x,T

|xngT (x)| < ∞, sup
x

|xng∞(x)| < ∞.

Combining this and Lebesgue’s theorem, we see that
∫

f(x)gT (x)dx →
∫

f(x)g∞(x)dx, as T → ∞.

From the IBP formula, it follows that

E [ψT ∂f(XT )YT ] =
∫

f(x)µ(dx)

for some finite signed measure µ. Substituting eiu·x into f and using the unique-
ness of the Fourier transform, it is found that µ has density gT , and therefore we
see that

E [ψT ∂f(XT )YT ] →
∫

f(x)g∞(x)dx, as T → ∞.

Since ∣∣E [
eiuX∞

]∣∣ ≤ (1 + |u|)−(	2−1),

we see that X∞ has a differentiable density pX∞ . In the same way, it is easily
shown that E[Y∞ | X∞ = x]pX∞(x) is differentiable. Thus we have that

g∞(x) = −∂x

(
E [Y∞ | X∞ = x] pX∞(x)

)
. �

Remark 2.1. In the next section, we will apply this theorem to the third-
order asymptotic expansion of the maximum likelihood estimator for the Ornstein-
Uhlenbeck process, but this result might be applicable to other higher order
expansions with such degeneracy problems.
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3. Example

Let Θ be an open bounded subset in R, and for any θ ∈ Θ let Xθ = (Xθ
t :

t ∈ R+) be a one-dimensional stationary ergodic diffusion process satisfying

dXt = b(Xt, θ)dt + dwt,(3.1)

with stationary distribution νθ given by

νθ(dx) =
n(x, θ)∫ ∞

−∞
n(u, θ)du

dx,

where

n(x, θ) = exp
(

2
∫ x

0
b(u, θ)du

)
.

We denote by θ0 the true value of θ, and omit θ0 in functions of θ when they are
evaluated at θ = θ0, e.g., X = Xθ0 , ν = νθ0 . Assume that for any T > 0 the
likelihood function �T of θ based on observations X = (Xt : t ∈ [0, T ]) is given
by �T (θ) = log dν

dx(X0, θ) + ΛT (θ) for some reference measure,

ΛT (θ) =
∫ T

0
b(Xt, θ)dXt −

1
2

∫ T

0
b2(Xt, θ)dt.

Let θ̂T be the maximum likelihood estimator solving δ�T (θ̂T ) = 0, δ = ∂/∂θ
(see Theorem 7.1 in Sakamoto and Yoshida (1999) for the existence and consis-
tency of the multi-dimensional M -estimator). As in the i.i.d. setting or time
series, the third order stochastic expansion of θ̂T is given by

√
T

(
θ̂T − θ0

)
= ST +

1
T
√

T
R3,

ST = Z1 +
1√
T

(
Z1Z2 +

1
2
ν̄3Z

2
1

)

+
1
T

(
1
6

(
ν̄4 + 3ν̄2

3

)
Z3

1 +
3
2
ν̄3Z

2
1Z2 + Z1Z

2
2 +

1
2
Z2

1Z3

)
,

where Z1, Z2, Z3 and ν̄3, ν̄4 are random variables and constants defined by

Z1 =
1√
T

ῡ−1
2 δ�T (θ0), ῡ2 = − 1

T
Eθ0

[
δ2�T (θ0)

]
,

Z2 =
1√
T

ῡ−1
2

(
δ2�T (θ0) − Eθ0

[
δ2�T (θ0)

])
,

Z3 =
1√
T

ῡ−1
2

(
δ3�T (θ0) − Eθ0

[
δ3�T (θ0)

])
,

ν̄3 =
1
T

ῡ−1
2 Eθ0

[
δ3�T (θ0)

]
, ν̄4 =

1
T

ῡ−1
2 Eθ0

[
δ4�T (θ0)

]
.

The remainder term R3/(T
√

T ) can be neglected in the third order asymptotic
expansion of

√
T (θ̂T − θ0) under some moment conditions (the Delta-method).
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In general, the joint distribution of Z = (Z1, Z2, Z3) admits an asymptotic
expansion, from which that of ST is obtained through the so-called Bhattacharya-
Ghosh’s transform Z → ST . In the paper of Bhattacharya and Ghosh (1978),
this approach was adopted for the mathematically rigorous derivation of the
asymptotic expansion of the statistical estimator in the i.i.d. setting, and it
was also used for the time series models in Götze and Hipp (1983). Kusuoka
and Yoshida (2000) obtained the asymptotic expansion of the ST -type functional
of the continuous-time stochastic process, which includes the (jump) diffusion
process as a typical example, and Sakamoto and Yoshida (1999) presented the
formula for the asymptotic expansion of the M -estimator, which was there ap-
plied to the general diffusion model.

As a special case of Theorem 7.2 in Sakamoto and Yoshida (1999), we here
present the asymptotic expansion of the maximum likelihood estimator for the
one-dimensional diffusion process defined by (3.1). In order to express explicitly
the coefficients in the expansion, we prepare some notations. For the measurable
function f satisfying ν(f) = 0, denote by Gf the Green function G solving
AG = f , where

A = b(x, θ0)
∂

∂x
+

1
2

∂2

∂x2
, ν(f) =

∫ ∞

−∞
f(x)ν(x)dx.

Moreover, for each measurable function f , let

[f ](x) = − ∂

∂x
Gf−ν(f)(x),

and put

Fi,j = ν(bi · bj), F[i,j],k = ν([bi · bj ] · bk),

F[[i,j],k],m = ν([[bi · bj ] · bk] · bm), F[i,j],[k,m] = ν([bi · bj ] · [bk · bm]),

where bi(x) = δib(x, θ0). Let ρ = F1,1,

τ = Var
[
δ log

dνθ0

dx

]
, ζ = E

[
δ2 log

dνθ0

dx

]
, ∆ = ν

(
δ log

dνθ0

dx

)
.

The Hermit polynomials hj(z; g) are defined by

hj(z; g) = (−g)−jegz2/2 dj

dzj
e−gz2/2.

Theorem 3.1 (A specialized version of Theorem 7.2 in Sakamoto and
Yoshida (1999)). Let M , γ > 0, f ∈ E(M, γ), and define θ̂∗T by θ̂∗T = θ̂T −
β(θ̂T )/T for a given function β. Then, under the regularity conditions of The-
orem 7.2 in Sakamoto and Yoshida (1999) for the one-dimensional maximum



152 YUJI SAKAMOTO AND NAKAHIRO YOSHIDA

likelihood estimator θ̂T in the one-dimensional diffusion setting, there exist posi-
tive constants c, C̃, ε̃, ĝ > ρ such that∣∣∣∣E

[
f

(√
T

(
θ̂∗T − θ

))]
−

∫
dzf(z)qT,2(z)

∣∣∣∣(3.2)

≤ cω
(
f, C̃T−(ε̃+2)/2, ĝ

)
+ o

(
T−1

)
,

where

qT,2(z) = φ
(
z; ρ−1

) (
1 − 1

2
√

T
Γ(−1/3)h3(z; ρ) − 1√

T
β̌ h1(z; ρ)

+
1

2T
A∗

2h2(z; ρ) +
1

24T
c4h4(z; ρ) +

1
8T

Γ(−1/3)Γ(−1/3)h6(z; ρ)
)

,

Γ(α) = F2,1 − F[1,1],1 + 3
1 − α

2
F[1,1],1, β̌ = ρ β − ∆ +

1
2
ρ−1Γ(−1),

A∗
2 = τ + 2ζ − ρ−1

(
F3,1 + 5F[2,1],1 + 4F[1,1],2 + 4F[[1,1],1],1 − F[1,1],[1,1]

)

+ ρ−2

(
5
2
Γ(−1)Γ(−1) − Γ(1)Γ(1) + 2Γ(−1)Γ(1)

)
+ β̌2

− 2ρ
(
ρ−2∆

(
Γ(1) + Γ(−1)

)
+ δβ

)
c4 = −12

(
F[[1,1],1],1 + F[1,1],2 + F[2,1],1

)
+ 3F[1,1],[1,1] − 4F3,1

+ 12ρ−1Γ(−1)
(
Γ(−1) + Γ(1)

)
+ 12Γ(−1/3)β̌.

Note that this theorem embraces the following three cases: (i) the joint distri-
bution of (Z1, Z2, Z3) admits the asymptotic expansion, (ii) the joint distribution
of (Z1, Z2) or (Z1, Z3) admits the asymptotic expansion and Z2 and Z3 are lin-
early dependent for each T > 0, (iii) the distribution of Z1 admits an asymptotic
expansion and both Z2 and Z3 vanish. Therefore, Theorem 3.1 covers many cases
including almost all non-linear models, but we can adduce an exceptional case
as follows.

Let us consider the case where θ > 0. b(x, θ) = θm(x) for a given function
m. We then have

Z1 =
1√
T

g−1

(
�̄
(0)
1 (X0) +

∫ T

0
m(Xt)dwt

)
,

Z2 =
1√
T

g−1

(
�̄
(0)
2 (X0) −

∫ T

0

(
m2(Xt) − ν

(
m2

))
dt

)
,

Z3 =
1√
T

g−1�̄
(0)
3 (X0).

where

�̄
(0)
1 (x) = δ log

dνθ0

dx
(x),

�̄
(0)
i (x) = δi log

dνθ0

dx
(x) − Eθ0

[
δi log

dνθ0

dx
(X0)

]
, i ≥ 2.
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From Itô’s formula, it follows that if m is integrable and differentiable,

µ(XT ) = µ(X0) +
∫ T

0
m(Xt)dwt + θ

∫ T

0
m2(Xt)dt +

1
2

∫ T

0
m′(Xt)dt,

where µ(x) =
∫ x
0 m(u)du. Combining this and stationarity of X yields ν(m2) =

−ν(m′)/(2θ), and therefore we have

Z1 − θZ2 =
1√
T

g−1

(
�̄
(0)
1 (X0) − θ�̄

(0)
2 (X0) + µ(XT ) − µ(X0)

− 1
2

∫ T

0

(
m′(Xt) − ν(m′)

)
dt

)

= op(1) +
1

2
√

T
g−1

∫ T

0

[
m′] (Xt)dt.

In addition to the linearity of the drift b in θ, assuming that m is also linear
in x, i.e., X is the Ornstein-Uhlenbeck process defined by

dXt = −θXtdt + dwt,

we see that

Z1 =
1√
T

g−1

(
−X2

0 +
1

2θ0
−

∫ T

0
Xtdwt

)
, Z2 = − 1√

T
g−1

∫ T

0

(
X2

t − 1
2θ0

)
dt,

Z3 = 0, g =
1

2θ0
+

1
T

1
2θ2

0

,

and that Z1 and Z2 are linearly independent for each T > 0, but asymptotically
linearly dependent because

Z1 − θ0Z2 =
1√
T

v(X0, XT ) → 0 as T → ∞,

where

v(x, y) = g−1

(
−x2 +

1
2θ0

− 1
2
y2 +

1
2
x2

)
.

This implies that the Ornstein-Uhlenbeck process is an exception to Theorem
3.1, but the asymptotic expansion of θ̂T for the Ornstein-Uhlenbeck process can
be easily obtained by applying Theorem 2.1. In fact, ST can be represented as

ST = X̃T +
1
T

ỸT +
1

T
√

T
R̃3,

where

X̃T = Z1 +
1√
T

(
1
θ0

+
1
2
ν̄3

)
Z2

1 +
1
T

(
1
6

(
ν̄4 + 3ν̄2

3

)
+

3
2θ0

ν̄3 +
1
θ2
0

)
Z3

1 ,

ỸT = − 1
θ0

v(X0, XT )Z1,
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and R̃3/(T
√

T ) can be neglected by the Delta-method. The asymptotic expansion
of X̃T can be derived from Theorem 7.2 of Sakamoto and Yoshida (1999), and in
the same fashion as in Lemma 11 of Yoshida (1997), it can be shown that for some
positive constant c, P (σX̃T

< c) = O(T−2). Combining these facts, we can easily
check the conditions of Theorem 2.1 with X̃T and ỸT in place of XT and YT , and
consequently it is shown that the asymptotic expansion given in Theorem 3.1
still holds true for the Ornstein-Uhlenbeck process and the coefficients are given
by

ρ =
1

2θ0
, τ =

1
2θ2

0

, ζ = − 1
2θ2

0

, ∆ = 0, β̌ =
1

2θ0
(β − 2), Γ(α) = −1 − 3α

4θ2
0

,

A∗
2 =

3
2θ2

0

+
1

4θ2
0

(β − 2)2 − 1
θ0

δβ, c4 =
15
2θ3

0

− 3
θ3
0

(β − 2),

which imply that

qT,2(y) =φ(y; 2θ)
(

1 +
1

4θ2
√

T
x

(
x2 − 2(β + 1)θ

)

+
1

32θ4T

(
x6 − 4θx4(3 + β) + 4θ2x2(1 + 8β + β2 − 4θδβ)

+ 8θ3
(
2 − 2β − β2

)
+ 32θ4δβ

))
.

This result was obtained in 1999 as a corollary of the result in Sakamoto and
Yoshida (1998b, 1999).

If we consider the conditional MLE θ̂
(c)
T defined by δΛT (θ̂(c)

T ) = 0 for the
O-U process, we encounter the same degeneracy problem. But we can settle the
problem in exactly the same approach, and we can prove the validity of the third
order asymptotic expansion of θ̂

(c)
T with

qT,2(y) =φ(y; 2θ)
(

1 +
1

4θ2
√

T
x

(
x2 − 2(β + 1)θ

)

+
1

32θ4T

(
x6 − 4θx4(3 + β) + 4θ2x2(3 + 8β + β2 − 4θδβ)

− 8θ3β(2 + β) + 32θ4δβ

))
.

Remark 3.1. Professor Kakizawa checked our third order formula for O-
U case3 and he recently successfully showed in Kakizawa (2002) that fourth
order expansion and beyond, i.e., O(T−r/2) (r ≥ 3) order in the expansion of
P [

√
T (θ̂T − θ) ≤ x], are possible for O-U process including a non-stationary

3 The third order formula (with validity overcoming degeneracy problem) for the maximum likelihood

estimator for O-U process was supplied in 1999 and 2000. The form of the general third order formula

for diffusions itself goes back to Sakamoto and Yoshida (1998b) (rigorously the cooperative research

meeting of the Institute of Statistical Mathematics in 1997), according to our best knowledge.
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case, by direct computation that is possible owing to both the linearity and the
gaussianity.

Remark 3.2. As for the case where the drift b is linear in θ but non-linear in
x, it is usual that Z1, Z2, Z3 are asymptotically linearly dependent, but (Z1, Z2)
admits the asymptotic expansion. Therefore, even in this case, the asymptotic
expansion of MLE can be obtained in the same way as for the Ornstein-Uhlenbeck
process.

Remark 3.3. We can also obtain the asymptotic expansion of the conditional
maximum likelihood estimator defined as a solution of δΛT (θ), and the resultant
expansion becomes the same one as the (exact) maximum likelihood estimator
except for τ = 0.

Acknowledgements
We express our gratitude to the editor, the associate editor and the referees

for careful reading and valuable comments. This work was in part supported
by the Research Fund for Scientists of the Ministry of Science, Education and
Culture, and by Cooperative Research Program of the Institute of Statistical
Mathematics.

References

Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expan-
sion, Ann. Statist., 6, 434–451.

Götze, F. and Hipp, C. (1983). Asymptotic expansions for sums of weakly dependent random
vectors, Z. Wahr., 64, 211–239.

Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes,
2nd ed., North-Holland/Kodansha, Tokyo.

Kakizawa, Y. (2002). Edgeworth approximation in the O-U process, Sankhyā, 64, 16–41.
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