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DISCRETE DURATION MODEL HAVING
AUTOREGRESSIVE RANDOM EFFECTS WITH

APPLICATION TO JAPANESE DIFFUSION INDEX

Yasuhiro Omori*

This article describes a semiparametric estimation method for a discrete du-
ration model with autoregressive random effects using Markov chain Monte Carlo
techniques, and analyzes the duration of ten monthly economic times series which
are components of the Japanese leading diffusion index. By introducing common
time-dependent random effects to the individual duration, we capture a co-movement
among durations that represents external macroeconomic factors. A dynamic mod-
elling approach is employed assuming smoothness conditions on the baseline hazard
function for long duration times with sparse observations.

Key words and phrases: Autoregressive random effects, discrete proportional haz-
ards model, Markov chain Monte Carlo method, sequential probit model, state space
model.

1. Introduction

Duration models have been widely applied to various economic and finan-
cial data recently. Among them are durations of unemployment (e.g. Kennan,
1985; Lancaster, 1990; McCall, 1996), bankruptcies (Lane et al., 1986;
Bandopadhyaya, 1994; Li, 1999), mortgage prepayments (Green and Shoven,
1986; Schwartz and Torous, 1989; Deng et al., 2000), business cycles (Diebold
and Rudebusch, 1990, 1992; Durland and McCurdy, 1994; Ghysels, 1997) and
financial transaction data (Engle and Russell, 1998).

While most duration models are based on continuous time models that are
designed for biomedical data, economic data are often observed at discrete time
points such as weeks, months and quarters. For data observed at discrete time
points, Prentice and Gloeckler (1978) first described a simple discrete semipara-
metric proportional hazards model and applied it to survival data on a large set
of breast cancer data (11,442 observations) where no assumption was made for
the baseline hazard function. However, as it is often the case with economic
duration data, we may not have enough observations to conduct the nonpara-
metric estimation of parameters, especially when there is a large number of time
intervals. Therefore, we need to introduce some smoothness conditions on the
baseline hazard function to construct a semiparametric discrete duration model
for economic data (e.g. Gamerman, 1992; Fahrmeir, 1994; Omori and Johnson,
1998; Biller, 2000).

On the other hand, economic data are subject to some external macroe-
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conomic factors represented by common (possibly unobserved) time-dependent
variables. In multiple economic times series analysis, for example, a dynamic fac-
tor model is often considered to explain such a co-movement among time series
(e.g. Engle and Watson, 1981; Stock and Watson, 1991; Forni and
Reichlin, 1998). In the analysis of a panel of time series observations,
Hjellvik and Tjøstheim (1999) considered individual effect as well as common
effects over time to explain the intercorrelation across the panel and, further,
showed ignoring the intercorrelation would lead to the inconsistency of estima-
tors. This possibly unobserved common dynamic component can be modelled as
a time-dependent random effect and needs to be considered in discrete duration
models for economic data as well.

It has come to attention that ignoring such unobserved heterogeneity or ran-
dom effects would mislead the conclusion as to the duration data. For continuous
time models with time independent random effects, it is known that the hazard
rates are underestimated and that survival times are stochastically larger than
expected when the existence of random effects is ignored (Lee and Klein, 1988;
Lancaster, 1990; Omori and Johnson, 1993, 1999). Similar results are shown to
hold for the discrete time model with time independent random effects (Omori
and Johnson, 1998).

Accordingly, estimation procedures have been developed to account for het-
erogeneity. For continuous time models with time independent random effects,
Heckman and Singer (1984) first derived a consistent nonparametric maximum
likelihood estimator for a proportional hazards model where a distribution of
random effects is not specified. Honoré (1990) further proved asymptotic nor-
mality of a class of estimators based on order statistics for Weibull mixture
model, and Ishwaran (1996) also proposed an estimator that converges at uni-
form rate for a finite dimension parameter space. For semiparametric models,
Nielsen et al. (1992) assumed a gamma distribution for the random effect and
proposed EM algorithm for maximum likelihood estimation (see also Andersen
et al. (1993)). Murphy (1995) gave the asymptotic distribution of the estima-
tor of the cumulative hazard rates and variance of the gamma random effect.
Horowitz (1999) further established the asymptotic normality of the nonpara-
metric estimator for the baseline hazard and the distribution for random effects
assuming some smoothness conditions. Also, Sahu et al. (1997) gave an esti-
mation method using Markov chain Monte Carlo method for parametric and
semiparametric models. For discrete semiparametric models with time indepen-
dent random effects, Han and Hausman (1990) and Sueyoshi (1992) extended
Prentice and Gloeckler (1978) using an alternative formulation with competing
risks. Omori and Johnson (1998) imposed smoothness conditions on the hazards
rate function using a random walk process and gave an estimation method using
Markov chain Monte Carlo, while Albert and Chib (2001) used a polynomial
equation for the smoothness. We extend these models to consider an individual
basic duration structure as well as unobserved common dynamics.

In Section 2, we introduce a dynamic modelling of discrete duration time
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using the setup given in Albert and Chib (1993, 2001). Then we propose an
estimation method using Markov chain Monte Carlo techniques in Section 3. In
Section 4, we analyze the duration of ten monthly economic time series that
are components of the Japanese leading diffusion index. Section 5 concludes the
paper.

2. Model

We consider a discrete duration time Yit for the i-th subject at calendar time t
(i = 1, . . . , n, t = 1, . . . , T ). The duration has a discrete distribution at duration
time j ∈ {1, 2, . . . , J + 1} given the parameter θ. The discrete duration time
points correspond to certain intervals A1, A2, . . . , AJ+1 where Aj = (aj−1, aj ],
j = 1, 2, . . . , J + 1 with a0 = 0 < a1 < · · · < aJ+1 = ∞. We denote the failure
at duration time j by Yit = j for the i-th subject at calendar time t. Since the
duration of the i-th subject may start at any calendar time, it is a function of
both i and t (i.e. j = j(i, t)). We consider the discrete survival model with a
hazard rate function

Pr(Yit = j |Yit ≥ j, α, β, γ∗
t ) = F (θit), θit = αj − x′

itβ − z′itγt,(2.1)

where F is a cumulative distribution function, and α = (α1, . . . , αJ)′ represents
a baseline hazards function (or cutpoints), and xit, zit are vectors of (calendar)
time-varying covariates, and β is a regression parameter vector. The coefficient
γt is a vector of (calendar) time-varying parameters, and γ∗

t = {γ1, . . . , γt}.
Incorporating latent variables can derive this setup of the model. Suppose

that the duration of the i-th subject starts at calendar time t− j +1 and Yit ≥ j.
Then define latent variables Wit and wit such that

Wit = x′
itβ + z′itγt + eit, wit = Wit − αj ,(2.2)

where eit ∼ i.i.d. F. Conditional on Yit ≥ j, we observe Yit = j if Wit ≤ αj

(wit ≤ 0). Thus we obtain

Pr(Yit = j |Yit ≥ j, α, β, γ∗
t ) = Pr(Wit ≤ αj |α, β, γ∗

t )(2.3)
= F (αj − x′

itβ − z′itγt).

If we take a cumulative distribution function of an extreme value distribution for
F (θ), we obtain the proportional hazards model. If we use that of a standard
normal distribution, the sequential probit model is obtained. The γt’s introduce
autoregressive random effect components to account for unobserved common
dynamics subject to the macroeconomic condition. Also they represent missing
covariates or a set of miscellaneous covariates that cannot be included without
increasing the number of regression coefficients. We need to model them properly
as we need to do for serially correlated disturbances in the regression analysis of
time series data. We will assume that the γt’s are assumed to follow a stationary
process.
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To find a probability mass function for Yit, define the latent variables

Wi,t−j+k = x′
i,t−j+kβ + z′i,t−j+kγt−j+k + ei,t−j+k, wi,t−j+k = Wi,t−j+k − αk

for k = 1, . . . , j where ei,t−j+k ∼ i.i.d. F. Then we observe Yit = j when
Wi,t−j+1 > α1, . . . ,Wi,t−1 > αj−1 and Wit ≤ αj (equivalently, wi,t−j+1 >
0, . . . , wi,t−1 > 0 and wit ≤ 0). Thus the probability mass function of Yit is
given by

Pr(Yit = j |α, β, γ∗
t ) = F (θit)

j−1∏
s=1

{1 − F (θi,t−s)} , 1 ≤ j ≤ J,

Pr(Yit = J + 1 |α, β, γ∗
t ) =

J∏
s=1

{1 − F (θi,t−s)} .

When the observation Yit is right censored, we have

Pr(Yit = j, di = 0 |α, β, γ∗
t ) =

j−1∏
s=1

{1 − F (θi,t−s)} ,

where di = 0 if Yit is right censored and di = 1 otherwise.

2.1. Modelling baseline hazard rates through the αj’s
It is often that we do not have sufficient observations to estimate hazard rates

nonparametrically for larger duration time. Thus, we need to impose smoothness
conditions on the baseline hazard function by some prior process to obtain stable
estimators. We assume that αj follows a simple random walk as in Gamerman
(1992), Fahrmeir (1994), Omori and Johnson (1998) and Biller (2000).

αj+1 = αj + uj , uj ∼ i.i.d. N(0, σ2
u), j = 1, . . . , J − 1,(2.4)

and α1 ∼ N(0, σ2
u0). For a second order random walk process for αj , we have the

state space representation of the process(
αj+1

αj

)
=

(
2 −1
1 0

) (
αj

αj−1

)
+

(
1
0

)
uj , uj ∼ i.i.d. N(0, σ2

u),

for j = 1, . . . , J − 1. In general, we may consider the process

αj = G′δj , δj+1 = Hδj + Guj , uj ∼ N(0, σ2
u),(2.5)

where G = (1, 0, . . . , 0)′, δ1 ∼ N(0, σ2
u0I) and H is a known matrix. Instead of

the above random walk prior process, we may assume that the αj ’s satisfy the
polynomial model (e.g. Albert and Chib (2001)) such as

αj = ψ0 + ψ1(j − 1) + ψ2(j − 1)2 + uj , uj ∼ i.i.d. N(0, σ2
u),(2.6)

j = 1, . . . , J.

Both models are considered and compared using estimated marginal likelihood
in Section 4.
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2.2. Modelling the unobserved process through γt
We assume that the γt’s follow a stationary process. For example, we consider

the following first order autoregressive process for the univariate γt,

γt+1 = φγt + εt, εt ∼ i.i.d. N(0, σ2
ε ),(2.7)

γ1 ∼ N
(
0, σ2

ε /(1 − φ2)
)
, |φ| < 1

for t = 1, . . . , T − 1 where the φ and σ2
ε are unknown parameters. Higher

order stationary process may be constructed similarly through the state space
representation,

γt+1 = Φγt + εt, εt ∼ i.i.d. N(0,Σ),

for t = 1, . . . , T − 1 where Φ and γ1 satisfy a stationary condition.

3. Markov chain Monte Carlo implementation

This section proposes an estimation method using a Markov chain Monte
Carlo method.

3.1. Sequential probit model
In the sequential probit model, F is a cumulative distribution function of

a standard normal random variable. We generate latent variables wit’s so that
we obtain samples from conditional posterior distributions using normal random
variables.

Generation of latent variables, wit’s. First we consider the conditional posterior
distribution of wit’s. Suppose that we observe Yit = j. This implies wi,t−j+k > 0
for k = 1, . . . , j − 1 and wit ≤ 0. Using the conditional prior wi,t−j+k|α, β, γ ∼
N(−αk+x′

i,t−j+kβ+z′i,t−j+kγt−j+k, 1) for k = 1, . . . , j, we obtain the conditional
posterior distribution such that

wi,t−j+k|(yit = j), α, β, γ(3.1)

∼
{
TN(0,∞)(−αk + x′

i,t−j+kβ + z′i,t−j+kγt−j+k, 1), 1 ≤ k ≤ j − 1,
TN(−∞,0)(−αj + x′

itβ + z′itγt, 1), k = j,

where TN(a,b)(µ, σ2) denotes the normal distribution (µ, σ2) truncated to the
interval (a, b).

Generation of a regression parameter β. We assume a multivariate normal prior
for β, β ∼ N(b0, B0), which is conjugate. Then the conditional posterior distri-
bution is also multivariate normal with mean β̂ and covariance matrix B1 such
that

β̂ = B1

{
B−1

0 b0 +
T∑
t=1

∑
i∈Rt

(Wit − z′itγt)xit

}
,(3.2)

B1 =

(
B−1

0 +
T∑
t=1

∑
i∈Rt

xitx
′
it

)−1

,(3.3)
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where Rt denotes a set of labels attached to the subjects at risk at calendar time
t.

Generation of the γt’s. Let Ŵt denote the nt×1 vector of Wit’s for observations
at risk at calendar time t where nt is the number of subjects at risk at calendar
time t. Also let x̂t, ẑt, êt denote corresponding vectors of xit, zit, eit. Then we
consider a linear Gaussian system

Ŵt = x̂′
tβ + ẑ′tγt + êt, êt ∼ N(0, Int),(3.4)

γt+1 = Φγt + εt, εt ∼ N(0,Σ),(3.5)

for t = 1, . . . , T where γ1 ∼ N(0,Σ0). By using the simulation smoother given by
de Jong and Shephard (1995), we sample disturbances term and obtain samples
of the γt’s.

Generation of Φ. We set our prior to ensure the stationarity of γt and sample
from the conditional posterior density using accept/rejection algorithm. In the
univariate case with Φ = φ, we may assume a beta prior distribution for (φ+1)/2.
For example, if we take a uniform prior on (−1, 1) (Beta(1,1) prior for (φ+1)/2)
and assume a stationarity distribution for the initial value, γ1 ∼ N(0, σ2

ε /(1−φ2)),
then the conditional posterior distribution is given by

φ|γ, σ2
ε ∝ TN(−1,1)

(∑T
t=2 γt−1γt∑T−1
t=2 γ2

t

,
σ2
ε∑T−1

t=2 γ2
t

)
.(3.6)

Generation of Σ. As a prior distribution for Σ−1, we take Wishart distribution
W (ρ0, R0) given by

g(Σ−1) ∝ |Σ−1|(ρ0−rα−1)/2 exp
{
−1

2
trR−1

0 Σ−1

}
,(3.7)

where rα is a rank of Σ. Then the resulting conditional posterior is W (ρ0 +
1, {R−1

0 +
∑T−1

t=1 (γt+1 −Φγt)(γt+1 −Φγt)′}−1). When the γt’s are scalar, Σ = σ2
ε

and γ1 ∼ N(0, σ2
ε /(1−φ2)), we take Gamma(ϕ0, ϕ1) for the prior distribution of

σ−2
ε . The conditional posterior distribution is Gamma(ϕ0 + 0.5 ∗ (T − 1), {ϕ−1

1 +
0.5(1 − φ2)γ2

1 + 0.5
∑T−1

t=1 (γt+1 − φγt)2}−1).

Generation of the αj’s. Similarly to the case of the γt’s, we generate α condi-
tional on β, γ, w. Define an artificial variable ŵj such that

ŵj = − 1
mj

T∑
t=1

∑
i∈Rjt

(wit − x′
itβ − z′itγt),

where Rjt = {i : Yit ≥ j} and mj is the number of such observations. Then we
consider the following linear Gaussian system with αj = G′δj ,

ŵj = G′δj + vj , vj ∼ N(0,m−1
j ),(3.8)

δj+1 = Hδj + Guj , uj ∼ N(0, σ2
u),(3.9)



DISCRETE DURATION MODEL 7

for j = 1, . . . , J where δ1 ∼ N(0, σ2
u0I). By using the simulation smoother, we

obtain the samples of αj ’s.

Generation of σ2
u. We take Gamma(ξ0, ξ1) for the prior distribution of σ−2

u

and the conditional posterior distribution is Gamma(ξ0 + 0.5 ∗ (J − 1), {ξ−1
0 +

0.5
∑J−1

j=1 {G′(δj+1 − Hδj)}2}−1). For a first order random walk process with
αj = δj , we have Gamma(ξ0 + 0.5 ∗ (J − 1), {ξ−1

1 + 0.5
∑J−1

j=1 (αj+1 − αj)2}−1).

Acceleration of the Gibbs sampler. We may add the following step using gen-
eralized Gibbs sampler by Liu and Sabatti (2000) to accelerate the convergence
of the αj ’s and γt’s. For example, when the γt’s are assumed to be scalar and
zit = 1 for all i and t, generate δ ∼ N(µδ, σ

2
δ ) where

µδ = −σ2
δ

{
α1

var(α1)
+

(1 − φ2)γ1 + (1 − φ)
∑T

t=2(γt − φγt−1)
σ2
γ

}
,(3.10)

σ2
δ =

{
var(α1)−1 +

(1 − φ)2(T − 1) + (1 − φ2)
σ2
ε

}−1

,(3.11)

and set αj + δ → αj and γt + δ → γt for all j, t.

3.2. Extension to the duration model with non-normal F
This section focuses on the survival model where F is not a cumulative

distribution function of a standard normal distribution. Generations of Φ,Σ, σ2
u

can be done as in Section 3.1. For α, β, γ, we need the Metropolis-Hastings
algorithm with a pseudo-dominating rejection algorithm to sample from non-
Gaussian conditional posterior distribution as follows (see e.g. Tierney, 1994;
Chib and Greenberg, 1995).

To sample from a continuous multivariate density, for example, f(x1, x2, . . . ,
xn) which is assumed to be everywhere positive, we simulate x using Gibbs sam-
pling algorithm. Suppose that it is difficult to sample directly from f(z|x(j)

\i )

where x
(j)
i denote the j-th sample of xi and x

(j)
\i = (x(j)

1 , . . . , x
(j)
i−1, x

(j−1)
i+1 , . . . ,

x
(j−1)
n ). We apply the adaptive/rejection sampling method by using a density

h(z) which is easy to sample from and satisfies f ≤ ch(z) for all z with some
constant c as follows: (Step 1) generate a candidate z from h(z) and a uniform
random variable u on (0, 1) (Step 2) if u ≤ f(z|x(i))/ch(z) return z, otherwise
return to Step 1. In our case, it is hard to find a density h(z) that dominates the
true density f(z|x\i), and we apply an independence chain Metropolis-Hastings
algorithm with pseudo-dominating rejection algorithm (Tierney 1994): First we
sample z from a density proportional to q(z, x(j)

\i ) = min{f(z|x(j)
\i ), ch(z)} by

applying the acceptance/rejection sampling above. Then we accept z with prob-
ability min{f(z|x(j)

\i )q(x(j−1)
i , x

(j)
\i )/f(x(j−1)

i |x(j)
\i )q(z, x(j)

\i ), 1}.

Generation of β. Let h(β) denote a logarithm of a prior density of β and
l(θit) = I(yit = j) logF (θit) + I(yit > j) log(1 − F (θit)) given yit ≥ j. Since
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the conditional posterior distribution of β is complicated, we approximate it by
a normal distribution using a Taylor expansion of the conditional posterior den-
sity around the mode, β̂. Since the log conditional posterior density for β given
y and other parameters is (excluding constant terms)

h(β) +
∑
i,t

l(θit)

≈ (β − β̂)′


hβ(β̂) +

∑
i,t

x′
itl

′(θ̂it)




+
1
2
(β − β̂)′


hββ(β̂) +

∑
i,t

x′
itxitl

′′(θ̂it)


 (β − β̂)

where hβ(β) = ∂h(β)/∂β and hββ(β) = ∂2h(β)/∂β∂β′, l′(θit) = ∂l(θit)/∂θit and
l′′(θit) = ∂2l(θit)/∂θ2

it. For the discrete proportional hazards model, we have
F (θ) = 1 − exp{− exp(θ)} and

l′(θit) =
I(yit = j) exp{θit − exp(θit)}

1 − exp{− exp(θit)}
− I(yit > j) exp(θit),

l′′(θit) =
I(yit = j) exp{θit − exp(θit)}[1 − exp(θit) − exp{− exp(θit)}]

[1 − exp{− exp(θit)}]2
−I(yit > j) exp(θit).

Our proposal density is N(µ∗,Σ∗) with

µ∗ = β̂ + Σ∗


hβ(β̂) +

∑
i,t

x′
itl

′(θ̂it)


 ,(3.12)

Σ∗ = −


hββ(β̂) +

∑
i,t

x′
itxitl

′′(θ̂it)




−1

,(3.13)

and apply the Metropolis-Hastings pseudo-dominating rejection algorithm.

Generation of γt. To reduce the high correlation among samples, we employ
a multi-move sampler which generates a block of γt’s at the same time as in
Shephard and Pitt (1997) and Watanabe and Omori (2001). To perform this
multi-move sampler, first we approximate a true conditional posterior density of
(γs+1, . . . , γs+k) given other variables. Since the log f(εs, . . . , εs+k−1|γs, γs+k+1, y)
excluding constant terms is given by

− 1
2

s+k∑
t=s

ε′tΣ
−1εt +

s+k∑
t=s+1

∑
i∈Rt

l(θit)

≈ −1
2

s+k−1∑
t=s

ε′tΣ
−1εt +

s+k∑
t=s+1

∑
i∈Rt

l(θ̂it)
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+
s+k∑

t=s+1

∑
i∈Rt

z′t(γt − γ̂t)l′(θ̂it) +
{z′t(γt − γ̂t)}2

2
l′′(θ̂it)

− 1
2
(γs+k+1 − Φγ̂s+k)′Σ−1(γs+k+1 − Φγ̂s+k)

+ (γs+k+1 − Φγ̂s+k)′Σ−1Φ(γs+k − γ̂s+k)

− 1
2
(γs+k − γ̂s+k)′Φ′Σ−1Φ(γs+k − γ̂s+k),

we define artificial variables, ŷt = z′tγ̂t −
∑

i∈Rt
l′(θ̂it)/

∑
i∈Rt

l′′(θ̂it) for t = s +
1, . . . , s + k − 1, and

ŷs+k =


Φ′Σ−1Φ − zs+kz

′
s+k

∑
i∈Rs+k

l′′(θ̂s+k)




−1

(3.14)

×


zs+k

∑
i∈Rs+k

l′(θ̂i,s+k) − zs+kz
′
s+kγ̂s+k

×
∑

i∈Ri,s+k

l′′(θ̂i,s+k) + Φ′Σ−1γs+k+1


 .

Then consider the following approximating linear Gaussian model to sample from
the true conditional posterior density.

ŷt = z′tγt + et, et ∼ N(0, τ2
t ), γt+1 = Φγt + εt, εt ∼ N(0,Σ),(3.15)

where τ2
t = −

[∑
i∈Rt

l′′(θ̂it)
]−1

for t = s + 1, . . . , s + k − 1 and

ŷs+k = γs+k + εs+k,(3.16)

εs+k ∼ N


0,


Φ′Σ−1Φ − zs+kz

′
s+k

∑
i∈Rs+k

l′′(θ̂s+k)




−1
 .

We use a Kalman filter and the simulation smoother to sample the errors (εs, . . . ,
εs+k−1) and the γs’s, and then apply the Metropolis-Hastings algorithm using this
approximate density.

Acceleration of the Gibbs sampler. As in Section 3.1, we add the step to accel-
erate the convergence. When the γt’s are assumed to be scalar and zit = 1 for all
i and t, generate δ ∼ N(µδ, σ

2
δ ) and set αj + δ → αj and γt + δ → γt for all j, t.

4. Duration dependence structure of Japanese Diffusion Index

In this section, we apply our semiparametric discrete duration model to
Japanese leading diffusion index. We analyze eleven economic time series adopted
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Table 1. Ten monthly series in Japanese leading diffusion index.

(1) Index of producer’s final demand goods and inventory shipment ratio

(average of values in 1995 = 100)∗.

(2) Index of raw materials inventory to consumption ratio

(manufacturing, 1995=100)∗.

(3) New job offers except for new graduates (persons).

(4) New orders for machinery (million yen).

(5) Total floor area of building construction started (1000m2).

(6) Total floor area of new housing construction started (1000m2).

(7) Number of new passenger car registrations and reports.

(8) Nikkei commodity price index

(17items, percent compared with the corresponding month of the previous year).

(9) Money supply

(M2+CD, percent compared with the corresponding month of the previous year).

(10) Index of investment climate (manufacturing, percent).

∗ The rise and fall of the series are inverted.

Table 2. Summary statistics of durations (rise/fall).

1973–1979 1980–1989 1990–1999

Counts 109/111 180/180 184/184

Mean 3.76/3.60 3.66/3.01 3.14/3.46

Median 3/2 3/2 2/3

Max 20/25 26/15 19/29

Min 1/1 1/1 1/1

in Japanese leading diffusion index, consisting of one quarterly and ten monthly
series (however, they were revised in 2001). The series are considered to pre-
cede business cycle turning points and the index is the proportion of these series
which increased over the past three months. The index shows overall direction
of movements across various sectors of the economy rather than the amplitude of
business cycle fluctuations. The longer duration of rise (fall) in the time series is
considered to suggest an economic expansion (contraction) of the corresponding
sector. If the index continues to stay above (below) 50 percent, the business cycle
is considered to be turning from contraction (expansion) to expansion (contrac-
tion). It is used to judge the current business cycle phase and forecast its turning
points. Therefore we investigate the duration dependence structure of the times
series comprised in the diffusion index.

Since monthly data are available earlier than quarterly data, we focus on ten
monthly series adopted in the leading diffusion index below and analyze their
durations of rises and falls. Table 1 shows these ten time series. Three periods
are considered: (i) April 1973–December 1979 (ii) January 1980–December 1989
(iii) January 1990–December 1999, corresponding to the seventies, eighties and
nineties since the currently adopted times series are applied to calculate the
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indexes from April 1973. Further, for simplicity, we assume that the duration (of
rise or fall) still continues when there is no change in times series due to rounding
error (though it is counted as 0.5 in the calculation of Japanese diffusion index).
Summary statistics of durations are given in Table 2.

We assume the dynamic model with

θit = αj + β1Xi +
9∑

j=1

β2jDij + γt,(4.1)

γt+1 = φγt + εt, εt ∼ i.i.d. N(0, σ2
ε ), t ≥ 1,(4.2)

γ1 ∼ N(0, σ2
ε /(1 − φ2)) for the i-th observation at time t where

Xi =

{
1 if i-th observation is rising,
0 otherwise,

Dij =

{
1 if i-th observation is the j-th series of diffusion index,
0 otherwise.

We use dummy variables to show the difference among ten series and take the
index of investment climate as the reference series for convenience sake. The
variable Xi is introduced to explain the asymmetric durations of rises and falls.

A stationary distribution is assumed for γ1. We take a normal prior N(0, 1000)
for β1, β21, . . . , β29 and Gamma(0.01, 100) prior for σ−2

ε (which implies a unit
mean and a large variance, 100). A uniform prior on (−1, 1) is taken for φ. For
the αj ’s, the following three models are considered for comparison.

M1: a first order random walk process. αj = αj−1 + uj−1, uj ∼
N(0, σ2

u), for j = 2, . . . , J, with α1 ∼ N(0, 100) and σ−2
u ∼

Gamma(0.01, 100).
M2: a quadratic function. αj = ψ0 + ψ1(j − 1) + ψ2(j − 1)2 for

j = 1, . . . , J with (ψ0, ψ1, ψ2)′ ∼ N(0, 1000I3).
M3: a quadratic function with disturbances. αj = ψ0 + ψ1(j −

1) + ψ2(j − 1)2 + uj , uj ∼ N(0, σ2
u) for j = 1, . . . , J with

(ψ0, ψ1, ψ2)′ ∼ N(0, 1000I3).
Three models are estimated for both the sequential probit model and proportional
hazards model. We also estimate these models without time-dependent random
effects γt’s for comparison. The results were generated using Ox version 2.20
(Doornik, 1999).

The initial iterations (1000–4500) are discarded and the following 10000 iter-
ations are recorded. The number of blocks for sampling γt is set equal to three or
four so that each block contains approximately 30 parameters. The sample paths
look stable and autocorrelations decay quickly. Their convergences to the target
distributions are tested via a simple test statistic for comparing two means (see
Geweke (1992)) where the estimated variances for the sample means are obtained
by using a Parzen window with bandwidth 300.
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Proportional Hazards Model (M1)
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Proportional Hazards Model (M2)

DURATION (MONTHS)

H
A

Z
A

R
D

 R
A

T
E

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Sequential Probit Model (M2)
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Proportional Hazards Model (M3)
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Figure 1. Estimated hazard rates. Dotted line: 1973–1979. Dashed line: 1980–1989. Solid

line: 1990–1999.

Figure 1 shows the baseline hazard rate functions for three models with ran-
dom effects. They look linearly increasing and stable in the seventies. However,
as we shall see later, durations of ten times series are strongly influenced by the
autoregressive random effects γt’s for the first two years (April 73–March 74).
This suggests that there existed some external macroeconomic factors to explain
a co-movement of durations in addition to the individual baseline hazard rate
function. In the eighties, the hazard rates become higher (30%) for the first
seven months (except the second month), and flat with low values for longer
durations. The long economic boom in the late 80’s resulted in the low hazard
rates for longer durations. On the other hand, in the nineties, they become flat
with low values (15%–20%), which correspond to the long economic contractions
after the collapse of the bubble economy in Japan.

As shown in Figure 1, similar hazard rate functions are obtained for both
sequential probit models and proportional hazards models, but the proportional
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Table 3. Marginal log likelihood followed by standard error.

1973–1979 Sequential Probit Model Proportional Hazards Model

With γt Without γt With γt Without γt

M1 −515.24 (0.25) −522.33 (0.14) −515.22 (0.20) −521.52 (0.10)

M2 −511.33 (0.05) −518.64 (0.06) −507.40 (0.06)∗ −513.65 (0.05)

M3 −527.79 (0.42) −537.10 (0.66) −522.73 (0.33) −529.32 (0.30)

1980–1989 Sequential Probit Model Proportional Hazards Model

With γt Without γt With γt Without γt

M1 −761.99 (0.10) −764.04 (0.12) −757.78 (0.07)∗ −759.98 (0.06)

M2 −782.21 (0.05) −785.33 (0.05) −777.49 (0.04) −779.97 (0.03)

M3 −776.41 (0.38) −779.03 (0.37) −769.15 (0.13) −771.36 (0.13)

1990–1999 Sequential Probit Model Proportional Hazards Model

With γt Without γt With γt Without γt

M1 −792.96 (0.21) −792.95 (0.16) −788.80 (0.10) −787.50 (0.10)∗

M2 −797.29 (0.05) −797.16 (0.04) −792.62 (0.04) −792.14 (0.04)

M3 −811.66 (0.84) −809.37 (0.54) −802.92 (0.48) −800.96 (0.49)

1973–1999 Sequential Probit Model Proportional Hazards Model

(TOTAL) With γt Without γt With γt Without γt

M1 −2070.20 −2079.32 −2061.80∗ −2068.99

M2 −2090.83 −2101.13 −2077.50 −2085.76

M3 −2115.86 −2125.51 −2094.80 −2101.64

∗ Selected model.

hazards models tend to give smoother hazard rate functions than sequential
probit models for M1 and M3. This is probably because the standard normal
distribution has tight tails and, correspondingly, sequential probit models are
more sensitive to the magnitude of changes in the parameter values. A first
order random walk prior for the baseline hazard does not smooth hazard rates
very much in the eighties since there are large bumps in the short durations. A
second order random walk prior may be preferred to smooth such bumps.

To compare six models (M1 −M3 with and without random effects), we cal-
culated their marginal likelihoods. Chib (1995) and Chib and Jeliazkov (2001)
are used to calculate the posterior ordinate from outputs of Gibbs sampling and
M-H algorithm respectively, and, further, the accelerated Gaussian sampler by
Danielsson and Richard (1993) is used to calculate the log likelihood for the
model with time-dependent random effects. The calculated marginal likelihoods
(in natural logarithm) are shown in Table 3. In the seventies, the proportional
hazards model M2 with random effects have the largest marginal likelihood and
the model is selected. In fact, as shown in Figure 1, the hazard rates functions
look linear or slightly quadratic in M1 and M3. Also all models with random ef-
fects have much larger values of marginal likelihoods than those without random
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Table 4. Estimated posterior means followed by standard deviations, and 95% credible intervals

for β1, φ, σ2
ε . Proportional hazards model (M1).

1973–1979 1980–1989 1990–1999

β1 0.159 (0.156) 0.253 (0.114) −0.044 (0.107)

(−0.150, 0.458) (0.025,0.476) (−0.253, 0.165)

φ 0.807 (0.205) 0.538 (0.278) 0.166 (0.385)

(0.240, 0.998) (−0.189, 0.919) (−0.607, 0.797)

σ2
ε 0.097 (0.076) 0.062 (0.040) 0.037 (0.025)

(0.014, 0.296) (0.012, 0.162) (0.006, 0.101)

Table 5. Estimated posterior means followed by standard deviations, and 95% credible intervals

for β1, φ, σ2
ε . Sequential Probit Model (M1).

1973–1979 1980–1989 1990–1999

β1 0.120 (0.106) 0.172 (0.081) −0.034 (0.078)

(−0.089, 0.325) (0.015,0.330) (−0.185, 0.119)

φ 0.854 (0.122) 0.605 (0.276) 0.207 (0.430)

(0.535, 0.997) (−0.149, 0.956) (−0.765, 0.823)

σ2
ε 0.048 (0.031) 0.033 (0.020) 0.025 (0.017)

(0.011, 0.127) (0.007, 0.080) (0.004, 0.066)

effects, suggesting with strong evidence that there existed some external macroe-
conomic factors represented by common unobserved time-dependent variables in
the seventies. In the eighties, the proportional hazards model M1 with random
effects is selected. The baseline hazard rate functions have a large bump and no
longer look like a function of polynomials as in Figure 1. The quadratic function
models with disturbances (M3) are not flexible enough to explain the irregular
behaviour of the hazard rate function. The marginal likelihood values indicate
that random effects are still significant, but that they are not strongly significant
any more. In the nineties, the proportional hazards model M1 without random
effects has the largest marginal likelihood. The random effects are no longer
significant, and the durations are explained by baseline hazard rate functions.

Throughout three periods, we found that the values of marginal likelihoods
are very similar for both sequential probit models and proportional hazards mod-
els. Thus, estimated hazard rate functions in Figure 1 look similar for both
models, correspondingly. However, the proportional hazards models have always
larger marginal likelihoods than those of sequential probit models. Since the
proportional hazards models M1 with random effects have the largest sum of
marginal likelihoods over three periods, we further discuss their estimation re-
sults in detail as below. Also, the sequential probit models M1 with random
effects are discussed for comparison.

The posterior means and their standard deviations of the parameters for
(β1, φ, σ

2
ε ) are given in Tables 4 and 5 for the proportional hazards models and
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Proportional Hazards Model (M1)
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Figure 2. Estimated posterior densities for β1, φ, σ2
ε . Dotted line: 1973–1979. Dashed line:

1980–1989. Solid line: 1990–1999.

the sequential probit models respectively. Note that the coefficient β1 shows the
effect of rise on the duration. It is often pointed out that the rises of the series
tend to continue longer than the falls and hence that β1 is supposed to be positive.
The estimates are expectedly positive in the seventies and eighties, but turned
negative in the nineties (though 95% credible intervals include 0 in the seventies
and nineties). This reflects the fact that Japan experienced the long recession
in the nineties and the falls tend to continue longer than they used to be. The
posterior densities of β1 in Figure 2 also show this significant negative bias in the
nineties. The densities for the sequential probit models are steeper than those
for the proportional hazards models, but similar patterns are obtained.

The estimate of σ2
ε shows the significance of time-dependent random effects.

The estimated posterior mean becomes smaller gradually from the seventies to
the nineties. As we discussed above using marginal likelihoods, it indicates that
the random effects are significant in the seventies and become less and less signif-
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Figure 3. Estimated γt’s. Shaded areas correspond to contractions of the business cycle.

icant in the eighties and nineties. Similar results are obtained for the coefficient
φ of the autoregressive process, which shows the first order autocorrelation for
the time-dependent random effects. The correlation is high (close to one) and
significantly positive in the seventies, but become smaller and less significant in
the eighties and nineties. The posterior densities of (φ, σ2

ε ) in Figure 2 show these
gradual changes. Further, the estimated γt’s are shown in Figure 3. The random
effects, or the unobserved common dynamic factor seems to have a great impact
on the diffusion index in the seventies and early eighties. However, the factor is
less influential in the nineties as its magnitude becomes smaller.

The posterior means and their standard deviations of the parameters for the
β2j ’s are given in Tables 6 and 7. Their posterior densities are also shown in
Figures 4 and 5. Throughout three periods, estimated posterior means are nega-
tive for the index of producer’s final demand goods and inventory shipment ratio
(β21), Index of raw materials inventory to consumption ratio (β22), new job offers
(β23), the new orders for machinery (β24), total floor area of building construc-
tion started (β25), total floor area of new housing construction started (β26) and
the number of new passenger car registrations and reports (β27). This implies
these seven series have shorter durations than the index of investment climate
(the reference series). Among the seven series, the new orders for machinery has
the highest hazard rates throughout three time periods. The β21, β25, β26, β27

are also significantly negative in at least one of the three periods. On the other
hand, the percent change of M2+CD has the longest durations among all series
in both the seventies and the nineties. Similar results are obtained for both the
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Table 6. Estimated posterior means followed by standard deviations, and 95% credible intervals

for β2j ’s. Proportional hazards model (M1).

1973–1979 1980–1989 1990–1999

β21 −0.273 (0.365) −0.621 (0.237)∗ −0.403 (0.260)

(−0.986, 0.437) (−1.089,−0.161) (−0.938, 0.100)

β22 −0.318 (0.370) −0.086 (0.263) −0.389 (0.263)

(−1.028, 0.415) (−0.591, 0.435) (−0.929, 0.120)

β23 −0.236 (0.376) −0.163 (0.266) −0.305 (0.266)

(−0.960, 0.510) (−0.690, 0.344) (−0.843, 0.205)

β24 −1.497 (0.330)∗ −0.916 (0.232)∗ −0.715 (0.248)∗

(−2.147,−0.869) (−1.380,−0.477) (−1.228,−0.234)

β25 −1.065 (0.334)∗ −0.256 (0.252) −0.714 (0.251)∗

(−1.715,−0.421) (−0.759, 0.237) (−1.233,−0.231)

β26 −0.927 (0.335)∗ −0.270 (0.256) −0.374 (0.259)

(−1.589,−0.290) (−0.780, 0.226) (−0.908, 0.114)

β27 −0.825 (0.346)∗ −0.402 (0.244) −0.587 (0.252)∗

(−1.506,−0.172) (−0.897, 0.066) (−1.103,−0.113)

β28 −0.493 (0.357) 0.313 (0.289) −0.018 (0.280)

(−1.194, 0.193) (−0.244, 0.889) (−0.585, 0.530)

β29 0.441 (0.437) −0.214 (0.256) 0.234 (0.301)

(−0.398, 1.331) (−0.728, 0.292) (−0.363, 0.819)

∗ 95% credible interval does not include 0.

Table 7. Estimated posterior means followed by standard deviations, and 95% credible intervals

for β2j ’s. Sequential Probit model (M1).

1973–1979 1980–1989 1990–1999

β21 −0.118 (0.224) −0.451 (0.156)∗ −0.265 (0.162)

(−0.554, 0.323) (−0.755,−0.145) (−0.577, 0.053)

β22 −0.139 (0.225) −0.046 (0.165) −0.245 (0.162)

(−0.574, 0.298) (−0.369, 0.274) (−0.556, 0.077)

β23 −0.080 (0.226) −0.069 (0.166) −0.172 (0.166)

(−0.523, 0.365) (−0.389, 0.259) (−0.493, 0.156)

β24 −1.047 (0.211)∗ −0.653 (0.161)∗ −0.489 (0.159)∗

(−1.464,−0.634) (−0.965,−0.333) (−0.801,−0.174)

β25 −0.696 (0.213)∗ −0.147 (0.163) −0.500 (0.161)∗

(−1.117,−0.285) (−0.459, 0.177) (−0.812,−0.180)

β26 −0.597 (0.212)∗ −0.165 (0.160) −0.247 (0.162)

(−1.009,−0.181) (−0.480, 0.150) (−0.558, 0.082)

β27 −0.503 (0.216)∗ −0.279 (0.159) −0.387 (0.159)∗

(−0.928,−0.078) (−0.582, 0.037) (−0.693,−0.074)

β28 −0.277 (0.220) 0.196 (0.171) −0.008 (0.168)

(−0.711, 0.153) (−0.137, 0.533) (−0.334, 0.332)

β29 0.317 (0.240) −0.133 (0.163) 0.160 (0.173)

(−0.145, 0.792) (−0.451, 0.185) (−0.171, 0.509)

∗ 95% credible interval does not include 0.
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Figure 4. Estimated posterior densities for β2j ’s for proportional hazards model (M1). Dotted

line: 1973–1979. Dashed line: 1980–1989. Solid line: 1990–1999.
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Figure 5. Estimated posterior densities for β2j ’s for sequential probit model (M1). Dotted line:

1973–1979. Dashed line: 1980–1989. Solid line: 1990–1999.
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Figure 6. Diffusion index. Solid line: observed diffusion index. Shaded areas correspond to

contractions of the business cycle. Dotted line: estimated posterior means of expected values

(sequential probit model, M1). Dashed line: estimated posterior means of expected values

(proportional hazards model, M1).

proportional hazards model and sequential probit models.
Finally, Figure 6 shows posterior means for the expected values of the dif-

fusion index. Since the different series shows different movement, the observed
diffusion index often fluctuates from month to month and it is difficult to judge
the current phase of business cycle. To see expected direction of movements, we
may use the posterior mean for the expected value of the index. It is an average
of probabilities that each time series would rise in that month. The sequence of
expected values is stable and smoother than the observed indexes, which would
make it easier to find the turning point of business cycle. Similar estimates are
obtained for both the proportional hazards model and sequential probit models
in the seventies and eighties. In the nineties, however, the estimates given by
the proportional hazards model are much smoother than those by the sequential
probit model.

5. Conclusion

Using Markov chain Monte Carlo techniques, this article proposed a semi-
parametric estimation method for a discrete duration model with autoregressive
random effects, and the durations of rises and falls are analysed for ten monthly
series of Japanese leading diffusion index. Using marginal likelihoods, we found
the best model is the proportional hazards model with autoregressive random
effects overall. However, we also note that the obtained results are very similar
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for both sequential probit models and proportional hazards models. The base-
line hazard function looks quadratic in the seventies but shows irregular patterns
in the eighties and nineties. The assumptions of the quadratic function models
(even with disturbances) are not flexible enough to explain a bump in the hazard
rates, and the simple first order random walk process is found to be preferred.

As expected, the rises of the series tend to continue longer than the falls
in the seventies and eighties. On the contrary, in the nineties, the falls tend to
continue longer than the rises since Japan experienced the long recession during
the period. The marginal likelihoods also indicate that common unobserved
macroeconomic factors (or random effects) are significant in the seventies, but
that they become less and less significant in the eighties and nineties. Thus the
durations are explained by the individual baseline hazard rate functions without
a co-movement recently. Among the time ten series, the new orders for machinery
has the highest hazard rates throughout three time periods, while the percent
change of M2+CD has the longest durations among all series in both the seventies
and nineties.

Since economic data are often observed at discrete time points, we may not
have enough observations for a nonparametric estimation of a baseline hazards
function. Further, a co-movement among durations need to be considered to
explain external macroeconomic factors. As is shown in this article, our dynamic
modelling approach is useful and feasible when we assume smoothness conditions
on the baseline hazard function and consider such factors by introducing common
autoregressive random effects to the individual duration.
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