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Abstract

An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of

chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility
region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm
is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect
convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process
examples are presented to demonstrate the effectiveness of the new algorithm.
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1 INTRODUCTION

Flexibility of a chemical plant design is the abil-
ity of the designed chemical process to maintain fea-
sible steady-state operation over a range of uncertain
operating conditions. In the design and actual oper-
ation of chemical plants, much consideration should
be given to the uncertain parameters, which vary fre-
quently during the process operation. The sources of
uncertainties may be either internal process param-
eters such as stream flowrate, stream specifications,
operation temperature and transfer coefficients, or ex-
ternal process parameters such as the feed quality, eco-
nomic cost data, and product pricel!l. As we all know,
the optimal process design based on one set of fixed
operating conditions does not always perform well in
actual operation, because the fluctuation of the un-
certain parameters may cause the practical operating
conditions far from the design ones such that the op-
eration violates the process constraints. That is why
flexibility analysis in process synthesis under uncer-
tainty has become a most active topic in process sys-
tem engineering research in the last two decades. With
the social and technological development the number
of uncertainties which may influence the profitability
of chemical plants will increase gradually. This makes
the flexibility analysis remaining a key factor in future
process synthesis.

Flexibility analysis in chemical process is a rather
difficult task, which involves process modeling, opti-
mization procedure and solving strategy for a large
scale system with nonlinear constraints. We have re-
ported the results on structural flexibility for heat
integrated distillation columns(®) and flexibility anal-
ysis for heat exchange network(®l. Other authors
also presented their excellent systematic work!4~11]
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in this field. At present the flexibility analysis is fo-
cused on the combination of flexibility and reliabil-
ity, controllability, robustness and safety for chemical
processes!*~6], which would result in improved oper-
ability of chemical plants in an extended view of pro-
cess system engineering.

For a chemical process system designed with a set
of fixed parameters, an important theoretic and ac-
tual consideration is how to determine the flexibility
region in the space of uncertain parameters for this
chemical process system. Swaney("8 proposed the
concept of “flexibility index”, which provided a gen-
eral framework for measuring the size of the region of
feasible operation. The solution methods with consid-
eration of particular conditions were also given. Then
Grossmann!®, based on the “flexibility index”, pro-
posed “the active constraint strategy” which provided
a general mixed-integer optimization method to deter-
mine the actual size of the region for feasible operation
in the space of uncertainty parameters. These meth-
ods give a quantitative measure for the hyperrectangle
used to characterize the flexibility region of the un-
certainties, which is very useful for practical chemical
process. The above methods, however, are all based
on a special assumption that the positive and negative
deviations of all the uncertain parameters have the
equal scalar value for their own expected deviations.
It then results in that the hyperrectangle calculated
by the previous methods was considerably conserva-
tive and could not exploit in most cases the maximum
flexibility region over which the process could main-
tain the feasible operation. It is the objective of this
paper to present a new extended algorithm to generate
the maximum flexibility hyperrectangle for a chemical
process system. The algorithm incorporates with the
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method of locally adjusted hyperrectangle, which was
based on the active constraint strategy for flexibility
analysis®. The paper also discussed the limitation
of the algorithm and its corresponding checking mea-
sure. Before introducing the new algorithm, the basic
concepts of “flexibility index” and method of active
constraint strategy would be briefly interpreted.

2 FLEXIBILITY INDEX AND ACTIVE
CONSTRAINT STRATEGY

The variables of a chemical process with uncer-
tainty can be classified into four categories. The vec-
tor design variables of d is associated with equipment
size, which remain fixed during the operation of the
plant once the design is completed. The vector z cor-
responds to the state variables which are determined
by solving the set of equations representing the pro-
cess system. @ is the vector of uncertain parameters
of the process system. The vector z of control vari-
ables represents the degrees of operation freedom that
can be adjusted for different realization of #. Using
these variables a steady state of chemical process is
described by the following sets of equalities and in-
equalities constraints

h(d,z x,0) =0

For a given design d and for any realization of @,
the state variables is generally expressed as an implicit
function of the control z using the equalities h. This
allows the elimination of state variables so that the
process is described by the following reduced inequal-
ity constraints

h(d,z,2,0) =0 = = = z(d, 2,0)
gld,z,2(d, 2,60),0] = f(d,2,0) <0 (2)

The range of @ (flexibility region) may be described
as a hyperrectangle T which is centered at the nom-
inal point 8N with two corresponding sides displaced
proportional to the expected positive and negative de-
viations A@*, A@~ (estimated based on experience or
rule-of-thumb target values("]).

T(8) = {6]6™ - 626~ <0< O™ + 6A8+} 3)

where the scalar parameter § determines the practical
range of 8 over which the chemical process operation
is feasible. It should be noted that the control vec-
tor of z is adjusted during the operation to guarantee
that the process constraints in Eq. (2) are satisfied for
any realization of @ in T'(6). For a fixed 4, the pro-
cess constraints may be reformulated as the following
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form(!)
ax minmax f;(d,z,0) <0 4
8211"(6) e Al ) (4)
where I is the index set for the inequalities. The di-
rect solution of problem with Eq. (4) is very difficult
due to the max-min-max constraint. In order to get
the insight of constraint (4), ¥(d, ) is introduced to
decompose the max-min-max constraint into

<0
o22%, ¥(d,0) (5)

¥(d,0) = mi}rzlu

s.t. fi(d,z,0) <u, iel

(6)

The solution of above problem is the projection of
process feasible region in space . For fixed d, two
dimensions of @, the process feasible region made up
by ¥(d,8) < 0 and flexibility region represented by
a hyperrectangle T'(§) are shown in Fig.1. It should
be noted that for convex feasible region, the critical
point which limits the outspread size of T'(d) always
lies at one of its vertices. While for nonconvex region,
it needs a specific analysis from case to case. In practi-
cal chemical processes, however, an empirical intuition
suggests that the critical point lies at a vertex!”.

v(d,0)=u=10
o) + 05 us? u>0
63 + 000 y T(3)
6% j‘?r(l)
6y - 646; 1
oY - A6; |-
z : f}:"?‘}_,-; TI77777 I
oY - a0; 6Y-oa0; Y oY + a6t
6} + 8467

Figure 1 Feasible region and flexibility T'(4)

For a given design d, the flexibility index F is de-
fined by the maximum obtained from the program-
ming problem Eq.(7)l"). As shown in Fig.1, § rep-
resents the measure of the largest hyperrectangle in-
scribed in the feasible region.

F = maxé

.t. i ; <
s.t pIa% min ma; fi(d,z,0) <0 (7)

T(8) = {9[9“ — 600~ <O <O + 6A8+}
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Using the active constraint strategy to solve above
problem leads to the following mixed-integer optimiza-
tion programming!]

F = miné

s.t.
( fild,z,8)+ s; =0

ZAl‘-f-l

i

af;
A,'“'—=
Z 9z 0
1 Ai—%<0
50— U(1-3) <0

dDw=nz+1
N —5A0° <0 <8N +5A07
020, X\i=20; s 20

where nz is the number of control variables of z, U
represents an upper bound for the slacks. If f; = 0,
then y; = 1, s; = 0, which indicates constraint i is ac-
tive; if f; < 0, then y; = 0, which indicates constraint
¢ is inactive. The active constraint strategy suggests
that ny + 1 constraints must be active for the final re-
sult. This conclusion is drawn from the fact that the
largest T'(8) is determined by the critical point which
was the intersecting point of T'(§) and ¥(d,8) = 0,
while ¥(d,0) = 0 is just the projection result of a
set of nz + 1 active constraints (f; = 0). Note the
subset of nz + 1 active constraints as ¥, and the total
candidate active sets as Y, 3, € Y. The active con-
straint strategy may be interpreted as follows: from
one set of J;, a maximum &, could be obtained, then
the flexibility index F' is the minimum one of all the
possible &, t.e., F' = mkin ér. As the number of active

(P1)

kyizoll; iel

constraint set is finite, the strategy is computation-
ally efficient/®~11. One visual representation of above
discussion is shown in Fig. 2.

v(d,8)=0
F =ming, = &,
. k
8, . -
~
L}
3,

Figure 2 Sketch for the active constraint strategy

The hyperrectangle derived from the flexibility in-
dex F is similar with the initial hyperrectangle formed

by a priori AGT, A@~ in 6 space. It is the scalar F
which dominates the expansion of all the dimensions
of 6. In the solution process, such cases always oc-
cur that when one vertex attained the feasible bound-
ary all the other vertexes would correspondingly stop
expanding even though they are still potentially ex-
tendible ( see Fig.2 ). Thus, the hyperrectangle ob-
tained with previous methods is rather conservative in
most cases.

An important feature of the active constraint strat-
egy is that the solution of P1 provides the positional
information of critical point #€, which could be used
to extend the other vertexes as farther as possible.

3 LOCAL ADJUSTING METHOD FOR
MAXIMUM HYPERRECTANGLE

As discussed in the above, a local adjusting method
for maximizing the hyperrectangle is proposed in this
paper. Assuming the number of uncertain parame-
ters are NP. The result of P1 may give the maxi-
mum hyperrectangle T similar with the initial one,
vertex of #©1, scalar parameter §* and active con-
straint subset of y,. Here 6! determines the val-
ues of either 67 or 6; for all uncertain parameters
0;(j =1,---,NP). We use two binary variables 1’;,
7; to indicate whether 8 or 6} is just decided.

+
7 =0

otherwise T = 0

otherwise

If 6f fixed, 7} =1,
If 9; fixed, T =1,

Then we reconfigure the hyperrectangle using the
local adjusting method (LAM) as shown in Fig. 3

The proposed LAM method makes those undeter-
mined 6 or 6; still have the possibility to extend as
far as possible. After substituted back to P1, the re-
configured hyperrectangle generates the next new ex-
tended hyperrectangle 72 with §*, 2 and 7,. Ana-
logically, we can get the final and the largest hyper-
rectangle of the flexibility region.

4 EXTENDED ALGORITHM OF FLEXI-
BILITY ANALYSIS

Based on the proposed LAM, an extended algo-
rithm is developed to find the largest flexibility hy-
perrectangle for a fixed chemical plant. The steps in
this algorithm are as follows:

Step 1 Initialize the algorithm and set 7;" = 0,
T =0,k=1.

Step 2 Solve optimization problem P1 to yield
the critical point 8¢, scalar parameter §* and active
constraint subset .

Step 3 Generate the hyperrectangle according to
current §*, 6€ and %, with LAM method.

Chinese J. Ch. E. 9 (1) 51 (2001)
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Figure 3 Diagram of the local adjusting method

Step4 If Z 'r;' +7; = 2NP, then Stop. Output

the latest hype:;rectang]e. Otherwise, k = k+1, go to
Step 5.

Step 5 Replace the hyperrectangle in problem P1
by the new one obtained in Step 3. Simultaneously,
eliminate the ¥, from the total candidate active sets
Y, then go to Step 2.

5 ILLUSTRATING EXAMPLES

The proposed algorithm is illustrated by two ex-
amples. Example 1 is a numerical one which involves
the following set of four constraints with one control
variable z and two uncertain parameters 6, and 6,

fi=z—0,4+20,+d; —3d2 <0
fi=—=z—-050; —6,+d+1<0
fa=z+0,-6,—-d; —8<0
fa=z+26, +20, —2d; —3d <0
The design values of d, the nominal values and the
expected deviations of @ are given in Table 1. The
boundary of the feasible region of example 1{¥(d,6) =

0] can be obtained from the aboved 4 constraints
(Fig.4).
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Table 1 Data for example 1

di  dy 6N 6N AT A6T A8 A6

4 5 5 T 1 3 3 T

¥, =-150;+60;—-5=0
¥, =056, —20, —6=0
\1’3:1.591-}-92—17:0

By using the extended algorithm of flexibility anal-
ysis, the calculation results are obtained after 3 iter-
ations as shown in Table 2. The extended hyperrect-
angles are shown in Fig. 5.

According to the iteration results, the final gener-
ated hyperrectangle is obviously much larger than the
one calculated by previous method (iteration 1), which
means the new algorithm fully exploits the flexibility
region over which the feasible operation is guaranteed.

It should be noted that half of all the 2N P values
of 9+ and 9' are to be determined during the first
1terat10n Then at least one 9"’ or 9 will be deter-
mined for each following 1tera.t10n so that when the
new algorithm is completed at most NP +1 iterations
are required.
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Figure 4 Feasible region and initial T in example 1
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Figure 5 Extending process in example 1

Example 2 is an extended version of a practical
chemical process given by Swaney!”). In this exam-
ple, a centrifugal pump (Fig. 6) transports liquid at a
flowrate m from its source at pressure p; through a

pipe to its destination at pressure p;. The flowrate
m and p; are treated as uncertain parameters 6. The
control variable is the valve coefficient C,. The design
variables d, process constants, nominal values and the
expected deviations for 8 are shown in Table 3.

The reduced inequalities of f;(d, 2,8) < 0 for this
example are given as follows

2
m [
(pl + PH - ﬁ — km1'84D-"'16) — p; —-£<0
v
2
m
—(p1 + pH — i km1BD=516) 4 pe o < g
v
mH —nW <0

C, - CMAX <0
rCMAX _ . <0

The calculation results obtained by the proposed
algorithm are shown in Table 4. And the extended
hyperrectangles are shown in Fig. 7.

It should be pointed out that example 2 undergoes
only two iterations before generating the final hyper-
rectangle, that is because 6; and 6, , which were unde-
termined in the first iteration, are fixed synchronously
in the second iteration (see Fig.7). From the view of
practical point, this coincidence occurs often, which
means the actual iteration number of the proposed
algorithm may be less than NP + 1.

Table 2 Iteration results of example 1

Iteration é* Bf‘ Bg -r:' Tl_ 'r;' 72_ Yk Generated hyperrectangle
1 0.556 5.556 8.667 1 0 1 0 =1Ly =1 3.332 < 6; < 5.556
3.108 < 62 < 8.667
2 1.532 2.445 8.168 1 1 1 0 n=1lLy=1 2.445 £ 0; < 5.556
1.039 < 0, < B.667
3 1.444 5.556 8.667 1 1 1 1 y2=1l,ya=1 2.445 € 8; < 5.556

~1.661 < 6, < 8.667

Table 3 Data for example 2

Design variables

Process constants

Values of uncertain parameters

driving power: W = 35kW

pump head: H = 1.4kJ-kg™!

pipe diameter: D = 0.072m
control valve size: CMAX = 0.09

pump efficiency: n = 0.5
control valve range: r = 0.05
liquid density: p = 1000 kg-m~—3
source pressure: p; = 100kPa
pressure drop constant: k = 9.101 x 10~ %kPa
tolerance of p3: £ = 20kPa

desired pressure: p3" = 800kPa
A8} = 200kPa
A0 = 550kPa
liquid flowrate: mN = 10m-s~!
A6F = 2kPa
A6, = 5kPa

Table 4 Iteration results of example 2

Iteration é* 9.? GE -ri" T 1-,_,+ T, v Generated hyperrectangle
1 0.535 906.650 11.067 1 0 1 0 v2=1lya=1 505.53 < 6, < 906.650
7.323 < 6, < 11.067
2 1.929 232.461 4.841 1 1 1 1 =1y =1 232.461 < 6; < 906.650

4.841 < 8, < 11.067
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Figure 8 Pump and system in example 2
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Figure 7 Extending process for example 2

For the higher dimensional uncertainty problems,
which mean ngz > 2, the proposed extended algorithm
is applicable in general. In fact, each iteration of the
proposed algorithm would have fixed one of TJT" or 7,
which reduces the problem dimensionality. Therefore,
higher dimensional problems would be transformed to
lower dimensional ones during the iteration procedure,

which shows the generality of the proposed algorithm.

6 LIMITATION OF THE EXTENDED AL-
GORITHM OF FLEXIBILITY ANALYSIS

The main limitation of the proposed algorithm
is the assumption that the constraint functions
f(d, 6, z) should be jointly quasi-convex in z and one
dimensional quasi-convex in 8}, so that the critical
point must lie at a vertex of the hyperrectangle. To
practical chemical process it might be difficult to de-
termine whether f(d,#,z) belongs to the functions
described above. The following procedure could be
used to check whether the final generated hyperrect-
angle is correct or not

= i (d,z,0
X %gﬁrrgnr?ggcﬂ( ,2,0)

if x <0 all the constraints are satisfied,
the result is correct
if x >0 some constraints are not satisfied,

the result is incorrect

(8)
The above problem can also be solved with the
active constraint strategy,

X= max u
0,2 4,5\ v
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s.t.
( fi(d,2,0) —u+s; =0

(P2)

where T = {9|9L <0< 6U} is the final hyper-
rectangle generated by the proposed algorithm. 6%,
6Y are the lower and upper bounds of the final uncer-
tainties of 6, respectively.

For example 2, x = —0.71x107* is obtained. From
Eq. (8) it is shown that the extended hyperrectangle
is feasible for the practical chemical process.

The same result by previous methods is obtained in
the first iteration of the proposed extended algorithm.
From then on, the subsequent iteration would gener-
ate a larger hyperrectangle than before. Even if the
results are incorrect due to the convexity limitation
of the constraint functions, they could be effectively
detected and removed by the proposed check proce-
dure. Therebefore, the final hyperrectangle generated
by the proposed algorithm would be larger than the
one obtained with previous methods.

7 CONCLUSIONS

The proposed LAM method and extended algo-
rithm of flexibility analysis exploits the flexibility re-
gion over which a chemical process could hold the fea-
sible operation. With the LAM method, the active
constraint strategy is used repeatedly to obtained a
series of critical points of ¢C, in the meantime the
hyperrectangle of uncertainty space is extended effec-
tively. The hyperrectangular flexibility region gener-
ated by the extended algorithm will be larger than
that obtained with previous methods. The limitation
of the proposed algorithm due to imperfect convexity
is discussed and its corresponding verification mea-
sure is confirmed to be effective. The proposed new
algorithm is proved useful for flexibility analysis of
practical chemical process design and operation.

NOMENCLATURE

d vector of design variables
F flexibility index
NP  number of uncertain parameters
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ng number of control variables of z

s vector of slack variables

T hyperrectangle for uncertain parameters
T(8) hyperrectangle with scalar variable &
U upper bound for the slack variables
u scalar for maximum constraint value
z vector of state variables

Y total candidate of ¥

v active subset for y;

i binary variable for constraint i

z vector of control variables

é scaled parameter deviation

e vector of uncertain parameters

8c critical point of vector 8

N nominal point of vector @

A8t positive deviation of vector 8

A0~  negative deviation of vector @

6F upper bound for 8;
lower bound for 6;

J
A vector of Lagrange multipliers
1'; director factors for 6‘;.“
1—3?‘ director factors for 9;.'
¥ feasible function
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