碳对高温钛合金 Ti-60 组织和性能的影响

张尚洲1 王波1 刘子全1 高原1 杨锐2

1. 烟台大学环境与材料工程学院 烟台 264005

2. 中国科学院金属研究所 沈阳 110016

摘要 在 Ti-60 合金中碳的加入量大于 0.17% 时,组织中析出 TiC 结构的碳化物. 在 $\alpha+\beta$ 相区再结晶,碳偏聚于初生 $\alpha(\alpha_p)$ 相,导致碳化物主要在 β 转变组织中析出,其析出的百分数取决于 α_p 体积分数. 在 β 相区热处理,析出的碳化物钉扎 β 原始晶界,阻碍 β 晶粒的长大. β 晶粒尺寸 D、碳化物颗粒直径 d 和体积分数 f 三者遵循 $D/d \propto f^{-1/3}$ 关系. 随着碳含量的 增加, β 晶粒尺寸减小, α' 片层通过界面迁移迅速长大以及形成 α 片层的合金元素的扩散速度加快,导致 α' 或 α 片层的厚度 增加. 碳的加入量小于 0.09% 时,碳完全固溶于基体中,产生固溶强化, β 晶粒细小,导致合金的强度和蠕变抗力提高. 碳含量增 加导致粗大碳化物颗粒的析出,变形时产生应力集中使合金的塑性和蠕变性能降低.

关键词 金属材料, Ti-60 高温钛合金, 碳, 显微组织, 力学性能

分类号 TG142

文章编号 1005-3093(2007)04-0433-06

Effect of carbon on microstructures and mechanical properties of Ti–60 high–temperature titanium alloy

ZHANG Shangzhou^{1*} WANG Bo¹ LIU Ziquan¹ GAO Yuan¹ YANG Rui²

1.School of Environmental and Materials Engineering, Yantai University, Yantai 264005 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016

Manuscirpt received April 9, 2007; in revised form May 17, 2007.

* To whom correspondence should be addressed, Tel: (0535)6706731, E-mail: szzhangyt@163.com

ABSTRACT Carbon additions greater than 0.17% produce carbide precipitation in the microstructure of Ti–5.6Al–4.8Sn–2Zr–1Mo–0.35Si–0.7Nd titanium alloy. During recrystallization in the $\alpha+\beta$ phase field, carbon localizes in the primary $\alpha(\alpha_p)$ phase, resulting in that carbide particles preferentially form from the β grains of bimodal microstructure and its volume fraction is determined by that of the α_p . Precipitates of carbide during β annealing are distributed on the prior β grain boundaries or within the grain, and an obvious β grain refinement was observed due to the grain–boundary pinning effect of carbide. The ratio of pinned β grain size (*D*) to carbide particle size (*d*) was found to be proportional to $f^{-1/3}$, the volume fraction of carbide. The α' or α plate sizes increased because of the carbon addition. Carbon solubility in the phases concerned is closely related to the variation of mechanical properties.

KEY WORDS metallic materials, Ti–60 high–temperature titanium alloy, carbon, microstructure, mechanical properties

高温钛合金 Ti-60 为近 α 合金, 主要用于航空 发动机的热端部件. 钛合金的力学性能与其组织的 关系已有广泛的研究 ^[1-3], 在 β 相区热处理获得片 状组织, 具有良好的断裂韧性和抗裂纹扩展性能 ^[4,5]. 在 Ti-25V-15Cr-2Al 钛合金中加入一定量的碳形成 有序 Ti₂C 结构, 可显著改善其塑性 ^[6]. Ti-60 合金 含有 5%-15% 初生 $\alpha(\alpha_p)$ 的双态组织时具有良好的

1 实验方法

原始合金 Ti-60 的名义成分 (质量分数,%,下同)

综合力学性能,这时合金的热加工和热处理必须选 择在 $\alpha+\beta$ 相区.由于合金的 $\alpha+\beta$ 相区较窄,热处理 时不易控制组织,力学性能不稳定^[7].通过加入少 量的碳可以扩大高温钛合金的 $\alpha+\beta$ 相区热处理窗 口^[7-9],使 α_p 体积分数容易控制在5%-15%之间, 仍然保持细小的 β 晶粒,提高强度和疲劳性能^[9]. 本文研究碳对Ti-60合金组织和性能的影响,分析 碳合金化、组织演变和力学性能之间的关系.

²⁰⁰⁷ 年 4 月 9 日收到初稿; 2007 年 5 月 17 日收到修改稿: 本文联系人: 张尚洲

为 Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd, 经过 2 次 真空自耗炉熔炼后得到 500 kg 铸锭. 用原始 Ti-60 合金和不同质量的纯碳粉, 在氩气保护的水冷铜 坩埚中非自耗熔炼 4 次, 获得质量为 90 g 的纽扣 锭. 原始 Ti-60 合金和不同碳含量合金的 C、O、 N 含量以及 $\alpha+\beta/\beta(\beta_t)$ 转变温度列于表 1. 将纽扣 锭在 1200 ℃开坯锻造, 终锻在 $\alpha+\beta$ 相区完成, 获 得直径为 10 mm 的棒材. 将这些不同碳含量的合 金在 ($\alpha+\beta$) 相区热处理, 水淬后获得双态组织; 在 (β_t+15 ℃) 固溶处理, 水淬或空冷后分别获得马氏 体和魏氏组织.

在 MEF4A 型光学显微镜和 JSM-6301F 型扫描 电镜下观察合金的显微组织. 用 EPM810 型电子探 针进行合金相成分的定量分析. 用 IPS-500 图像分 析系统测量 β 晶粒尺寸和 α' 或 α 片层厚度. 用日 本理学 (Rigaku)D/max-2500pc 型 X 射线衍射仪测 量 α 相的点阵常数. 把试样加工成直径 5 mm 标距 25 mm 的标准拉伸试样, 用日本岛津 AG-5000A 型 拉伸机测量合金的力学性能.

- 表 1 不同 C 含量合金的间隙原子含量及 $\alpha + \beta/\beta$ 转变温度
- **Table 1** Contents of interstitial elements (mass
fraction, %) and $\alpha + \beta$ /-transus (β_t) temperature of the experimental alloys

Allow	Inte				
Alloy	С	Ο	Ν	$\beta_{\rm t}/{ m C}$	
Base	0.01	0.07	0.01	1020	
A-1	0.06	0.07	0.01	1045	
A-2	0.09	0.10	0.02	1095	
A–3	0.17	0.10	0.02	1125	
A-4	0.23	0.10	0.02	1145	
A-5	0.32	0.10	0.03	1175	
A-6	0.43	0.10	0.02	1145	

2 结果与讨论

不同碳含量 Ti-60 合金经过高温变形后获得等 轴组织, 由初生 $\alpha(\alpha_p)$ 及晶间 β 相组成 (图 1). 不同 碳含量合金在 ($\alpha+\beta$) 相区固溶处理后水淬, 碳在合 金中的溶解度很小, 加入量大于 0.17% 时, 组织中析 出碳化物. 由图 2 可以看出, α_p 体积分数显著影响 碳化物的析出百分数. 随着固溶温度的升高, α_p 体积 分数逐渐减少, 碳化物的析出百分数逐渐增加, 片状 组织中碳化物的析出量最大. α_p 体积分数高于一定 值时, 组织中没有碳化物析出, 碳完全以固溶形式存 在于 α_p 和 β 相. 成分测定表明, 碳化物为固溶少量 Al、Sn 和 Zr 等元素的 TiC(表 2). 其他合金的组织 变化与 A-5 合金相似.

图 1 原始合金的锻态组织

Fig.1 As–forged microstructure of the base alloy showing equiaxed α and intergrannular β phases

图 3 表明,随着碳含量的增加,开始析出碳化物 所需 α_p 体积分数也较大. A-3 合金仅在片状组织析 出碳化物,而对于 A-4(0.23%C)、A-5(0.32%C) 和 A-6(0.43%C) 合金,开始析出碳化物时 α_p 体积分数分 别为 10%, 24% 和 34%. α_p 体积分数小于此值,碳化 物将析出.

碳化物百分数随着 α_p 体积分数变化以及片状组 织中析出的碳化物体积分数最高,因为碳在 α_p 的溶 解度远大于 $\beta^{[10]}$.碳加入量大于 0.17% 时,随着 α_p 体积分数的减少,把碳原子推向 β 转变组织,而 β 基 体溶解碳的能力非常有限,仅有 0.082%;随着 α_p 的 消失,其中的碳原子不能溶进 β 转变组织中,导致碳 化物在双态组织的 β 晶粒中析出.碳含量越高的合 金,相应地碳化物析出的数量越多,溶解碳化物所需 的 α_p 体积分数增大.因此,控制 α_p 体积分数可以得 到不同体积分数的碳化物.

在 $β_{t}+15$ ℃固溶处理后水淬或空冷,得到 β 晶 粒大小与碳含量的关系曲线 (图 4). 碳加入量小于 0.09% 时, β 晶粒尺寸变化不大;但是随着碳含量的 增加,晶粒发生显著细化. Ti-60 合金片状组织中碳 的最大溶解量为 0.082%. 如果碳加入量大于 0.09%, 超过了片状组织的溶解能力,合金将析出碳化物,并 且随着碳含量增加碳化物的体积分数变大. 在 β 相 区热处理过程中,急剧生长的 β 晶粒遇到第二相粒子 碳化物时,晶界的迁移受到阻碍,晶粒长大的速度降 低;碳化物数量越多, β 晶粒细化效果越明显. 可见, 碳化物颗粒钉扎晶界是 β 晶粒细化的原因.

图 5 表明,随着碳含量的增加,在 β 原始晶界和 晶粒内部析出碳化物.晶界碳化物的析出阻碍了 β 晶粒长大.靠近晶界边缘的碳化物,可能是晶界迁移

图 2 A-5 合金中不同 α_p 体积分数的显微组织

Fig.2 SEM micrographs showing the formation of carbide as a function of α_p volume percentage in the A–5 alloy: (a) 70% α_p (1010 °C/1 h/WQ); (b) 10% (1165 °C/1 h/WQ); (c) 0% (1190 °C/1 h/WQ)

表 2 A-6 合金中碳化物的成分

Table 2Compositions of the carbide in the A-6 alloys (mass fraction, %)

	Al	Sn	\mathbf{Zr}	Mo	Si	Ti
As–cast alloy	0.78	3.98	3.29	0.21	0.14	91.60
As–forged alloy						
1160 °C/1 h/WQ	1.07	4.12	2.14	0.51	0.11	92.05

Fig.3 Variation of the volume percentage of carbide with that of the primary α of alloys containing different carbon contents in the waterquenched condition

图 4 β 晶粒尺寸与碳含量之间的关系

过程中挣脱了碳化物钉扎作用留下来的.碳化物基本 上呈球状,晶界上的碳化物较不规则,沿着晶间 α 长 大.这是晶界作为溶质原子快速传输通道、晶界上偏 聚的元素向碳化物快速扩散的结果.

Zener^[11] 提出了第二相粒子对晶粒大小的影响, 假设第二相粒子与晶界作用是随机的,推导出晶粒 直径 D、第二相粒子直径 d 及其体积分数 f 的关系 $\frac{D}{d} = \frac{4}{3f}$. Zener 模型预测的晶粒尺寸一般明显偏离 实验值,因此只适用于第二相体积分数很小的情况. 后来有人对 Zener 模型进行了更精细的处理,提出 了不同理论模型来预测第二相粒子对晶粒尺寸的 影响^[12-14].这些理论模型可以归纳为 $\frac{D}{d} = \frac{k}{f^n}$,其中 k, n 为系数. Srolovitz^[12]等用 Monte Carlo 模拟方 法在二维体系中得到 $\frac{D}{d} = \frac{1}{f^{-1}}$;在三维体系中,当第二 相粒子间距与晶粒尺寸相当或者体积分数较高时,必 须考虑第二相粒子与晶界的非随机相互作用关系,

图 5 β_t+15 ℃热处理 1 h 水淬后 Ti-60 合金的组织

Fig.5 SEM images of the A–3 (a), A–4 (b), A–5 (c), and A–6 (d) alloys after heat treatment at β_t+15 °C for 1 h followed by water quenching showing grain refinement due to carbide grain–boundary– pinning effect

这时 $\frac{D}{d} = \frac{k}{f^{1/3}}$. Hellman 和 Hillert^[13] 得到的关系 式为 $\frac{D}{d} = (\frac{6}{f})^{1/3}$, Hazzledine 和 Oldershaw^[14] 得到 $\frac{D}{d} = \frac{2.8}{f^{1/3}}$.

图 6 给出了实验值和 Zener、Srolovitz、Hellman 和 Hillert、Hazzledine 和 Oldershaw 模型预测的 β 晶 粒尺寸和碳化物直径比值 (D/d) 与碳化物体积分数 f 之间的关系.可以看出, Zener 模型计算的晶粒尺 寸远大于实验值, 说明 Zener 模型过高地估计了晶界 迁移的驱动力. Srolovitz 模型在 f < 0.8% 时, 低估了 碳化物对晶粒长大的阻碍作用. Hellman 和 Hillert、 Hazzledine 和 Oldershaw 模型与实验结果吻合的较 好, 即 n 值等于 1/3.

图 7 给出了 β 相区淬火和空冷后 α' 或 α 片层 厚度的测量结果. 随着碳含量增加, α' 或 α 片层厚度 增加; 当碳含量大于 0.23% 时, 碳对 α' 或 α 片层的 影响减小. 从 β 相区淬火至室温时, 高温 β 相通过切 变方式转变为马氏体 α' 相, 形成的 α' 片层贯穿 α 群 体, 而后通过界面的推移长大 ^[15]. 以上结果表明, 碳 的加入细化 β 晶粒也导致 α 群体 (packet) 较小, 单 位时间内 α' 片层形成的距离缩短, 通过界面的迁移 迅速长大, α' 片层厚度增大. β 相区热处理后空冷, 高温 β 相通过扩散方式转变为魏氏 α 片层. 从表 1 可见, 合金的 $\alpha + \beta/\beta$ 转变温度随着碳含量的增加而 升高, 相应地 $\alpha + \beta$ 相区温度提高, 导致 $\beta \rightarrow \alpha$ 转变 开始温度升高, 致使形成 α 片层的合金元素的扩散 速度较快, α 片层长大速度增大. 因此, 随着碳含量 的增加 β 晶粒尺寸减小, 从而间接影响 α' 或 α 片层 的大小.

图 6 β 晶粒尺寸 D、碳化物颗粒大小 d 以及体积分数 f 之间的关系

Fig.6 Relationship between carbide particle size normalized limiting β grain size and volume fraction of carbide. Experimental data are also shown for comparison 一定量碳溶于基体改变合金 α 相的晶格常数. 随着碳含量的增加, α 相的 a 轴和 c 轴变大, 在碳 含量为 0.09% 时达到最大值, 碳含量继续增加, a 轴 有所减小, c 轴基本不变 (图 8). 碳占据 α 晶体的八 面体间隙位置, 溶于 α 相使其点阵参数变大. 碳的加 入量大于 0.09% 时, 片状组织溶解碳的能力达到最大 值, 因此 a 轴和 c 轴相应地达到最大, 继续提高碳含 量, 组织中形成碳化物, 对 α 相点阵常数的影响不大.

合金在不同温度固溶处理后空冷,获得片状组织和不同含量 α_p 的双态结构,而后在 700 ℃时效处理 2 h,原始合金、A-1 和 A-4 合金的力学性能在图 9 和图 10 中给出.可以看出,含碳量较高的 A-1 和 A-4 合金具有较高的强度. A-1 合金的碳含量为 0.06%,在组织中没有形成碳化物,碳固溶于基体中,残余蠕变变形较低;碳含量为 0.23%的 A-4 合金,含 7% α_p 的双态组织和片状组织均析出碳化物 (A-4 合金开始析出碳化物的 α_p 体积分数为 10%),虽然细化片状组织的 β 晶粒尺寸,但是没有使合金的强度有太大的提高,反而降低了合金的塑性和蠕变抗力.片状组织的

图 8 C 对 Ti-60 合金 α 相晶格常数的影响

Fig.8 Variation of lattice parameters (a and c) of the α phase with increasing carbon content in the Ti–60 alloys after heat treated at β_t+15 °C for 1h by water quenching

强度和塑性稍低于双态组织, 残余蠕变变形较大.

进行固溶热处理时,碳含量低于 0.09% 的合金双 态组织和片层组织均不形成碳化物;进一步提高碳含 量,在片层组织和含少量 α_p 的双态组织析出碳化物. 因此,可以从两方面研究组织对力学性能的影响:碳 呈固溶态和碳化物的析出. A-1 合金碳含量为 0.06%, 碳完全固溶于基体中,间隙式固溶原子造成非球形对 称畸变,产生固溶强化效果,阻碍位错的运动,同时合 金仍然保持细小的晶粒,提高合金强度和蠕变性能, 塑性与原始合金相当.碳含量为 0.23% 时,碳原子与 Ti 原子在高 $\alpha + \beta$ 相区和 β 相区形成粗大的碳化物, 虽然可以细化 β 晶粒, 但形成的 α 片层厚度增大, 合 金变形时在碳化物周围产生很大的应力集中,促进显 微空洞的萌生和扩展;并且碳化物为脆性相,主要在 晶界析出, 损害 A-4 合金的塑性和蠕变性能. 因此, 少量的碳加入到合金中以固溶形式存在,提高了合金 的力学性能.

高温钛合金双态组织的 α_p 体积分数对蠕变性能 有重要的影响. α_p 体积分数增加, 强度提高, 蠕变抗

- **图 9** 碳含量对 Ti-60 合金片状和双态组织力学性能的影响
- Fig.9 Dependence of tensile properties on carbon content for lamellar and bimodal (11% and 7% $\alpha_{\rm p}$) microstructures

カ下降^[2]. Ti-60 合金的最佳 $\alpha_{\rm p}$ 体积分数在 5%-15%^[9]. 将原始合金在高 $\alpha+\beta$ 相区热处理时, 固溶温 度在很小范围内波动, $\alpha_{\rm p}$ 体积分数急剧变化, 导致力 学性能的数据比较分散. 碳合金化扩大了 $\alpha+\beta$ 相区 热处理窗口, 延缓了 $\alpha_{\rm p}$ 的变化速率. 从图 10 可以看 出, 在 A-1 和 A-4 合金中加入碳后, 蠕变抗力对初生 α 相的变化不是非常敏感. 碳在 $\alpha_{\rm p}$ 中的固溶度较 β 转变组织大, 并随着 $\alpha_{\rm p}$ 含量增加, 固溶碳的能力增 大 ^[10]; 同时, 碳的加入减缓了 $\alpha_{\rm p}$ 的变化速率, 稳定 了合金的蠕变性能.

3 结 论

1. Ti-60 合金在 $\alpha + \beta$ 相区热处理得到双态组织, C 在 α_p 和 β 转变组织中不同的固溶度导致碳化物 主要在 β 转变组织中析出.

2. Ti-60 变形合金在 β 相区热处理, 在晶界上析 出的碳化物阻碍 β 晶界的迁移, 使晶粒细化. β 晶粒 的尺寸、碳化物颗粒的直径及其体积分数之间的关系 为 $D/d \propto f^{-1/3}$. 随着碳含量的增加, β 晶粒尺寸减 小, α' 或 α 片层厚度增大.

3. 随着碳含量增加, β 晶粒尺寸减小, α' 片层通 过界面迁移迅速长大以及形成 α 片层的合金元素的 扩散速度加快, α' 或 α 片层厚度增大.

4. 含量小于 0.09% 的碳完全固溶于基体中, 产 生固溶强化效果, 阻碍位错运动, 同时合金仍然保持 细小的晶粒, 提高了合金强度和蠕变性能. 碳含量继 续增加, 形成粗大的碳化物, 产生应力集中降低了合 金的塑性和蠕变性能.

参考文献

- G.Lütjering, Property optimization through microstructural control in titanium and aluminum alloys, Mater. Sci. Eng., A263, 117(1999)
- 2 H.M.Flower, D.R.F.West, The effect of silicon on the structure and mechanical properties of an $\alpha+\beta$ titanium alloy, J. Mater. Sci., **17**, 1221(1982)

- 3 M.Es-souni, Creep deformation behavior of three high– temperature near α–Ti alloys, Metall. Mater. Trans.,
 32A, 285(2001)
- 4 C.Leyens, M.Peters, D.Weinem, W.A.Kaysser, Influence of long-term annealing on tensile properties and fracture of near-α titanium alloy Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Si, Metall. Mater. Trans., **27A**, 1709(1996)
- 5 D.Weinem, J.Kuimpfert, M.Perters, W.A.Kaysser, Processing window of the near-α-titanium alloy TIMETAL-1100 to produce a fine-grained β-structure, Mater. Sci. Eng., A206, 55(1996)
- 6 Y.G.Li, P.A.Blenkinsop, M.H.Loretto, D.Rugg, W.Voice, Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al (wt%) alloys, Acta Mater., 47, 2889(1999)
- 7 S.Z.Zhang, G.P.Li, Y.Y.Liu, R.Yang, Effect of carbon on the upper (alpha+beta) phase field of titanium alloy Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si, Mater. Sci. Technol., 20, 167(2004)
- 8 C.Ouchi, H.Iizumi, S.Mitao, Effect of ultra-high purification and addition of interstitial elements on properties of pure titanium and titanium alloy, Mater. Sci. Eng., A243, 186(1998)
- 9 D.F.Neal, Optimization of creep and fatigue resistance in high temperature Ti alloys IMI 829 and IMI 834, Titanium Science and Technology (Oberursel, Deutsche Gesellschaft f ü r Metallkunde 1985) p.2419
- S.Z.Zhang, G.P.Li, Y.Y.Liu, R.Yang, Effect of carbon on the distribution of alloy elements in Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si titanium alloy, Proc of 10th World Conference on Titanium, 2004, p.1115
- 11 C.Zener, Theory of growth of spherical precipitates from solid solution, Trans. Metall. Soc. AIME, 15, 175(1948)
- 12 D.J.Srolovitz, M.P.Anderson, G.S.Grest, P.S.Sahni, Computer simulation of grain growth–III. Influence of a particle dispersion, Acta Metall., **32**, 1429(1984)
- 13 P.Hellman, M.Hillert, On the effect of second-phase particles on grain growth, Scand. J. Met, 4, 211(1975)
- 14 P.M.Hazzledine, R.D.J.Oldershaw, Computer simulation of Zener pinning, Phil. Mag., 61A, 579(1990)
- T.Y.Hsu, Martensitic Transformation and Martensite (Beijing, Science Press, 1999) p.779 (徐祖耀, 马氏体相变与马氏体 (北京, 科学出版社, 1999) p.779)