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ABSTRACT: Computer-assisted sperm motion measurements
present certain features that must be accounted for in statistical

analyses. Some are specific to this type of data, whereas others
are standard considerations. For example, the measurement of
multiple sperm from individuals creates correlations that must
be accounted for if each sperm’s measurement is used, and
unequal variances may arise that need to be addressed if an
average measurement from the individual is used. Also, the lim-
itations on the ranges of some measurements create discrepan-
cies between observed and actual means and may make
treatment-related effects more difficult to detect - a circum-

stance that has an impact on study design. When variables that
are truly continuous are measured in a discrete fashion, odd
effects may arise and care is needed. Other considerations, such
as the shapes of distributions and correlations among various
measurements, should also be examined. Attention to these de-
tails of statistical analysis are vital to proper interpretation of
data.
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C omputer-assisted sperm motion measurement technol-

ogy has provided researchers with new kinds of data in

large quantities. This wealth of information brings both new

opportunities and new problems, some of which were dis-

cussed by Amann (1989) and Tash and Wolf (1989). As
investigators, we need to be aware of the problems while
taking advantage of the opportunities. In this article, we
explore some of the potential problems that arise in the

statistical analysis of these data. Most of the concepts are

not new and may be found in standard reference texts. Sim-

ilarly, many of these problems are not unique to andrology,

but most are not familiar to andrologists. Thus, a discussion

of some statistical problems and some potential solutions

seems appropriate and timely. Where space does not permit

full discussion, we refer the reader to appropriate statistical

literature.

To illustrate our points, we will refer to data collected in

a study of the effects of ethylene dibromide on rabbits

(Williams et al, 1990, and Williams et al, 1991). We took
weekly semen samples from 42 rabbits before, during, and

after exposure; only data from the pre-exposure period will

be used. The pre-exposure period lasted 6 weeks, and we

were able to collect 223 usable samples during that time; 29

samples were unusable, primarily because of the presence
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of urine. The number of sperm analyzed varied among sam-

ples. For curvilinear velocity, for example, the number of
sperm measured per semen sample ranged from 2 to 185,

and the total number of sperm measured from all samples

from all rabbits was 13,674. These data were generated
using the CeilSoft#{174}system (Cryo Resources Ltd., New

York, NY). The principles, however, apply to any species
and to any of the current automated systems in use, as well

as to any semi-automated systems using the same general

methods of data generation.

Correlated Measurements

When the treatment or exposure under study is given to the
whole animal but observations are made on individual

sperm from that animal, the result is correlated measure-
ments. This study method has led to questions about what is
the “experimental unit” or the “unit of analysis.” Use of

such terms can be somewhat misleading since they imply a

simplicity that does not exist; no choice of unit allows us to
ignore the hierarchical nature of these data. Because of this

hierarchical structure, simple analyses may not apply. Re-

gardless of the unit chosen, analyses must accommodate the

added complexity. Simple analyses assume that observa-

tions are both independent and identically distributed (at

least within a group). These conditions do not necessarily

apply to measurements from multiple sperm per animal. We

discuss the implications of using the sperm or the animal as

the unit and the considerations that arise in each case.
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standard error (ie, estimated variance of the mean):

This question of the appropriate unit is not unique to

sperm motion analysis. It arises in other fields with hierar-

chical observations, such as teratology, with multiple fe-

tuses per female (Haseman and Kupper, 1979);

ophthalmology, with two eyes per person (Rosner, 1989);
and education, with multiple pupils per classroom or

teacher (Hopkins, 1982). The main statistical principles are

the same in all of these cases, although the question of

primary interest may vary. For example, in ophthalmology,

it is possible that the two eyes of a diseased individual will

undergo different treatments; thus, methods that accommo-

date this difference are needed.

Lack of Independence: Using the Individual Sperm as the
Unit

If data from individual sperm are analyzed, measurements

of any particular endpoint for different sperm from the same

animal are correlated. This correlation arises because values

for sperm from some animals are consistently high while

others are consistently low. Thus, two sperm from the same

animal will tend to be more alike than two sperm from

different animals. To show the magnitude of the problem,

consider the following example of curvilinear velocity: the

means for 42 individual rabbits ranged from 86 to 145

p.m/second. Figure 1 shows the variation both within and

between animals. Three animals are shown for illustration.

Sperm from the animal shown in the top panel averaged 96

p.m/second; those in the middle panel averaged 119

p.m/second; and those in the lower panel averaged 141

i.im/second. In general, if the variance within animals is W2
and the variance between animals is B2, then the correlation

between two sperm from the same animal is as follows:

B2/(B2 + W2). We calculated that W2 for curvilinear ve-

locity was 166 (p.m/second)2 and B2 was 1446 (p.m/second)2.

From the formula, we see that the correlation is 0.10. If

such a correlation is ignored, estimates of variability will be

too small and statistical tests will produce too many false-
positive results (Haseman and Kupper, 1979; Miller, 1986,

section 1.3).

These problems can be illustrated by considering what

happens when we estimate a group mean. Suppose we have

R animals and n1 sperm from the ith animal, for a total of:

N = n. Let the th measurement from the ith animal

be denoted X1. If we use the sperm as the unit without

considering the correlations among sperm from the same

animal, we would simply use the overall mean of

X = XJ/N with the usual estimated squared

i=l j=l

30 50 70 90 110 130 150 170 190 210 230

CurvilInear Velocity

FIG. 1. Histograms of curvilinear velocity measurements of
sperm from three untreated rabbits. Sperm from rabbit 1 tend to be
relatively slow; those from rabbit 30 are about average; and those
from rabbit 20 tend to be relatively fast.

(X - X)21(N[N - 1]). It can easily be shown

i=1 j=l

that the mean of this estimated variance is the true value
minus a quantity that is greater than zero (unless the n1’s are

all equal to 1 or B equals 0, neither of which is likely).

Thus, the estimated variance of the group mean will be too

small. This underestimation can be quite severe. The ratio

of the incorrect variance to the true value is given by:

(n[n1 - l])B2/(N - 1)
1 - W2 + n2B2/N
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If we make the simplifying assumption that the number of

sperm per animal (n1) are all equal, this formula becomes: 1

- B2Rn(n - l)I[(Rn - 1)(W2 + nB2)]. if we also assume

that the number of sperm per animal (n) is large, the ap-

proximate formula is as follows: W2/(W2 + nB2). The

larger n becomes, the larger the relative underestimation of

the variance of the group mean becomes. For the curvilinear

velocity example, recall that W2 was 166 (p.m/second)2 and

B2 was 1446 (p.m/second)2. If 50 sperm per animal were

measured, the incorrect variance would be about 15% of the

true variance. If n = 200, it would be only 4% of the true

value. Even for the small n = 10, the incorrect variance

would still be only about 47% of the true value.

Whenever variance estimates of means are too small,

any test of a hypothesis concerning those means, such as

testing for equality of means, will produce too many false-

positive results. This occurs because we will be more cer-

tain of the means than we should and thus more ready to
declare that two values are unequal. Accordingly, ordinary

t tests, ordinary (ie, fixed-effect) analyses of variance

(ANOVA), and ordinary regression techniques, all of which

are based on estimates like those in the preceding para-

graphs, will not be appropriate to these data. Nonparametric

analogs such as the Wilcoxon or Kruskal-Wallis tests (Hol-

lander and Wolfe, 1973) suffer from the same problem in

these circumstances.

When analyzing data from individual sperm, the corre-

lated structure of these data can and should be accommo-

dated. Models and tests explicitly incorporating the two

sources of variability (within animals and between animals

within a group) are the most appropriate techniques. Mixed-

model ANOVA is an example of such a procedure; it differs

from ordinary ANOVA by explicitly incorporating random

animal-to-animal variability in addition to treatment effects.

Mixed-model analyses are dealt with in standard texts (Sne-

decor and Cochran, 1980; Sokal and Rohlf, 1981) and are

available in standard statistical packages such as BMDP#{174}

(Dixon et al, 1988) and SAS#{174}(SAS Institute Inc., 1985).

Unfortunately, for discrete (categorical or yes/no) out-

comes, fewer software packages are currently available.

Unequal Variances: Using the Whole Animal as the Unit

If statistics from whole animals (such as the mean velocity

or the percentage of motile sperm) are analyzed, they will

typically be independent of each other; thus, the problems

described above will not arise. However, the number of

sperm analyzed often differs from animal to animal, a dif-

ference that will lead to differences in variance. For exam-

ple, in the rabbit study, eight fields were examined for each

semen sample, and the total number of sperm with measur-

able velocity in those fields varied from 2 to 185. Clearly,

a result based on 185 sperm is more accurate than one based

on 2. Even if an attempt had been made to examine the

same number of sperm per sample by examining more

fields, it is unlikely that the samples with only a few sperm

in each field would have had sufficient sperm. Since it may

not be feasible to examine equal numbers of sperm per

sample in other studies as well, awareness of the implica-

tions is needed.

One of the assumptions underlying most statistical pro-
cedures is equality of variances; this is true of both para-

metric and nonparametric procedures. The t test, for

example, is based on the assumption that each measurement

in both groups has the same variance. If the variance is the

same within groups but differs between groups, we have

what is known as the Behrens-Fisher problem. In this situ-

ation, the t test has been shown to be relatively robust to

moderate inequality of variance in any design and to be

relatively robust to any size inequality when the groups

have the same numbers of animals (Miller, 1986, section

2.3.1). It is reasonable to expect that the same robustness

will occur when the distribution of variances is not too

different from group to group. If an exposure has changed

sperm concentration dramatically, so that the number of

sperm available in each group is quite different, classic

procedures like t tests may not be appropriate. There are

modifications available for the t test, such as Welch’s ap-

proximation (Miller, 1986, section 2.3.3), and similar ex-

tensions to ANOVA also have been proposed (Miller, 1986,

section 3.3.3). There is also some research indicating that

nonparametric procedures are less affected by inequality of

variance (Miller, 1986, section 2.3.3).

An alternate approach for dealing with unequal variances

is to perform weighted analyses. The advantages of weight-

ing are smaller variances for the estimates of the means and

the availability of appropriate standard errors and tests.

Variance estimation and testing in weighted analyses are

discussed in standard texts (Draper and Smith, 1981, sec-

tion 2.11). Let the measurement for the ith animal be X1 and

the weight be w1. Both the usual unweighted average of

ZX1/R and the weighted average of w1X1/w1 correctly

estimate the group mean, ie, the mean of both averages is

the true group mean. However, the weighted average will

have a smaller variance if the proper weights are chosen. It

can easily be shown that the best weight is the inverse of the

variance of X1, which is denoted Var(X1). If X1 is the av-

erage measurement over n sperm, then it follows that:

Var(X1) = B2 + W2/n1. Thus, estimates of the variability

within animals and the variability between animals within

groups must be available to weight properly. Note that most

computer programs that do weighted analyses assume that

optimal weights are being used (so that variances and in-

verse weights are interchangeable) and that the variances

are of the form ap2, where the a’s are known constants and

the common 2 is a variance parameter to be estimated.

Since Var(X1) can be written as either [1 + (W/B)2/n1]B2 or
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[(B/W)2 + l/n1]W2, we need only specify the ratio W/B

(and the n’s). In summary, if the number of sperm per

sample varies, summary measurements for the sample will

have unequal variances. While small inequalities in vari-

ance will have little impact, especially when the number of

animals per group is the same, larger inequalities should be

addressed by modifications to the standard tests or by

weighting.

Measurements Within Limited Ranges

The algorithms used to measure motion endpoints have their

limitations. An example is velocity measurements. Since

discrimination between sperm and other particles is based

partly on a minimum threshold value for velocity, a slower-

moving sperm will not have its velocity measured. In ad-

dition, since velocity measurements are based on comparing

positions at multiple time points, a fast-moving sperm may

already have disappeared from view at the later points and

also will not be measured. Thus, sperm from both ends of

the velocity distribution may be missing from the data. Var-
ious authors (eg, Knuth et al, 1987; Vantman et al, 1988;

Toth et al, 1989) have shown how changes in the number of

points examined or other machine settings determining the
measurable velocities and other parameters can affect the

mean values.
This truncation, however, also has implications for com-

paring groups measured at the same settings. The observed

mean for a group will differ from the actual mean, with the

amount of difference depending on where the limits of mea-

surement are in relation to the distribution of velocities.

Thus, even with fixed machine settings, the effect of trun-
cation will potentially differ among groups. If an exposure
affects mean velocities, the change between groups will

seem less severe than it actually is. If an exposure affects
variances, it may appear to affect the means. To illustrate

these points, Table I shows some calculations based on the
assumptions that the velocity distribution is normal (similar
results would occur with other distributions) and that mea-
surements can only be made between 20 and 250 p.m/sec
(the actual limits used for curvilinear velocity in the rabbit
study). For simplicity, B2 was assumed to be zero, but the
point to be made will hold even if B2 is not zero. For two
values of the standard deviation and for a range of values for
the mean, the apparent mean (ie, the mean of those sperm

that have measurable velocities) is shown. The standard
deviation of curvilinear velocity measurements (from ran-
domly chosen sperm from randomly chosen animals) was
about 40 p.m/sec in the rabbit study; results for a standard
deviation of 60 are also shown for comparison. The mean in
the rabbit study was approximately 120 p.m/sec. Note that
for a mean of 135, the boundaries are symmetrically placed,

and the true and apparent means are equal. In all other

Table 1. Comparison of true and apparent means when the
range of measurement is restricted

Apparent mean

TrueMean SD=40 SD=60

160 158.8 153.3

150 149.4 146.1
140 139.8 138.7

135 135.0 135.0
130 130.2 131.3
120 120.6 123.9
110 111.3 116.7

100 102.2 109.7
90 93.6 103.1
80 85.6 96.8
70 78.2 90.9
60 71.5 85.5
50 65.6 80.4

Entries for apparent mean are calculated under the assumptions
(i) that the data are normally distributed with true mean and standard
deviation as shown, and (ii) that measurements can be made only in
the range of 20 to 250.

cases, the apparent mean is closer to 135 than is the true

mean.
Table 1 shows that differences between groups are di-

minished. For example, if an exposure changed the true

mean from 120 to 100, the apparent mean would only

change by 18 or 14 (depending on the standard deviation)

instead of 20. This shrinkage affects our ability to detect a

change. Often, the effect will be minor, either because the

shrinkage is small or because the true change is so large that

y#{231}the hru nieii apparent change is detectable. However,
the possibility exists that effects will be (for practical pur-

poses) undetectable because of this phenomenon; studies

involving more animals would then be needed to detect the

same actual change. Study designs for velocity or other

endpoints that can only be measured within a limited range
should be chosen with the awareness that shrinkage will

occur.
Another type of problem would arise if we compared two

groups of animals with the same mean but different vari-

ances. As shown by the difference between the two columns

of Table I, the apparent means for the groups would differ

even though the only true difference is in the variance. For

example, if two groups had the same true mean of 160 but

different standard deviations (40 and 60), their means
would appear to be 158 and 153. Thus, it is possible to be

misled about the nature of the difference between groups

and the magnitude of the difference.
While there is no way to know what is happening outside

of the observed range, the shape of histograms can be sug-

gestive. For illustration, two histograms are presented in

Figure 2. In the upper panel, data for curvilinear velocity

from the rabbit study are shown. There is little reason to

suspect a problem; since there are few sperm near the
thresholds, there are probably few sperm outside of the
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1000

Pilot Study

FIG. 2. Two distribution histograms of sperm curvilinear velocity
generated by CASA from untreated rabbits in a pilot study (10 rab-
bits, semen samples collected weekly from each rabbit for 6 to 21
weeks, 15,976 sperm measured in all, lower panel) and the main
study (42 rabbits, 6 weeks, 13,674 sperm, upper panel). Ordinate
represents number of sperm. The larger number of sperm near the
lower limit of the machine settings in the pilot study suggest that
there might have been sperm moving more slowly than the lower
velocity limit that were not counted for this study.

thresholds. In the lower panel, data from an unpublished

pilot study using different rabbits, experimental conditions,

and machine settings are shown. The pilot study had the

same lower limit of measurement and the upper limit was

200. It seems probable that most of the slower sperm in the

pilot study were not measured since there are a large num-

ber of sperm near the lower threshold. Thus, it is plausible

that there would be more difficulty in detecting any de-

crease under these conditions. This would mean that larger

studies with more animals would be needed unless the con-

ditions (eg, media, threshold) could be changed.

In summary, the existence of thresholds (beyond which

measurements cannot be made) distorts the information we

can obtain. The usual effect will be to shrink differences

between groups, necessitating larger studies than would be

needed if the thresholds did not exist. If possible, pilot data

should be examined when planning studies to see whether

such problems are likely, so that appropriate changes can be

made in machine settings or study designs.

Artificial Discreteness of Measurements

Some quantities that are truly continuous have discrete mea-
surements because of the way they are obtained. Beat-cross
frequency can, in theory, be any value; however, it is cal-

culated by counting the number of times the head centroid

crosses the average path and dividing by a factor related to
the number of frames tracked to convert it into hertz
(Amann, 1989). Since the number of crossings and the

number of frames must be integers, the measurements are

discrete, ie, only a limited number of values can occur. To

illustrate, for the 8,463 measurements obtained from the

rabbits, only 52 distinct values occurred.

The distribution of all the beat-cross frequency measure-

ments produces the unusual multi-modal histogram shown

in Figure 3. To examine this more closely, the counts of all

the values obtained are shown in Table 2. This histogram is

actually a composite of nine separate histograms. Sperm

were tracked for a maximum of 15 frames; at least seven

frames were required for beat-cross frequency to be calcu-
lated. Separating the original histogram by the number of

frames tracked gave the grouping in Table 3. Each of these

nine separate histograms is smooth and unimodal.

2000

U

1000

I-

0

FIG. 3. A multi-modal distribution histogram of sperm beat-cross
frequency generated by CASA from untreated rabbits (42 rabbits,
semen samples collected weekly for 6 weeks, 8,463 sperm measured
in all). Ordinate represents number of sperm. This distribution Is a
composite of several distributions that are broken down in Table 3.



Table 2. Data used to generate a histogram of
beat-cross frequency Table 3. Rearranged data used to generate a histogram of

beat-cross frequencyValue Number Value Number

2.92 25 16.37 149
3.23 5 16.67 221

3.61 8 17.14 383

4.09 17 17.53 843

4.71 34 18.06 130
5.56 86 18.86 152
5.84 99 19.39 85

6.46 19 20.25 222
6.75 148 20.46 522
7.22 40 21.67 43
8.18 57 22.22 102
8.57 342 22.62 27

8.77 288 23.34 273
9.43 126 23.38 155
9.69 51 23.57 48

10.83 107 24.55 28
11.11 219 25.28 5
11.67 586 25.72 104

11.69 635 25.85 10
12.27 142 26.30 36
12.92 103 27.00 39
13.50 343 27.78 14
14.14 196 28.29 9
14.45 116 28.64 5
14.61 972 29.08 1
16.16 89 29.22 4

Tracked
frames

Beat-cross frequency
value

Number of
sperm

15 2.92 25

5.84 99
8.77 288

11.69 635
14.61 972
17.53 843

20.46 472’
23.38 155
26.30 36
29.22 4

14 3.23
6.46
9.69

12.92
16.16
19.39

22.62
25.85
29.08

5
19
51

103
89
85
27
10

1
13 3.61

7.22
10.83
14.45
18.06
21.67
25.28

8
40

107
116
130

43
5

12 4.09

8.18
12.27
16.37
20.46
24.55
28.64

17
57

142
149

50*
28

5
11 4.71

9.43

14.14
18.86
23.57
28.29

34
126
196
152

48
9

10 5.56
11.11
16.67
22.22
27.78

86
219
221

102
14

9 6.75
13.50

20.25
27.00

148

343

222
39

8 8.57
17.14
25.72

342

383

104

7 11.67
23.34

586

273

Number of sperm (“number” column) having each of the 52 dis-
tinct beat-cross frequency values (‘value” column) that occurred in
the data. Data are from 42 untreated rabbits sampled weekly for 6
weeks. Note lack of smoothness and existence of multiple modes.

There is no standard theory that is strictly appropriate for
such a mixture of distributions. For most purposes, treating

this mixture as normal should produce no serious problems;

the approximate symmetry and the lack of outliers should

ensure that standard analytic procedures do not behave

much differently than theory predicts. However, while not

likely, it is possible that groups could appear different sim-

ply because they tended to be tracked for different numbers

of frames. As an extreme example, suppose that all the

sperm in one group of animals were tracked for seven

frames, while all the sperm in an otherwise identical group

were tracked for nine frames. All the values for the first

group would be either 11.67 or 23.34 and all the values for

the second group would be 6.75, 13.50, 20.25, or 27.00.

The distributions would thus look different even though the

groups did not actually differ in their beat-cross frequen-

cies. Comparing the histograms of the groups would indi-

cate whether this occurred. Investigators should be aware of

this effect when interpreting results.

Other Considerations

In addition to the issues mentioned above, there are, of

course, others to be considered. Many of these are common

The same data as in Table 2 is presented, but rearranged by
number of frames (‘arbitrarily allocated to the two places this value
appears). Unlike Table 2, each separate piece is smooth and unimo-
dat; see text for full discussion.
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FIG. 5. Data for mean amplitude of lateral head displacement
before (upper panel) and after (lower panel) transformation to a
more normal distribution. These data were obtained by CASA from
untreated rabbits (42 rabbits, semen samples collected weekly for 6
weeks, 8,842 sperm measured in all). Ordinate represents number of
sperm. A logarithmic transformation makes the skewed distribution
more normal.
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FIG. 4. Data for linearity before (upper panel) and after (lower
panel) transformation to a more normal distribution. These data
were obtained by CASA from untreated rabbits (42 rabbits, semen
samples collected weekly for 6 weeks, 13,674 sperm measured in
all). Ordinate represents number of sperm. A logistic transformation
makes the skewed distribution more normal.

-2.5 -1.5 -0.5 0.5 1.5 2.5

log transformation
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to a much wider class of studies than those of sperm move-

ment. We briefly discuss three of these in this section.

Non-normality of Measurements

Although many standard procedures are much more sensi-

tive to the existence of correlation in the data than to lack of

normality, the shape of the distribution is still of concern.

Various authors (eg, Ratcliffe et al, 1987, Toth et al, 1989)

have noted the non-normality of some motion measure-

ments. When faced with non-normal distributions, one can

use nonparametric procedures that do not rely on the as-

sumption of normality, or one can transform the measure-

ment.

The problem and the benefit of transformations can be

illustrated with the rabbit data. For example, linearity was

severely skewed in these data (Fig 4). By applying a logistic

transformation (log[linearity/( 10-linearity)]), a distribution

closer to normal was obtained. It should be noted that if the

linearity is at its maximum value of 10, the transformation

will be infinite; to avoid this, values of 10 should be re-

placed by, for example, 9.99. The mean amplitude of lat-

eral head displacement was also skewed, although not as

severely. As shown in Figure 5, a logarithmic transforma-

tion worked reasonably well. There are, for each endpoint,

an infinite number of transformations that could theoreti-

cally be considered. However, attention is usually confined

to a group of relatively simple and interpretable ones such

as those illustrated here. It is possible that two transforma-

tions will work equally well; in that case, either can be

chosen. Transformations are discussed in standard texts (eg,

Snedecor and Cochran, 1980; Sokal and Rohlf, 1981).

An alternative to transformation is the use of nonpara-

metric procedures. Typical ones include the Wilcoxon-
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Mann-Whitney test as an analog to the t test and the

Kruskal-Wallis test as an analog to one-way ANOVA.

These are described in many standard texts (eg, Hollander

and Wolfe, 1973, sections 4.1 and 6.1). These procedures
are appropriate to relatively simple designs where there are

two or more groups of animals with a single observation per

animal. There are no standard nonparametric procedures

appropriate for more complex designs, such as those with

multiple samples and covariates from each animal.

In summary, nonparametric techniques have the advan-

tage of avoiding the somewhat arbitrary choice of a trans-

formation and are often preferred for that reason. However,

for some designs, there may be no suitable nonparametric

technique available, so that transforming and doing, for

example, a complex ANOVA may allow a more appropriate

analysis.

Multi variate Methods

The various measures describing motion are not indepen-

dent of each other since they describe different facets of the

same movement. For example, in the rabbit data, the cor-

relation (Spearman rank) between curvilinear velocity and

straight-line velocity was 0.94. The correlation of the mean

amplitude of lateral head displacement (ALH) with curvi-

linear velocity was 0.57 and with straight-line velocity was

0.41. ALH was negatively correlated with linearity, with a

value of -0.49. Linearity is the ratio of straight-line to

curvilinear velocity (multiplied by 10); thus, since one is

calculated from the other two, these three variables are cer-

tainly not independent, although the association is not

readily expressed by correlation coefficients. In view of

these dependencies, multivariate methods that look at sev-

eral variables simultaneously may be a better approach in

some cases. For example, Morales et al (1988) used mul-

tivariate ANOVA to compare fertile men to infertile pa-

tients on a variety of endpoints simultaneously. As another

example, if the purpose of the study is to separate sperm

into groups (normal vs. abnormal, hyperactivated vs. non-

hyperactivated), various discriminant analysis or clustering

techniques may prove useful (Snedecor and Cochran,

1980).

Choice of Statistic

It is most common and, ordinarily, most useful to describe
an endpoint by its mean or median. This may not, however,
always be the most appropriate choice. It is possible, for

example, that a treatment or exposure may not change the

mean but may increase the variance. (Methods for testing
inequality of variance are discussed in Miller, 1986, chapter

7.) It is also possible that most sperm or most animals will

be unaffected, but some will be affected substantially, lead-

ing to a change in the shape of the distribution. This could

be characterized by looking at percentiles (eg, Toth et al,

1989) or the fraction of the distribution below a certain

value. One should always compare the distributions in the

groups to make sure that the chosen statistic captures the

features of interest.

Summary

The new computer-assisted measurement technologies are

powerful tools, but their limitations should be recognized as

well. The inability to measure outside a restricted range and

the inability to assign more than a limited number of values

can have implications for the design and interpretation of I

studies. It should always be kept in mind that the things

being measured are only approximations of what we really

want to know.

Strengths and limitations of statistical techniques should

also be kept in mind; any technique will be appropriate

under some conditions and not under others. Most com-

monly used procedures require that observations be inde-

pendent. This will not be the case when multiple sperm

from the same sample are measured; in these cases, tech-

niques that account for the correlation are needed. Many

procedures require that all observations have the same vari-

ance. This may not occur when measurements are based on

differing numbers of sperm. In this instance, the severity of

the inequality should be assessed and possible adjustments

considered. Some procedures require that observations be

normally distributed. Many measurements are not, and ei-

ther transformations or nonparametric procedures are

needed. Univariate techniques may be more appropriate in

some cases; in others, multivariate may be more appropri-

ate. Similarly, measures of the center of the distribution

may be better in one situation and measures of the tails may

be more suitable in another. Before using any statistical

tool, the data should be examined to see whether the tool is

appropriate.
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