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Abstract This paper discussed an extended model for flexibility analysis of chemical process.

Under uncer-

tainty, probability density function is used to describe uncertain parameters instead of hyper-rect'angle, and chance-
constrained programming is a feasible way to deal with the violation of constraints. Because the feasible region of
control variables would change along with uncertain parameters, its smallest acceptable size threshold is presented
to ensure the controllability condition. By synthesizing the considerations mentioned above, a modified model can
describe the flexibility analysis problem more exactly. Then a hybrid algorithm, which integrates stochastic simula-
tion and genetic algorithm, is applied to solve this model and maximize the flexibility region. Both numerical and
chemical process examples are presented to demonstrate the effectiveness of the method.
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1 INTRODUCTION

Flexibility of a chemical process is the ability of
the system to maintain feasible steady-state opera-
tion over a range of uncertain operating environments.
It is one of the key components of chemical plant
operability!12l. Flexibility analysis in process synthe-
sis under uncertainty has become an important part
of process system engineering research. The practi-
cal operating conditions must be avoided to be far
from the fixed design ones such that the operation
will violate the process constraints caused by the fluc-
tuation of the uncertain factor. A lot of system-
atic work in this field has been presented, which in-
volved process modeling, optimization procedure and
solution strategy. Some studies discussed theoretical
developments!® and effective calculation method®5!,
some focused on the combination of flexibility and reli-
ability, controllability, robustness and safety for chem-
ical processes!®7]. This paper attempts to discuss sev-
eral sub-problems about uncertainty and controllabil-
ity in flexibility analysis, and to propose more appro-
priate way of modeling practical processes. Then, an
integrated algorithm is suggested to solve the opti-
mization problem about determining the flexibility re-
gion.

2 UNCERTAIN PARAMETERS

Flexibility analysis gives consideration to the un-
certain parameters in the design and actual operation
of chemical plants which include either internal pro-
cess parameters such as stream flow rate, stream spec-
ifications, operation temperature and transfer coeffi-
cients, or external process parameters such as feed
quality, economic cost data, and product pricel®l.
These uncertain parameters are denoted hy vector 8.
Similarly, d is the vector of design variables which
remain fixed during the process operation, vector @
represents the state variables, and control variables
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vector z represents the degree of operation freedom
that can eliminate the system fluctuation occurred by
the uncertain parameters. A steady state of chemical
process can be described by using these symbols

h(d,z,z,0)=0 1
g(d,z,2,0) <0 1)

By eliminating the state variables x, the process
state can be described by the following reduced in-
equality constraints

h(d,z,z,0) =0= 2z =z(d,2,0) @)
gld, z,z(d, 2,0),0]) = f(d,2,0) <0

Hyper-rectangle is a classic means to describe the
range of 8. Giving the nominal point o, two corre-
sponding sides displaced proportional to the expected
positive and negative deviations A%, A@~ and the
scalar parameter § (mainly based on experience), the
range of @ is

T(6) = {6]0 — 606~ <@ <O +5A0T}  (3)

This hyper-rectangle determines the actual size
of the region for feasible operation in the space of
uncertain parameters. It is one of the bases of
“fexibility index”1?] and “active constraint strategy”
methods!®. Xu extended the hyper-rectangle descrip-
tion method into “local adjusting method” for flexi-
bility region of chemical process!'®), where the range
of @ is

T(6) = {B16Y — 67 A07 <0, <ON 467807,
i=1,- 1)

These above methods, however, are all based on
an assumption that all the uncertain parameters have
uniform distribution, which does not accord with the
practice that different parameter is subject to different
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distribution. So it is better to use probability density
function to describe each uncertain parameter

1} (5)

where pdf; is the probability density function of vari-
able 0;, a,.,, is the function parameter. In practical
problems, the familiar distributions of chemical pro-
cess parameters may include uniform, normal, trian-
gular, exponential, and so on. They should be decided
individually by domain knowledge and experience.

T(g) = {9]8; difi(a‘ilﬁai}:'”)r i = 1'.!"'

3 CONSTRAINTS UNDER THE UNCER-
TAIN ENVIRONMENT

In a system with uncertain parameters, it is of
course ideal for the operation to satisfy all the con-
straints. The investment and operation cost of process
may be very expensive in order to avoid any violation
of constraints completely. In fact, the constraints in
process industry can be classified into two classes de-
pending on whether the violations caused by the un-
certainty are acceptable. Constraints that must not
be violated under any circumstance are classified as
“hard” ones, the equipment safety limitation for ex-
ample. On the other hand, some constraints are “soft”
and their violation can be tolerated, e.g. the product
specifications(!1].

The chance-constrained programming could be
useful to deal with different types of constraints.
When uncertain parameters exist in constraints,
chance-constrained programming can provide a pow-
erful means of modeling a stochastic decision system
with assumption that stochastic constraint will hold
at least a of time, where « is the confidence level pro-
vided as an appropriate parameters by user. Then the
inequality constraints (2) become

Pr{fi(d,z,0)<0, i€l}>a (6)
where Pr{x} denotes the probability of the events
in { }. Solving chance-constrained programming di-
rectly by stochastic simulation and some heuristic op-
timization algorithm such as genetic algorithm has be-
come feasible and effective now, along with rapid de-
velopment of computer tools(12.

4 FEASIBLE REGION LIMITATION OF
CONTROL VARIABLES

Let’s consider an example from the practical chem-
ical process, which is given by Swaney!™? and used
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also by other authors('®). Tt describes the liquid
transportation by a centrifugal pump, whose data are
shown in Table 1, and state constraint is inequality

Eq. (7).

m? 1.84 1—5.16 .
(p1+pH—;c,—2~km' D™ )—pz—sgo
vV
m? - 16
_(pl +pH_ p? _ kmlﬁ‘lp—o,lb) +P; - é 0
v
mH —nqnW <0

Cy —CY¥AX <o
rCyAX — oy <0

(7)
The feasible hyper-rectangle result obtained by the
extended local adjusting method1 is

232.461 < p} < 906.650 ®)
4.841 < m £ 11.067

According to constraint Eq. (7) and flexibility re-
gion Eq. (8), we can get Fig.1. It is a 3-D graph that
describes the relation between feasible region of con-
trol variable and uncertain parameters. The z-axes
and y-axes denote two uncertain parameters p; and
m, respectively. The z-axes denote the sizes of fea-
sible region of control variable Cy, which ensure the
constraints can be hold. Fig.2 is a contour plot en-
larging a part of surface in Fig. 1.

In order to satisfy the constraints as high as possi-
ble, control variables must be adjusted with different
realization of uncertain parameters. Apparently, the
adjustable range, or the feasible region size of control
variable, is also different with different realization of
uncertain parameters. Sometimes the control variable

Figure 1 Relationship between control variable and

uncertain parameters

Table 1 Data of pump system in example

Design variable Process constant

Values of uncertain parameter

driving power: W = 35 kW
pump head: H = 1.4kJ-kg™?
pipe diameter:

D =0.072m
upper bound of control

pump efficiency: n = 0.5

valve: » = 0.05

valve size:
c\l\;i“ = 0.09

lower limit coefficient of control

liquid density: p = 1000kg:m~3

source pressure: p; = 100kPa

pressure drop constant: k = 9.101 x 10~¢kPa
tolerance of p3: € = 20kPa

desired pressure: pEN = 800 kPa
&p;*’ = 200kPa
Ap;~ = 550kPa
liquid flowrate: mN = 10m-s~!
Amt =2me~!
Am~ =5ms~!
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Figure 2 Contour plot of feasible region of Cy;

may be limited in a very strict range, for example, in
the most area in Fig.1. It is more clearly in Fig. 2.
The statistical result of the feasible region size of con-
trol variable is shown in Table 2. Though they are
theoretical feasible solutions, it will be very difficult
or even impossible to set the control variable within
an extreme small region in real producing process.

Table 2 Distribution of feasible region of Cvy

Feasible region size of Cy (RCy) Area percentage, %
RCyv < 0.0001 1.63

0.0001 < RCvy < 0.0002 21.60
0.0002 < RCy < 0.0004 34.21
0.0004 < RCy < 0.0007 20.44
0.0007 < RCy < 0.005 20.15
RCv > 0.005 1.97

To solve this problem which is adverse to control-
lability, we enhance the constraint

Pr{f(d,z,0)<0i€l}>aVzelz—- Az z+ Az]

(9)
where Az is the deviation which describes the small-
est acceptable bound of feasible region size of z, given
by user. Thus, the enhanced constraint can ensure
a feasible region size of z that is greater than setting
threshold, with any possible 8. This region of z should
be attainable in actual operation.

5 INTEGRATED ALGORITHM OF FLEXI-
BILITY ANALYSIS

By synthesizing the three sections above and set-
ting an objective function correlate with flexibility, the
flexibility analysis in chemical engineering processes
will become a chance-constrained programming. Then
we integrate a hybrid intelligent algorithm to solve this
optimization problem and to get the flexibility feasible
region. The brief procedure is listed as follows

Step 1. Model the flexibility analysis problem
by using chance-constrained programming and other
methods, and initialize the parameters.

Step 2. Generate feasible solution for uncertain
constraints by stochastic simulation.

Step 3. Get the optimal solution through selection,
crossover and mutation of genetic algorithm, and then
report it.

6 EXAMPLES

Firstly, consider a numerical example which in-
volves five constraints with one control variable z and
two uncertain parameters ¢; and ;. Design variables
are omitted. The optimization form of this problem
15:

max A

s.t.

Pr{fi = z—60; + 20, — 11 < 0} > 0.97

Pr{f; = —z—0.56, — 6, + 6 < 0} > 0.95
Pr{fs=2z+6; — 6, —12 < 0} > 0.98 (10)
Pr{fy =z + 26, + 36, — 25 < 0} > 0.99

Pr{fs = —2z+0.26, — 26, + 11 < 0} > 0.96
—20< 2 <30

6, ~ N(2,52%),0; ~ T(~6,13,4)

where A is the area of feasible rectangle in the space of
uncertain parameters, N(u,o?) is normal probability
density function, T'(a,b,m) is triangular probability
density function.

The final result of the problem by using integrated
algorithm is shown in Fig.3 and inequality Eq.(11).
The hyper-rectangle of flexibility region is larger than
the feasible region indicated by dashed line, because
the constraints can be violent in the given probability.

—0.498 < 6; < 3.781
—0.107 € 6, € 6.253

(11)

Figure 3 Flexibility region of numerical example

The second example is still one about the pump
system with some additional setting

max A
s.t.
m? i
(pl +pH — FF _ kml'84D°'1b) _p; —c g 0
V2
—(Pl +pH - e — kml84 D5 16) +p3—e<0
Vv
mH —nW <

0
Cv — CYAX <o
rCYAX — Cy <0
ps = 200
VCy € [Cv — ACy, Cy + ACy], ACy = 0.00005
p5 ~ U(0,1500), 1 ~ U(0, 15)

(12)
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Considering the feature of problem and the conve-
nience of result comparison, uniform probability den-
sity function, U(a,b), is selected to describe both
stochastic parameters. The object is to maximize the
area of the feasible region. By the integrated algo-
rithm, we get the result of feasible region as follows

200.000 < p; < 833.771

(13)
5.875 < m < 11.770
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Figure 4 Flexibility region of the pump system

The flexibility hyper-rectangle is not fully filled in
the feasible region. In some area nearby the feasible
bounds, the range of control variable corresponding to
the uncertainty may be too strict to be realized in real
operation. This area is eliminated from the result.

In these examples, the chance-constrained pro-
gramming extends the flexibility region, while the fea-
sible regions limitations of control variables reduce it.
Though they have inverse apparent effect, they all de-
scribe some aspects of the practical problems.

7 CONCLUSIONS

The paper compares probability density function
method with hyper-rectangle in uncertain parameters
description, confirms that the former is more effec-
tive to actual process. By considering the safety of
constraints, the flexibility model modified by chance-
constraint programming can work on different con-
ditions. The problem about controllability is solved
by introducing new enhanced constraint. To solve
this optimization problem of flexibility analysis based
on modified model, an integrated algorithm includ-
ing stochastic simulation and genetic algorithm is sug-
gested. Because the advantage of heuristics, this opti-
mization algorithm can deal with various complicated
cases. The sample calculation and analysis indicate
the modified model and corresponding solving algo-
rithm is more practical and trustworthy to chemical
process design and operation.
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NOMENCLATURE
Anm parameter of probability density function
d vector of design variables
f reduced inequality constraints
g original inequality constraints
h original equality constraints
Pr{ } probability of the events in { }
pdf probability density function
T(8) hyperrectangle with scalar variable §
T(6) hyperrectangle with distribution of @
x vector of state variables
z vector of control variables
z active value of z
Az deviation of control variables
@ confidence level
) scaled parameter deviation
&t scaled parameter positive deviation
6= scaled parameter negative deviation
6 vector of uncertain parameters
oN nominal point of vector &
aet positive deviation of vector 8
AO negative deviation of vector @
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