Calculation of H₂O-NH₃-CO₂ Vapor Liquid Equilibria at High Concentration Conditions

WEI Shun'an(魏顺安)*, ZHANG Hongjing(张红晶)

Chemistry and Chemical Engineering Institute, Chongqing University, Chongqing 400044, China

Abstract A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H₂O-NH₃-CO₂ system without solid phase at the conditions of temperature from 30°C to 90°C, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH₃ mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production. **Keywords** H₂O-NH₃-CO₂ system, vapor liquid equilibrium, high concentration, thermodynamic model

1 INTRODUCTION

H₂O-NH₃-CO₂ vapor liquid equilibria under high concentration conditions (NH₃ mass fraction is greater than 0.2 in liquid phase) and the thermodynamic model are necessary for simulation, analysis and optimization of industrial urea processes.

In the respect of vapor liquid equilibrium thermodynamic models, the theory of strong electrolyte were introduced into $\rm H_2O\text{-}NH_3\text{-}CO_2$ system^[1-3], which covered the range of mass fraction of NH₃ up to 0.15. Subsequently, Bernardis et al.^[4] applied UNIQUAC equation to calculating $\rm H_2O\text{-}NH_3\text{-}CO_2$ vapor liquid equilibria at the temperature of $100^{\circ}\rm{C}$, which corresponded to mass fraction of NH₃ up to 0.25. But all of those models did not meet the need of urea process simulation, especially for circulating absorption system with high NH₃ and CO₂ concentrations. Up to now, thermodynamic model about $\rm H_2O\text{-}NH_3\text{-}CO_2$ vapor liquid equilibrium under high concentration conditions was not reported.

In this paper, the relations of $\rm H_2O\text{-}NH_3\text{-}CO_2$ vapor liquid equilibria and UNIQUAC interaction energy parameters are presented based on method reported in the literature^[1,2,4].

2 UNIQUAC INTERACTIVE ENERGY PARAMETERS

In the UNIQUAC model^[5] for electrolyte solu-

tions, the Debyl-Huckel activity coefficient $\gamma^{\rm DH}$ reflecting electrical charges and the form-structure activity coefficient $\gamma^{\rm C}$ reflecting the particle volume and surface area just contain characteristic constants of each component, only the interactive energy parameters $a_{i,j}(i,j)$ stand for components in solution) in excess energy activity coefficient $\gamma^{\rm R}$ are related to specific systems composed of different species.

In liquid phase of the $\rm H_2O\text{-}NH_3\text{-}CO_2$ system in which crystallization does not take place, there are five reactions^[1] creating nine species: $\rm H_2O(1)$, $\rm NH_3(2)$, $\rm CO_2(3)$, $\rm NH_4^+(4)$, $\rm HCO_3^-(5)$, $\rm CO_3^{2-}(6)$, $\rm NH_2COO^-(7)$, $\rm OH^-(8)$, and $\rm H^+(9)$. We find that the model precision can be improved substantially when a temperature coefficient is applied to $a_{i,j}$. In this model, temperature ranges from 30—90°C, the linear function is found to be the best

$$a_{i,j} = \alpha_{i,j} + \beta_{i,j}t \tag{1}$$

In Eq. (1), $\alpha_{i,j}$ and $\beta_{i,j}$ are temperature coefficients of interaction energy parameters $a_{i,j}$, t is temperature in °C. $\alpha_{i,j}$ and $\beta_{i,j}$ are shown in Tables 1 and 2 separately.

3 THE RELATIONS OF VAPOR LIQUID PHASE EQUILIBRIA

Vapor liquid equilibria in the H₂O-NH₃-CO₂ system indicate that the fugacities of H₂O, NH₃, and

Table 1 Temperature coefficient of interaction energy parameter, $\alpha_{i,j}$	Table	. 1	remperature	coemcient	Οţ	interaction	energy	parameter,	$\alpha_{i,j}$
---	-------	-----	-------------	-----------	----	-------------	--------	------------	----------------

		-		•	j	-			
ι	1	2	3	4	5	6	7	8	9
1	0	-452.48	478.41	555.15	135.01	559.81	661.56	751.25	612.29
2	266.62	0	-1227.89	1177.28	607.98	58.54	1146.17	-771.32	-64.32
3	513.30	-403.91	0	-318.17	-422.83	-521.24	-272.81	-884.29	-372.72
4	-475.51	449.58	-302.06	0	-99.76	-620.00	-1190.53	411.57	-603.63
5	400.85	254.48	-312.08	-160.09	0	-432.75	-173.55	-609.37	-670.79
6	-552.88	523.30	-629.88	-343.16	-375.90	0	-646.29	194.79	-725.29
7	-234.44	548.35	-247.41	-164.68	-39.87	-489.01	0	552.05	-315.85
8	730.93	-774.35	-883.20	537.45	756.29	532.29	603.05	0	1.52
9	129.91	-7.44	-347.84	-605.07	-675.79	-607.54	18.29	10.62	0

Received 2003-05-16, accepted 2003-09-20.

^{*} To whom correspondence should be addressed.

Table 2 Temperature coefficient of interaction energy parameter, $\beta_{i,j}$

i ·				j					
	1	2	3	4	5	6	7	8	9
1	0	3.41	0.40	7.22	3.19	-3.10	-6.20	0	0
2	-0.77	0	7.30	-5.30	-2.00	9.25	-7.50	0	0
3	-7.70	8.20	0	-2.70	-4.45	-4.45	7.72	0	0
4	-1.89	-7.10	3.08	0	-4.68	0.32	9.70	0	0
5	-7.90	-0.70	-5.20	-7.31	0	-4.71	6.74	0	0
6	8.70	-1.60	-3.34	-3.99	-5.19	0	7.60	0	0
7	-0.18	-8.50	7.90	-5.80	-0.38	3.10	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

 ${\rm CO_2}$ in vapor phase are equal respectively to that of free ${\rm H_2O}$, ${\rm NH_3}$, and ${\rm CO_2}$ in liquid phase. The vapor liquid equilibrium relationship of component ${\rm H_2O}$ is reasonably described by the modified Raoult's equation. In the ${\rm H_2O\text{-}NH_3\text{-}CO_2}$ liquid solution, as the composition of free ${\rm CO_2}$ is very low and the composition of free ${\rm NH_3}$ is sometimes very high according to its mass composition and the ratio of ${\rm NH_3}$ to ${\rm CO_2}^{[1,2]}$, so the modified Henry's equation is chosen for ${\rm CO_2}$ and the modified Raoult's equation for ${\rm NH_3}$ under high liquid concentration condition.

For component $H_2O(1)$ and component $NH_3(2)$

$$y_i \varphi_i p = x_i \gamma_i \varphi_i^{\rm s} p_i^{\rm s} \exp \left[\frac{(p - p_i^{\rm s}) v_i}{RT} \right], i = 1, 2$$
 (2)

and for component $CO_2(3)$

$$y_3\varphi_3p = x_3\gamma_3H_3\exp\left[\frac{(p-p_1^s)v_3}{RT}\right]$$
 (3)

where y is vapor mole fraction, φ is fugacity coefficient, p is pressure in MPa, x is liquid mole fraction, γ is activity coefficient, H is Henry constant in MPa, v is the specific liquid volume of component in cm³·mol⁻¹, R is ideal gas constant 8.31434 J·mol⁻¹·K⁻¹, and T is temperature in K.

The relationship of volume v_i and temperature is

$$v = E_1 + E_2 t + E_3 t^2 \tag{4}$$

where t is temperature in ${}^{\circ}$ C. Temperature coefficients E is shown in Table 3.

Table 3 Temperature coefficients of volume parameter^[2]

	E_1	E_2	E_3	Temperature range, °C
v_1	18.01	0.0180	0.00112	0—150
v_2	28.68	0.0036	0.00048	20—160
v_3	32.42	0.0023	0.00057	0—150

The relation of Henry's coefficient of $CO_2(3)$ and temperature is

$$\ln(H) = B_1/T + B_2 \ln T + B_3 T + B_4 \tag{5}$$

and the temperature coefficient B is in Table 4.

Table 4 Temperature coefficient of Henry's coefficient of $CO_2^{[4]}$

B_1	B_2	B_3	B_4	Temperature range, °C
-17060.70	-68.3159	0.065989	431.9060	0-200

Table 5 Calculated data and corresponding literature data^[6] of H₂O-NH₃-CO₂ VLE

Tomo	D	L	iquid ma	ss percent	, %	Vapor mass percent, %						
Temp. $^{\circ}$ C	Pres.	CO_2		NH_3			NH_3			CO_2		
C	MPa		Lit.	Cal.	Err.	Lit.	Cal.	Err.	Lit.	Cal.	Err.	
30	0.101	20.0	30.0	29.54	0.46	97.5	97.39	0.11	0.1	0.10	0	
	0.196	20.0	37.5	38.27	-0.77	99.0	99.09	-0.09	0.03	0.02	0.01	
	0.101	20.0	26.5	25.56	0.94	94.0	94.39	-0.39	1.0	0.72	0.28	
40	0.101	25.0	27.5	27.19	0.31	94.0	94.47	-0.47	1.1	0.89	0.21	
40	0.196	20.0	32.8	32.93	-0.13	97.5	97.92	-0.42	0.10	0.13	-0.03	
	0.196	25.0	33.5	33.39	0.11	97.6	97.97	-0.37	0.15	0.14	0.01	
	0.29	25.0	34.2	33.95	0.25	97.2	97.62	-0.42	0.50	0.30	0.20	
	0.29	30.0	35.5	34.80	0.70	97.4	97.71	-0.31	0.60	0.35	0.25	
50	0.39	20.0	37.6	37.68	-0.08	98.3	98.53	-0.23	0.15	0.12	0.03	
	0.39	25.0	37.8	37.82	-0.02	98.3	98.56	-0.26	0.20	0.14	0.06	
60	0.29	25.0	30.5	30.33	0.17	94.7	94.66	0.04	1.61	1.57	0.04	
	0.29	30.0	32.0	31.84	0.16	95.0	94.61	0.39	1.80	1.92	-0.12	
	0.39	25.0	34.0	33.83	0.17	96.5	96.82	-0.32	0.86	0.70	0.86	
	0.39	30.0	35.0	34.81	0.19	96.7	96.88	-0.18	1.01	0.82	0.19	
	0.29	30.0	29.3	29.00	0.30	85.2	85.42	-0.22	10.2	9.01	1.16	
	0.29	35.0	31.3	31.46	0.16	83.2	83.70	-0.50	12.7	11.49	1.24	
70	0.39	30.0	31.8	31.98	-0.18	91.2	92.26	-1.06	5.00	3.87	1.13	
	0.39	35.0	34.0	33.99	-0.01	90.9	91.90	-1.00	5.58	4.71	0.87	
	0.29	25.0	23.2	23.20	0	69.2	66.18	3.02	22.8	24.82	-2.02	
00	0.29	30.0	24.6	24.79	-0.19	58.0	53.46	4.54	35.6	39.18	-3.58	
80	0.39	25.0	27.2	27.09	0.11	81.0	82.13	-1.13	12.5	11.20	1.30	
	0.39	30.0	29.0	29.03	-0.03	78.0	78.40	-0.40	16.2	15.76	0.46	
	0.39	20.0	22.0	21.79	0.21	65.0	66.98	-1.98	24.5	22.26	2.24	
90	0.39	25.0	23.0	22.62	0.38	53.0	53.12	-0.12	38.5	37.94	0.56	
Ave.					0.251			0.749			0.702	

The fugacity coefficients of vapor components are calculated using BWRS equation of state.

4 RESULT AND DISCUSSION

Part of calculated data and corresponding literature data of the H₂O-NH₃-CO₂ vapor liquid equilibrium system is listed in Table 5.

The ternary-two-phase H₂O-NH₃-CO₂ system has three degrees of freedom. When temperature and pressure are fixed, CO₂ mass percentage in liquid phase is chosen as the third variable. So NH₃ mass fraction in liquid phase and vapor compositions are to be calculated.

The average absolute error of NH_3 mass percentage in liquid phase is 0.251%, and this accuracy is very beneficial to the process simulation of $H_2O\text{-}NH_3\text{-}CO_2$ vapor condensation.

The average absolute error of NH_3 in vapor phase is 0. 749% and that of CO_2 mass percent in vapor

phase is 0.702%. This agreement with literature data is very satisfactory.

REFERENCES

- 1 Edwards, T.J., Newman, J., Prausnitz, J. M., "Thermodynamics of aqueous solutions containing volatile weak electrolytes", AIChE J., 21 (2), 248 (1975).
- 2 Kawazuishi, K., Prausnitz, J.M., "Correlation of VLE for the system ammonia-carbon dioxide-water", Ind. Eng. Chem. Res., 26, 1492 (1987).
- 3 Powlikowski, E.M., Newman, J., Prausnitz, J. M., "Phase equilibria for aqueous solutions of ammonia and carbon dioxide", Ind. Eng. Chem. Process Des. Dev., 21 (4), 764 (1982).
- 4 Bernardis, M., Carcoli, G., Delogu, P., "NH₃-CO₂-H₂O VLE calculation using an extended UNIQUAC equation", AIChE J., 35 (2), 314 (1989).
- 5 Sander, B., Fredenslund, A., Rasmussen, P., "Calculation of vapor-liquid equilibria in mixed solvent/salt system using an extended UNIQUAC equation", Chem. Eng. Sci., 41 (5), 1171 (1986).
- 6 Yuan, Y., Wang, W.S., Fertilizer Industry Series—Urea, Chemical Industry Press, Beijing (1997). (in Chinese).

Note: An appendix containing the detailed description on the electrolytic equilibrium and the UNIQUAC equations with parameters may be available by communicating with email to the editorial department.