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EFFECT OF W, LR, AND LM TESTS ON THE
PERFORMANCE OF PRELIMINARY TEST

RIDGE REGRESSION ESTIMATORS

B. M. Golam Kibria* and A. K. Md. E. Saleh**

The preliminary test ridge regression estimators (PTRRE) based on the Wald
(W ), Likelihood Ratio (LR) and Lagrangian Multiplier (LM) tests are considered in
this paper. Using risks, the regions of optimality of the estimators are determined.
Under the null hypothesis, the PTRRE based on LM test has the smallest risk
followed by the estimators based on LR and W tests. However, the PTRRE based
on W test performs the best followed by the LR and LM based estimators when
the parameter moves away from the subspace of the restrictions. The conditions of
superiority of the proposed estimator for both shrinkage parameter and departure
parameter are given. Some tables for maximum and minimum guaranteed relative
efficiency of the proposed estimators have been provided. These tables allow us to
determine the optimum level of significance corresponding to the optimum estimators
among proposed estimators. Finally, we conclude that the optimum choice of the level
of significance becomes the traditional choice by using the W test for all non-negative
shrinkage parameter.

Key words and phrases: Lagrangian multiplier, likelihood ratio test, preliminary
test, ridge regression, risk, superiority, Wald test.

1. Introduction

Consider the following linear regression model,

Y ∼ N(Xβ, σ2I),(1.1)

where Y is an n × 1 vector of observations on the dependent variable, which
follow a normal distribution with fixed mean, Xβ and unknown variance, σ2I, β
is an p× 1 vector of unknown parameters, X is an n× p known design matrix of
rank p (n ≥ p).

Our primary interest is to estimate the regression parameters β when it is
apriori suspected but not certain that β may be restricted to the subspace

H0 : Hβ = h,(1.2)

where H is an q× p known matrix of full rank q(< p) and h is an q× 1 vector of
known constants.
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The unrestricted least squares estimator (URLSE) of β is given by

β̃ = C−1X ′Y,(1.3)

where C = X ′X is the information matrix. The corresponding maximum likeli-
hood estimator of σ2 is given by

σ̃2 =
(Y −Xβ̃)′(Y −Xβ̃)

n
.

It is observed from (1.3) that the URLSE of β depends heavily on the character-
istics of the matrix C = X ′X. If the C matrix is ill-conditioned (near dependency
among various columns of C), then the least squares estimator (LSE) produce
unduly large sampling variances. Moreover, some of the regression coefficients
may be statistically insignificant with wrong sign and meaningful statistical in-
ference become impossible for the researcher. Hoerl and Kennard (1970) found
that multicollinearity is a common problem in the field of engineering. To resolve
this problem, they suggested to use C(k) = X ′X + kIp, (k ≥ 0) rather than C
in the estimation of β. The resulting estimator of β are known as the Ridge Re-
gression Estimator (RRE). Hoerl and Kennard (1970) considered the following
unrestricted ridge regression estimator (URRE) of β,

β̃(k) = (X ′X + kIp)−1X ′y = Rβ̃,(1.4)

where R = [Ip + kC−1]−1 is the ridge or biasing parameter and k ≥ 0 is the
shrinkage parameter.

Suppose β∗ be any estimator of β, D be the positive semi definite matrix
and consider the following quadratic loss function

L(β∗, β) = (β∗ − β)′D(β∗ − β).

Then the risk function of β∗ is defined by

Risk = E[L(β∗, β)] = E[(β∗ − β)′D(β∗ − β)] = tr(DM) = Tr(M),

for D = Ip, where M is the mean-squared error matrix of β∗.
The bias and the risk of the URRE of β are

B(β̃(k)) = E(β̃(k) − β) = −kC−1(k)β and

R(β̃(k)) = σ2tr(WC−1W ′) + k2β′C−2(k)β,(1.5)

respectively. Though these estimators in (1.4) result in biased, for certain value of
k, they yield minimum mean square error compared to unrestricted least squares
estimator.

In order to reduce the pain of multicollinearity, the very well known restricted
least squares (RLS) method of estimation are useful in practice. The restricted
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least squares estimator (RLSE) of β and the maximum likelihood estimator of
σ2 are

β̂ = β̃ − C−1H ′(HC−1H ′)−1(Hβ̃ − h) and

σ̂2 =
(Y −Xβ̂)′(Y −Xβ̂)

n

respectively. Based on the RLSE, Sarkar (1992) proposed the following restricted
ridge regression estimator (RRRE) of β,

β̂(k) = Rβ̂.(1.6)

The bias and risk of the RRRE of β are, respectively,

B(β̂(k)) = −Rη − kC−1(k)β and

R(β̂(k)) =σ2
[
tr(RC−1R′) − tr(RAR′)

]
+ η′R′Rη(1.7)

+ 2kη′R′C−1(k)β + k2β′C−2β,

where η = C−1H ′(HC−1H ′)−1(Hβ − h) and A = C−1H ′(HC−1H ′)−1HC−1.
It is well known that the RRRE performs better than the URRE, when the

restrictions hold but as long as the parameters, β moves away from the subspace
Hβ = h, the RRRE becomes biased and inefficient while the performance of the
URRE remains stable. As a result, one may combine the URRE and RRRE to
obtain a better performance of the estimators in presence of the uncertain prior
information (UPI) Hβ = h, which leads to preliminary test ridge regression
estimator (PTRRE). Saleh and Kibria (1993) define the PTRRE of β as,

β̂PT (k) = Rβ̂PT ,(1.8)

where β̂PT = β̂ + {1 − I(Ln ≤ Ln,α)}(β̃ − β̂) is the usual preliminary test least
squares estimator (PTLSE). Here, Ln is the general test-statistic for testing
the null-hypothesis in (1.2), and Ln,α is the upper α-level critical value of Ln
and I(A) is the indicator function of the set A. The preliminary test approach
estimation has been pioneered by Bancroft (1944), followed by Bancroft (1964),
Han and Bancroft (1968), Giles (1991) and Kibria and Saleh (1993) among others.
The ridge regression approach has been studied by Hoerl and Kennard (1970),
McDonald and Galarneau (1975), Lawless (1978), Gibbons (1981), Sarkar (1992),
Saleh and Kibria (1993) and Kibria (1996) to mention a few.

The PTRRE proposed by Saleh and Kibria (1993) have used the test statistic
Ln for testing the null hypothesis (1.2), which follows a central F -distribution
with appropriate degrees of freedoms. The main objective of this paper is to
provide a finite sample theory of the PTRRE based on W , LR and LM tests.
We assume a Gaussian linear regression model to estimate the parameters in
the model. We organize this paper as follows. In Section 2 we propose the
preliminary test ridge regression estimators based on W , LR and LM tests.
Section 3 contains the biases and risks of the estimators. In Section 4 we discuss
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the relative performance of the estimators. The computed risk analysis and
graphs are presented in Section 5. The maximum and minimum guaranteed
efficiency is discussed in Section 6. Finally, summary and concluding remarks
have been added in Section 7.

2. Proposed estimators based on W , LR and LM tests

The usual test statistic for testing the null hypothesis in (1.2) is

F =
(RRSS − URRE)/q

URSS/(n− p)
=

(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)
qσ̃2

,

where URSS = (Y −Xβ̃)′(Y −Xβ̃) is the unrestricted residual sum of squares
and RRSS = (Y −Xβ̂)′(Y −Xβ̂) is the restricted residual sum of squares. The
test-statistic F follows a central F -distribution with (q, n−p) degrees of freedom
(DF) under H0. However, when H0 does not hold the test statistic F follows a
non-central F -distribution with non-central parameter, 1

2∆, where

∆ =
(Hβ − h)′(HC−1H ′)−1(Hβ − h)

σ2
=

η′Cη

σ2
(2.1)

is called the departure parameter.
The following three tests, W,LR and LM are well employed for testing the

hypothesis (1.2) in Econometric Theory. Wald (1943), first introduce the W test
as follows:

LW =
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

σ̃2
=

nq

n− p
F.(2.2)

The well known LR test is

LLR = n
[
ln σ̂2 − ln σ̃2

]
= n ln

(
1 +

LW
n

)
.(2.3)

Aitchison and Silvey (1958) and Silvey (1959) introduce the LM test as

LLM =
(Hβ̃ − h)′(HC−1H ′)−1(Hβ̃ − h)

σ̂2
=

LW
1 + LW /n

.(2.4)

It is observed that LW and LLM test statistics differ only by different estimates of
σ2. Also note that the LM test is the same as the score test of Rao (1947). Savin
(1976), and Berndt and Savin (1977) have shown that the following inequality

LW ≥ LLR ≥ LLM(2.5)

exists among these three tests. From equations (2.2) to (2.4), we observed that
LLR and LLM statistics are function of LW and therefore, all the test statistics
are monotonic function of F statistic. Each of the test statistic has a different
sampling distribution and hence the critical values. The PTRRE defined in term
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of exact tests at a given significance level has the same bias and risk. However,
due to the inequality relation among the value of test statistics, the PTRREs
based on a fixed critical value may have different biases and risks.

The exact sampling distribution of the test statistics is complicated. There-
fore, the critical regions of the tests are commonly based on asymptotic ap-
proximations. It can be shown that under the restriction (1.2), all tests are
asymptotically distributed as χ2-random variable with q degrees of freedom. We
propose the following PTRRE based on W , LR and LM tests, which are given
below,

β̂PT∗ (k) = β̂(k)I(L∗ ≤ χ2
q(α)) + β̃(k)I(L∗ > χ2

q(α)),(2.6)

where (∗) stands for either of W , LR and LM tests and χ2
q(α) is the upper

percentile of the central χ2 distribution with q degrees of freedom. For k = 0, we
obtain the PTLSE based on W , LR and LM tests, which have been considered
by Billah and Saleh (2000).

For excellent reference on W , LR and LM tests, readers are refereed to
Judge et al. (1988) and for various researches on W , LR and LM tests, readers
are refereed to Savin (1976), Berndt and Savin (1977), Rao and Mukerjee (1977),
Evans and Savin (1982), Billah and Saleh (2000), and recently Kibria (2002) and
Kibria and Saleh (2003) among others. In the following section, we will provide
the biases and risks of the proposed estimators.

3. Biases and risks of the estimators

The biases and the risk expressions of the proposed estimators are routinely
followed from Judge and Bock (1978, Chapter 10).

The biases of the proposed estimators are as follows:

B(β̂PT∗ ) = −RηGq+2,n−p(l∗1; ∆) − kC−1(k)β,(3.1)

where (∗) stands for either of W , LR and LM tests and

lW1 =
(
n− p

q + 2

)
χ2
α(q)
n

,

lLR1 =
(
n− p

q + 2

) (
e
χ2
α(q)

n − 1
)
,(3.2)

lLM1 =
(
n− p

q + 2

)
χ2
α(q)

(n− χ2
α(q))

,

also Gq+2,n−p(.; ∆) is the cumulative distribution function (CDF) of a non-central
F -distribution with (q + 2, n − p) degrees of freedom (DF) and non-centrality
parameter 1

2∆. Note that for α = 1, we reject the null hypothesis, then the bias
of the three estimators coincide with the bias of the URRE, however, for α = 0,
we do not reject the null hypothesis and the bias of the proposed estimators
coincide with that of the RRRE. As ∆ → ∞, B(β̂PTW (k)) = B(β̂PTLR (k)) =
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B(β̂PTLM (k)) = B(β̃(k)), whereas, the bias of the RRRE remains unbounded.
Since, lLM1 ≥ lLR1 ≥ lW1 , for all α, p and n, it follows that

Gq+2,n−p(lLM1 ; ∆) ≥ Gq+2,n−p(lLR1 ; ∆) ≥ Gq+2,n−p(lW1 ; ∆).(3.3)

Based on the above information, we may state the following theorem.

Theorem 1. Under the null hypothesis the proposed estimators are biased
and the amount of bias are same. However, under the alternative hypothesis the
dominance picture of the proposed estimators is

β̂PTW (k) ≥ β̂PTLR (k) ≥ β̂PTLM (k),

where ≥ denotes the dominance in the sense of having smaller quadratic bias.
For k = 0, we have the dominance picture for the preliminary test least squares
estimators (PTLSE) based on W, LR and LM tests.

The risk for the PTRRE based on the W , LR and LM are provided below:

R(β̂PT∗ (k)) =σ2tr(RC−1R′) − σ2tr(RAR′)Gq+2,n−p(l∗1; ∆)(3.4)
+ η′R′Rη × [2Gq+2,n−p(l∗1; ∆) −Gq+4,n−p(l∗2; ∆)]

+ 2kGq+2,n−p(l∗1; ∆)η′R′C−1(k)β + k2β′C−2(k)β,

where (∗) stands for either of W , LR and LM tests and

lW2 =
(
n− p

q + 4

)
χ2
α(q)
n

,

lLR2 =
(
n− p

q + 4

) (
e
χ2
α(q)

n − 1
)
,(3.5)

lLM2 =
(
n− p

q + 4

)
χ2
α(q)

(n− χ2
α(q))

,

also Gq+4,n−p(.; ∆) is the cumulative distribution function (CDF) of a non-central
F -distribution with (q + 4, n − p) degrees of freedom (DF) and non-centrality
parameter 1

2∆.

4. Performance of the estimators

In this Section we will compare the performance of the proposed estimators
by using risks. We note from (3.4) that for given α and known data, the risks
depend on the departure parameter ∆ and shrinkage parameter k. Therefore, we
will study the relative performance of the estimators based on values of ∆ and k
and provided them in the following two subsections.

4.1. Performance as a function of ∆
We obtain from Anderson (1984, Theorem A.2.4, p. 590) that

γp ≤
η′R′Rη

η′Cη
≤ γ1, or

σ2∆γp ≤ η′R′Rη ≤ σ2∆γ1,(4.1)
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where γ1 and γp are the largest and the smallest characteristic roots of the matrix
(R′RC−1).

Now we compare between β̂PTW (k) and β̂PTLR (k). The risk difference is:

R(β̂PTW (k))−R(β̂PTLR (k)) =(4.2)

σ2tr(RAR′)ψ − η′R′Rη[2ψ − ψ∗] − 2kη′R′C−1(k)βψ,

where ψ = Gq+2,n−p(lLR1 ; ∆) − Gq+2,n−p(lW1 ; ∆) and ψ∗ = Gq+4,n−p(lLR2 ; ∆) −
Gq+4,n−p(lW2 ; ∆). Note from (3.3) that both ψ and ψ∗ are positive for all k, ∆
and α.

The difference in (4.2) is non-negative (≥ 0), whenever

∆ ≤ tr(RAR′) − 2kσ−2η′R′C−1(k)β

γ1

(
2 − ψ∗

ψ

) = ∆1(k, α).(4.3)

Thus, β̂PTLR (k) performs better than β̂PTW (k), when (4.3) holds. However, β̂PTW (k)
performs better than β̂PTLR (k), whenever

∆ >
tr(RAR′) − 2kσ−2η′R′C−1(k)β

γp

(
2 − ψ∗

ψ

) = ∆2(k, α).(4.4)

Under the null hypothesis, the difference in (4.2) is always positive for all α,
therefore, β̂PTLR (k) is superior to β̂PTW (k).

Now we compare the performance of β̂PTLR (k) with that of β̂PTLM (k). The risk
difference is:

R(β̂PTLR (k))−R(β̂PTLM (k)) =(4.5)

σ2tr(RAR′)ψ1 − η′R′Rη[2ψ1 − ψ∗
1] − 2kη′R′C−1(k)βψ1,

where ψ1 = Gq+2,n−p(lLM1 ; ∆) −Gq+2,n−p(lLR1 ; ∆) and ψ∗
1 = Gq+4,n−p(lLM2 ; ∆) −

Gq+4,n−p(lLR2 ; ∆).
The difference in (4.5) is non-negative (≥ 0), whenever

∆ ≤ tr(RAR′) − 2kσ−2η′R′C−1(k)β

γ1

(
2 − ψ∗

1
ψ1

) = ∆3(k, α).(4.6)

Thus, β̂PTLM (k) performs better than β̂PTLR (k) when (4.6) holds, otherwise β̂PTLR (k)
performs better than β̂PTLM (k), whenever

∆ >
tr(RAR′) − 2kσ−2η′R′C−1(k)β

γp

(
2 − ψ∗

1
ψ1

) = ∆4(k, α).(4.7)

Under the null hypothesis the difference in (4.5) is always positive for all α,
therefore, β̂PTLM (k) is superior to βPTLR (k). Now we can describe the graph of
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β̂PT∗ (k) (∗ stands for either of W , LR and LM tests) as follows. At ∆ = 0, it
assumes a value

σ2tr(RC−1R′) − σ2tr(RAR′)Gq+2,n−p(l∗1; 0) + k2β′C−2(k)β,

then increases from 0, crossing the risk of β̃(k) to a maximum and then drops
gradually towards the risk of β̃(k) as ∆ → ∞.

Based on the above analysis we may state the following theorem:

Theorem 2. Under the null hypothesis the dominance picture of the pro-
posed estimators is

β̂PTLM (k) ≥ β̂PTLR (k) ≥ β̂PTW (k),

where ≥ denotes the dominance in the sense of having smaller risk.
Under the alternative hypothesis, the dominance picture of the proposed estima-
tors is

β̂PTLM (k) ≥ β̂PTLR (k) ≥ β̂PTW (k),

in the interval

∆ ∈ (0, ∆∗
13(k, α)] ,

where ∆∗
13(k, α) = min {∆1(k, α),∆3(k, α)}, also ∆1(k, α) and ∆3(k, α) are given

in (4.3) and (4.6) respectively, while

β̂PTW (k) ≥ β̂PTLR (k) ≥ β̂PTLM (k),

in the interval

∆ ∈ (∆∗
24(k, α),∞) ,

where ∆∗
24(k, α) = max {∆2(k, α),∆4(k, α)}, also ∆2(k, α) and ∆4(k, α) are

given in (4.4) and (4.7) respectively. For k = 0, the results in Theorem 2 will
coincide with that of Billah and Saleh (2000).

4.2. Performance based on k
In this subsection, we will compare the performance of the proposed esti-

mators based on shrinkage parameter k. For this, we assume that Q be the
orthogonal matrix with eigenvectors of C so that

Q′CQ = Λ = diag(λ1, λ2, ..., λp),

where λ1, λ2, ..., λp denote the eigen values of the matrix C. As C is symmetric
we can write

RAR′ = Q[Λ + kIp]−1ΛA∗Λ[Λ + kIp]−1Q′,(4.8)
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where Q′AQ = A∗. Now without loss of generality we assume that λ1 ≥ λ2 ≥
· · ·λp > 0, and we can write,

tr(RC−1R′) =
p∑
i=1

λi
(λi + k)2

and tr(RAR′) =
p∑
i=1

λ2
i a

∗
ii

(λi + k)2
,(4.9)

where a∗ii ≥ 0 is the ith diagonal element of the matrix A∗. Also,

β′C−2(k)β =
p∑
i=1

α2
i

(λi + k)2
, where α = Q′β,(4.10)

η′R′Rη =
p∑
i=1

λ2
i η

∗
i
2

(λi + k)2
and η′R′C−1(k)β =

p∑
i=1

αiλiηi
∗

(λi + k)2
,(4.11)

where η∗ = η′Q. Using equations (4.9) to (4.11), the risk difference in equation
(4.2) can be expressed in terms of the eigen values as

R(β̂PTW (k))−R(β̂PTLR (k)) =(4.12)
p∑
i=1

λi
(λi + k)2

[
σ2ψa∗iiλi − (2ψ − ψ∗)λiη∗i

2 − 2ψkη∗i αi
]
.

The difference in (4.12) will be non-negative (≥ 0) if

k ≤ min
[
σ2ψa∗iiλi − (2ψ − ψ∗)λiη∗i

2
]

max[2ψη∗i αi]
= k1(α,∆).(4.13)

Thus, β̂PTLR (k) will dominate β̂PTW (k) if 0 ≤ k ≤ k1(α,∆), while β̂PTW (k) will
dominate β̂PTLR (k) whenever

k >
max

[
σ2ψa∗iiλi − (2ψ − ψ∗)λiη∗i

2
]

min[2ψη∗i αi]
= k2(α,∆).(4.14)

Now we compare between β̂PTLR (k) and β̂PTLM (k) estimators. As before, the
risk difference between β̂PTLR (k) and β̂PTLM (k) is:

R(β̂PTLR (k))−R(β̂PTLM (k)) =(4.15)
p∑
i=1

λi
(λi + k)2

[
σ2ψ1a

∗
iiλi − (2ψ1 − ψ∗

1)λiη
∗
i
2 − 2ψ1kη

∗
i αi

]
.

The difference in (4.15) will be non-negative (≥ 0) if

k ≤ min
[
σ2ψ1a

∗
iiλi − (2ψ1 − ψ∗

1)λiη
∗
i
2
]

max[2ψ1η∗i αi]
= k3(α,∆).(4.16)
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Thus, β̂PTLM (k) will dominate β̂PTLR (k) if 0 ≤ k ≤ k3(α,∆), while β̂PTLR (k) will
dominate β̂PTLM (k) when

k >
max

[
σ2ψ1a

∗
iiλi − (2ψ1 − ψ∗

1)λiη
∗
i
2
]

min[2ψ1η∗i αi]
= k4(α,∆).(4.17)

Based on the above results, we may state the following theorem:

Theorem 3. Under the alternative hypothesis, the dominance picture of
the proposed estimators is

β̂PTLM (k) ≥ β̂PTLR (k) ≥ β̂PTW (k),

in the interval

k ∈ (0, k13(α,∆)] ,

where k13(α,∆) = min {k1(α,∆), k3(α,∆)}, also k1(α,∆) and k3(α,∆) are given
in (4.13) and (4.16) respectively, while

β̂PTW (k) ≥ β̂PTLR (k) ≥ β̂PTLM (k),

in the interval

k ∈ (k24(α,∆),∞) ,

where k24(α,∆) = max {k2(α,∆), k4(α,∆)}, also k2(α,∆) and k4(α,∆) are given
in (4.14) and (4.17) respectively.

Now, considering the conditions on ∆ and k simultaneously, we may state
the following theorem:

Theorem 4. Under the alternative hypothesis, the dominance picture of
the proposed estimators is:

β̂PTLM (k) ≥ β̂PTLR (k) ≥ β̂PTW (k),

in the interval,

(∆, k) ∈ (0,∆13(k, α)] × (0, k13(α,∆)] ,

while

β̂PTW (k) ≥ β̂PTLR (k) ≥ β̂PTLM (k),

in the interval,

(∆, k) ∈ (∆24(k, α),∞) × (k24(α,∆),∞).
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5. Computed risk analysis

In this section we will provide some graphical representation of the proposed
estimators. Note that, for given α, the risks of the estimators depends on ob-
served data and unknown parameters k and ∆. Thus the dominance pictures of
the estimators are data dependent. In order to avoid data dependent condition,
we will consider the orthonormal regression, X ′X = I. Furthermore to facilitate
numerical computation of risks of the proposed estimators, we consider H ′H = I,
β′β=1, and h = 0. Using these restrictions in (3.4), the risks of the proposed
estimators become:

R(β̂PT∗ (k)) =
1

(1 + k)2
[
σ2(p− qGq+2,n−p(l∗1; ∆)) + ∆[2Gq+2,n−p(l∗1; ∆)(5.1)

−Gq+4,n−p(l∗2; ∆)] + 2k∆Gq+2,n−p(l∗1; ∆) + k2
]
,

where (∗) stands for either of W , LR and LM tests and l∗i (i = 1, 2) stands for
either of the critical values lWi , lLRi and lLMi of the tests.

Note that the URRE has constant risk as it does not depend on the re-
striction. Thus, for given k, β̂PTLR (k) is superior to β̂PTW (k) if ∆ ∈ (0, q

2−ψ∗
ψ

+2k
]

otherwise β̂PTW (k) is superior to β̂PTLR (k) if ∆ ∈ ( q

2−ψ∗
ψ

+2k
, ∞). Now, β̂PTLM (k)

is superior to β̂PTLR (k) if ∆ ∈ (0, p

2−ψ∗
1
ψ1

+2k
), otherwise β̂PTLR (k) will be superior
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Figure 1. Risk function of the PTRRE based on the W , LR and LM tests for different

significance levels and fixed n = 10 and k = 0.10.
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Figure 2. Risk function of the PTRRE based on the W , LR and LM tests for different

significance levels and fixed n = 20 and k = 0.50.

to β̂PTLM (k) if ∆ ∈ [ q

2−ψ∗
1
ψ1

+2k
, ∞). Similarly, for given ∆, β̂PTLR (k) is superior to

β̂PTW (k) if k ∈ (0, 1
2( q∆ − (2− ψ∗

ψ ))] otherwise β̂PTW (k) is superior to β̂LR(k). Simi-

larly, β̂PTLM (k) is superior to β̂PTLR (k) if k ∈ (0, 1
2( q∆ − (2− ψ∗

1
ψ1

))] otherwise β̂PTLR (k)

will be superior to β̂PTLM (k).
Thus it is evident that the performance of the PTRRE strongly depends on

the restriction of the parameters in the model and shrinkage parameter k. We
have plotted the risk functions versus ∆ for fixed p = 4 and q = 3 and for different
values of n, α and k and presented them in Figures 1 and 2. The computation
of the figures have been done by Splus software. From these figures we observe
that the graphical analysis support the findings of the paper.

6. Efficiency analysis

In this section, we describe the relative efficiency of the proposed estimators
for β. Accordingly, we provide max-min rule for the optimum choice of the level
of significance for the PTRRE of the null hypothesis. For a fixed value of k(> 0),
the relative efficiency of the PTRRE compared to the URRE is a function of α,
and ∆. Let us denote this by

E(k, α,∆) =
R(β̃(k))

R(β̂PT∗ (k))
= [1 − h(k, α,∆)]−1 ,(6.1)
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where (∗) stands for either of W , LR and LM tests,

h(k, α,∆) =
g(k, α,∆)

σ2tr(RC−1R′) + k2β′C−2(k)β
,

and

g(k, α,∆) =σ2tr(RAR′)Gq+2,n−p(l∗1; ∆)
− η′R′Rη

{
2Gq+2,n−p(l∗1; ∆) −Gq+4,n−p(l∗2; ∆)

}
− 2kGq+2,n−p(l∗1; ∆)η′R′C−1(k)β,

l∗i (i = 1, 2) stands for either of the critical values lWi , lLRi and lLMi of the tests.
For a given n, p, q and k, E(k, α,∆), is a function of α and ∆. For α �= 0, it has
maximum at ∆ = 0 with value

Emax(k, α, 0) =
[
1 − σ2tr(RAR′)Gq+2,n−p(l∗1; 0)

σ2tr(RC−1R′) + k2β′C−2(k)β

]−1

.

As ∆ increases from 0, E(k, α,∆) decreases and crossing the line E(k, α,∆) =
1 to a minimum E(k, α,∆min) at ∆ = ∆min, then increases towards 1 as ∆ → ∞.
For ∆ = 0 and varying α, we obtain,

max
0≤α≤1

E(k, α, 0) = E(k, 1, 0) =
[
1 − σ2tr(RAR′)

σ2tr(RC−1R′) + k2β′C−2(k)β

]−1

.

The value E(k, α, 0) decreases as α increases. On the other hand, for α �= 0,
as ∆ varies the graphs of E(k, 0,∆) and E(k, 1,∆) intersect in the range 0 ≤
∆ ≤ ∆1(k, 1), where ∆1(k, 1) is available from (4.3) for α = 1. Also for k = 0,
E(0, 0,∆) intersect at ∆ = q. For a general α, E(0, 0,∆) and E(0, 1,∆) will
intersect in the interval 0 ≤ ∆ ≤ q; the value of ∆ decrease at the intersection
decreases as α increase.

Thus in order to choose an estimator with optimum relative efficiency, we
adopt the following rule for given k values. If 0 < ∆ < ∆1(k, 1), β̂(k) is chosen
since E(k, 0,∆) is largest in this interval. However, in general ∆ is unknown
and may not lie in the interval and there is no way of choosing a uniformly
best estimator. In such case we pre-assign a value of the efficiency EMin (mini-
mum guaranteed efficiency) and consider the set A = {α|E(k, α,∆) ≥ EMin} and
choose an estimator which maximizes E(k, α,∆) for all α ∈ A and ∆ ∈ [0,∞).
Thus we solve the following equation

max
α∈A

min
∆

E(k, α,∆) = EMin.(6.2)

The solution α∗ for (6.2) gives the optimum choice of α and the value of ∆ =
∆min(k) for which (6.2) is satisfied. At the same time these values (α∗,∆min(k))
yield the corresponding value of optimum k, which can be estimated from the
following equation.

k̂(α,∆) =

min
[
σ2a∗iiλiGq+2,n−p(l∗1; ∆) − λiη

∗
i
2 {2Gq+2,n−p(l∗1; ∆) −Gq+4,n−p(l∗2; ∆)}

]
max[2η∗i αiGq+2,n−p(l∗1; ∆)]

.
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The above equation is obtained from the risk difference of URRE and PTRRE
and based on the smaller risk criterion. We have not made any attempt for
numerical computation of k. However, details discussion about the estimation
procedure of k are avaliable in Gibbons (1981), McDonald and Galarneau (1975)
and most recently Kibria (2003) among others.

For each estimator we can find the optimum significance level say αW∗ , αLR∗ ,
αLM∗ respectively, with minimum guaranteed efficiency EMin. Then, we choose
α∗ = min(αW∗ , αLR∗ , αLM∗ ) as optimum level of significance. Note that our main
goal is to choose the smallest level of significance (α) which gives the best esti-
mator in the sense of highest efficiency. Imposing the restrictions on X ′X = Ip,
H ′H = I, and β′β = 1, in equation (6.1), we obtain the minimum guaranteed
efficency of the proposed estimators compared to URRE (for k = 0, we obtain for
URLSE and the results will coincide with that of Billah and Saleh (2000)). Ta-
bles 1 and 2 provide the value of the maximum and minimum guaranteed relative
efficiency and recommended corresponding size of α of the proposed estimators
for p = 4, q = 3 and n = 10, 15, 20, 30, and k = 0.10 and 0.50 respectively.
How can one use the table? For example, if n = 10, p = 4, k = 0.10, and
the experimenter wishes to have an estimator with a minimum guaranteed effi-
ciency of 0.80. Now using Table 1, we recommend him/her to select α = 0.05,
corresponding to β̂PTW (k), because such a choice of α would yield an estimator
with a minimum efficiency of 0.80007 and maximum efficiency 1.56396. Note
that the size of α corresponding to the minimum guaranteed efficiency of 0.80
for β̂PTLR (k) and β̂PTLM (k) are 0.15 and 0.25 respectively. Therefore, we choose
α∗ = min(0.05, 0.15, 0.25) = 0.05, which corresponds to Wald test. Suppose,
n = 20, p = 4, k = 0.50, and the experimenter wishes to have an estimator with
a minimum guaranteed efficiency of 0.60. Now using Table 2, we select α = 0.05,
corresponding to β̂PTW (k), because such a choice of α would yield an estima-
tor with a minimum guaranteed efficiency of 0.61809 and maximum efficiency
of 1.89190. Note that the size of α corresponding to the minimum guaranteed
efficiency of 0.60 for β̂PTLR (k) and β̂PTLM (k) are 0.10 and 0.15 respectively. Thus
we choose, α∗ = min(0.05, 0.10, 0.15) = 0.05, which again corresponds to Wald
test. Therefore, from the application point of view it is evident that for all n, p,
and k, the PTRRE based Wald test will give the minimum guaranteed efficiency
compared to URRE among the three test procedures.

7. Summary and concluding remarks

In this paper we studied the effect of Wald, likelihood ratio and Lagrangian
multiplier tests on the performance of the preliminary test ridge regression es-
timator for estimating the regression parameters when there exist a uncertain
prior information in the parameter space. We have effectively determined some
conditions on the departure parameter and the shrinkage parameter for the su-
periority of the proposed estimators. Note that the superiority of the proposed
estimators depend on data and the information about the hypothesis. We have
also discussed the method of choosing optimum level of significance to obtain
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Table 1. Max & Min guaranteed efficiency of PTRREs (k = 0.10).

n = 10

Test α 5% 10% 15% 20% 25% 30% 50%

W EMax 1.56396 1.40452 1.31381 1.25158 1.20502 1.16843 1.07581

EMin 0.80007 0.85409 0.88635 0.90905 0.92626 0.93986 0.97410

∆Min 6.69856 6.02871 5.64593 5.35885 5.07177 4.88038 4.40191

LR EMax 1.98363 1.65488 1.48185 1.37054 1.29167 1.23250 1.09514

EMin 0.67336 0.77081 0.82746 0.86606 0.89438 0.91608 0.96704

∆Min 8.51675 7.08134 6.41148 5.93301 5.55024 5.26316 4.49761

LM EMax 3.43551 2.43850 1.93330 1.65251 1.47724 1.35867 1.12509

EMin 0.31104 0.55459 0.68753 0.77157 0.82902 0.87027 0.95597

∆Min 19.25837 10.64593 8.25359 7.05742 6.33971 5.86124 4.66507

n = 15

W EMax 1.83172 1.58811 1.45108 1.35828 1.28972 1.23641 1.10432

EMin 0.74746 0.81245 0.85238 0.88099 0.90296 0.92052 0.96541

∆Min 6.88995 6.12440 5.74163 5.35885 5.16746 4.97608 4.40191

LR EMax 2.21955 1.82231 1.60781 1.46859 1.36954 1.29508 1.12168

EMin 0.65577 0.74985 0.80693 0.84713 0.87744 0.90121 0.95945

∆Min 8.13397 6.88995 6.22010 5.74163 5.45455 5.16746 4.40191

LM EMax 3.02054 2.29117 1.89905 1.65995 1.50006 1.38623 1.14484

EMin 0.48647 0.63996 0.73065 0.79255 0.83780 0.87223 0.95150

∆Min 11.12440 8.37321 7.05742 6.33971 5.86124 5.50239 4.54545

n = 20

W EMax 1.99859 1.70170 1.53497 1.42272 1.34030 1.27661 1.12065

EMin 0.72092 0.79093 0.83455 0.86610 0.89050 0.91011 0.96066

∆Min 6.98565 6.22010 5.74163 5.45455 5.16746 4.97608 4.40191

LR EMax 2.33411 1.90680 1.67227 1.51912 1.40984 1.32755 1.13557

EMin 0.64999 0.74169 0.79837 0.83890 0.86984 0.89438 0.95570

∆Min 7.84689 6.69856 6.12440 5.74163 5.35885 5.16746 4.40191

LM EMax 2.89281 2.24537 1.88835 1.66382 1.50993 1.39823 1.15406

EMin 0.54036 0.66813 0.74594 0.80052 0.84143 0.87324 0.94959

∆Min 9.56938 7.65550 6.69856 6.10048 5.62201 5.38278 4.54545

n = 30

W EMax 2.19088 1.83293 1.63124 1.49606 1.39742 1.32167 1.13854

EMin 0.69436 0.76904 0.81624 0.85069 0.87754 0.89923 0.95564

∆Min 7.08134 6.22010 5.74163 5.45455 5.16746 4.97608 4.40191

LR EMax 2.44533 1.99128 1.73747 1.57050 1.45095 1.36076 1.14985

EMin 0.64583 0.73482 0.79081 0.83140 0.86278 0.88792 0.95201

∆Min 7.65550 6.60287 6.02871 5.64593 5.35885 5.07177 4.40191

LM EMax 2.79492 2.20990 1.88024 1.66770 1.51903 1.40929 1.16290

EMin 0.58185 0.69065 0.75858 0.80735 0.84466 0.87424 0.94784

∆Min 8.61244 7.17703 6.33971 5.86124 5.50239 5.26316 4.42584
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Table 2. Max & Min guaranteed efficiency of PTRREs (k = 0.50).

n = 10

Test α 5% 10% 15% 20% 25% 30% 50%

W EMax 1.51569 1.37315 1.29093 1.23405 1.19123 1.15742 1.07123

EMin 0.71448 0.78574 0.83035 0.86269 0.88774 0.90787 0.95977

∆Min 6.12440 5.45455 5.07177 4.78469 4.59330 4.40191 3.92344

LR EMax 1.87925 1.59587 1.44259 1.34245 1.27074 1.21653 1.08929

EMin 0.56276 0.67760 0.75008 0.80210 0.84169 0.87287 0.94893

∆Min 7.84689 6.50718 5.74163 5.35885 4.97608 4.68900 4.01914

LM EMax 3.02014 2.25530 1.83651 1.59378 1.43847 1.33169 1.11720

EMin 0.22079 0.43750 0.57873 0.67853 0.75214 0.80791 0.93209

∆Min 18.42105 9.92823 7.65550 6.45933 5.74163 5.26316 4.18660

n = 15

W EMax 1.74955 1.53706 1.41503 1.33135 1.26895 1.22012 1.09785

EMin 0.64950 0.73094 0.78387 0.82322 0.85428 0.87964 0.94657

∆Min 6.31579 5.55024 5.16746 4.88038 4.59330 4.40191 3.92344

LR EMax 2.07654 1.74144 1.55445 1.43073 1.34155 1.27385 1.11402

EMin 0.54366 0.65239 0.72380 0.77678 0.81828 0.85180 0.93751

∆Min 7.46411 6.22010 5.64593 5.16746 4.88038 4.68900 4.01914

LM EMax 2.71119 2.13546 1.80729 1.60031 1.45887 1.35664 1.13556

EMin 0.37214 0.52639 0.62932 0.70540 0.76428 0.81105 0.92551

∆Min 10.40670 7.65550 6.45933 5.74163 5.26316 4.90431 4.06699

n = 20

W EMax 1.89190 1.63684 1.48996 1.38955 1.31503 1.25697 1.11307

EMin 0.61809 0.70359 0.76018 0.80279 0.83677 0.86471 0.93941

∆Min 6.41148 5.64593 5.16746 4.88038 4.68900 4.40191 3.92344

LR EMax 2.17058 1.81391 1.61111 1.47585 1.37795 1.30344 1.12694

EMin 0.53757 0.64278 0.71306 0.76596 0.80795 0.84223 0.93192

∆Min 7.27273 6.12440 5.55024 5.16746 4.88038 4.59330 3.92344

LM EMax 2.61346 2.09784 1.79814 1.60370 1.46767 1.36747 1.14411

EMin 0.42389 0.55762 0.64792 0.71582 0.76934 0.81264 0.92271

∆Min 8.85167 7.05742 6.10048 5.50239 5.14354 4.78469 4.06699

n = 30

W EMax 2.05283 1.75059 1.57509 1.45530 1.36674 1.29809 1.12970

EMin 0.58753 0.67644 0.73635 0.78202 0.81879 0.84929 0.93189

∆Min 6.50718 5.64593 5.26316 4.88038 4.68900 4.49761 3.92344

LR EMax 2.26080 1.88572 1.66800 1.52148 1.41492 1.33359 1.14020

EMin 0.53330 0.63483 0.70370 0.75624 0.79844 0.83329 0.92643

∆Min 7.08134 6.02871 5.45455 5.07177 4.78469 4.59330 3.92344

LM EMax 2.53770 2.06856 1.79120 1.60710 1.47577 1.37746 1.15230

EMin 0.46571 0.58327 0.66357 0.72485 0.77391 0.81420 0.92018

∆Min 7.89474 6.45933 5.74163 5.26316 4.90431 4.66507 3.94737
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minimum guaranteed efficient estimators. The preliminary test ridge regression
estimator based on Wald test is found to be the most efficient in the choice of the
smallest level of significance. The most interesting result of the paper is the opti-
mum choice of the level of significance becomes the traditional choice by using W
test. Finally, we recommend the practitioner to use the Wald test among these
three test procedures when they consider the preliminary test ridge regression
estimator for estimating the regression parameter β. Furthermore, the findings
of this paper is also valid for k = 0, which agrees with that of Billah and Saleh
(2000).
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