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Abstract. Previously known techniques to construct pairing-friendly
curves of prime or near-prime order are restricted to embedding de-
gree k 6 6. More general methods produce curves over Fp where the
bit length of p is often twice as large as that of the order r of the
subgroup with embedding degree k; the best published results achieve
ρ ≡ log(p)/ log(r) ∼ 5/4. In this paper we make the first step towards
surpassing these limitations by describing a method to construct elliptic
curves of prime order and embedding degree k = 12. The new curves lead
to very efficient implementation: non-pairing cryptosystem operations
only need Fp and Fp2 arithmetic, and pairing values can be compressed
to one sixth of their length in a way compatible with point reduction
techniques. We also discuss the role of large CM discriminants D to min-
imize ρ; in particular, for embedding degree k = 2q where q is prime we
show that the ability to handle log(D)/ log(r) ∼ (q − 3)/(q − 1) enables
building curves with ρ ∼ q/(q − 1).
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1 Introduction

A non-supersingular elliptic curve over Fp is called pairing-friendly if it contains
a subgroup of order r whose embedding degree k is not too large, which means
that computations in the field Fpk are feasible. The optimal case occurs when
the entire curve has prime order and the desired embedding degree.

Pairing-friendly curves of prime or near-prime order are absolutely essential
in certain pairing-based schemes like short signatures with longer useful life.
For instance, the length of BLS signatures [5] is the size of the base field p;
at the 128-bit security level the scheme should be defined on a group of 256-
bit order r and be mapped to a finite field of roughly 3072-bit size pk. In the
optimal case, the embedding degree should be k = 12. Of course, other systems



would benefit as well, since the space requirements for all quantities involved
in cryptographic protocols except pairing values would be kept to a minimum
(pairing compression techniques [16, 10] would help reducing the bandwidth for
pairing values as well).

The pioneering work of Miyaji, Nakabayashi, and Takano [13] describes how
to construct elliptic curves of prime order and embedding degree k ∈ {3, 4, 6}.
Such curves are now dubbed MNT curves, and satisfy p ∼ r by the Hasse bound.
Extensions of the original MNT construction to curves of near-prime order were
investigated by Scott and Barreto [17], and more recently by Galbraith, McKee,
and Valença [9]3. Unfortunately, those methods are restricted to k 6 6 and hence
only allow for a tradeoff: one has to choose between increasing the base field to
a 512-bit prime p (thus doubling the signature size, which ceases to be “short”)
or contenting oneself with the lower security level of a 1536-bit finite field Fp6 .

Let ρ ≡ log(p)/ log(r) be the ratio between the bit lengths of the finite
field and the order of the subgroup with embedding degree k. Several methods
have been proposed to construct curves with arbitrary k, including a “folklore”
algorithm [4, chapter 9] credited to Cocks and Pinch [7] and related methods
due to Barreto, Lynn, and Scott [1] and to Dupont, Enge, and Morain [8]. In
general these algorithms only achieve ρ ∼ 2.

Algebraic methods may produce curves with ρ closer to unity for certain
values of k. Such techniques include the families of curves described by Barreto,
Lynn, and Scott [3], and by Brezing and Weng [7]. The latter presents the best
known results, achieving ρ ∼ 5/4 for families of curves with k = 8 or k = 24,
and ρ ∼ (k + 2)/(k − 1) for prime k (hence ρ 6 5/4 for prime k > 13). Such
ratios are already useful under many circumstances. Still, for most embedding
degrees the value of ρ is larger than this; for instance, the best published value
for k = 12 is ρ ∼ 3/2. Besides, the use of prime k precludes many optimizations
that are only possible for even k [2], making the computation of pairings much
less efficient.

In spite of all these efforts, constructing pairing-friendly curves with prime
order has remained an elusive open problem since it was posed by Boneh et
al. [5, section 3.5] (see also [6, section 4.5]).

This paper is organised as follows.
Our main contribution, described in section 2, is a surprisingly simple algo-

rithm to construct curves of prime order and embedding degree k = 12. The
resulting security enhancement is even better than the lower bound of k = 10
required by Boneh et al.. Using the proposed method, even a 160-bit signature
maps to 1920-bit field, where the best algorithms to compute discrete logarithms
are worse than Pollard-rho in the elliptic group itself.

We next discuss how to compress the representations of points and pairing
values to one sixth of their expected length for the proposed curves in section 3.
It turns out that non-pairing operations only need arithmetic over Fp and Fp2 ,

3 Interestingly, the latter work also considers the construction of hyperelliptic curves
of genus g = 2 analogous to MNT elliptic curves, for which the range of embedding
degrees is k ∈ {5, 8, 10, 12}, but the security ratio k/g is still bound by 6.
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and it is possible to compute pairings compressed to one sixth of their length
without resorting to full arithmetic on fields larger than Fp2 .

Finally, we show in section 4 that the ability to handle large complex multi-
plication (CM) discriminants may have a positive influence on the minimization
of ρ. In particular, for embedding degree k = 2q where q is prime we describe
how to build curves with ρ ∼ q/(q−1) and log(D)/ log(r) ∼ (q−3)/(q−1). Such
discriminants are thus much smaller than expected from random curves with the
same embedding degree. We also briefly discuss the possibility of building curves
of nearly-prime order over extension fields.

We conclude and summarise our results in section 5.

2 The proposed method for k = 12

Theorem 1. There exists an efficient algorithm to construct elliptic curves of
prime order (of nearly arbitrary bitlength) and embedding degree k = 12 over a
prime field.

Proof. We follow the strategy of parametrising p(x), n(x) and t(x), and using
the property that n | Φk(t − 1) as in [1]. Since Φ12 is quartic and we know
from the Hasse bound that n ∼ p ∼ t2, we must take t(x) to be a quadratic
polynomial such that n(x) is a quartic factor of Φ12(t− 1).

Galbraith et al. showed [9] that the only quadratic polynomials u(x) such
that Φ12(u(x)) splits into two irreducible quartic factors are u(x) = 2x2 and
u(x) = 6x2. Setting the trace of the Frobenius to be t(x) = 6x2 + 1, we obtain

Φ12(t(x)− 1) = n(x)n(−x),

where n(x) = 36x4 +36x3 +18x2 +6x+1. From the relation n = p+1− t we get
the irreducible polynomial p(x) = n(x)+ t(x)−1 = 36x4 +36x3 +24x2 +6x+1.
The CM norm equation becomes

DV 2 = 4p− t2 = 3(6x2 + 4x+ 1)2.

Assuming that, for some x0, both n = n(x0) and p = p(x0) evaluate to prime
numbers, the CM method for discriminant D = 3 [12, 14] produces curves of
form E(Fp) : y2 = x3 + b, with b 6= 0.

Finding b is actually very simple: take the smallest b 6= 0 such that b+ 1 is a
quadratic residue modp and the point G = (1,

√
b+ 1 mod p), which is clearly

on the curve4, satisfies nG = ∞. This method is a simplification of the technique
described in [11, section A.14.4] and quickly converges to a suitable b.

We see that the bitlength m of the curve order can be easily tailored by a
suitable choice of x0, namely, start with the smallest x ∼ 2m/4 such that n(x)
has bitlength m and increase it until finding some x0 such that n(x0) and p(x0)
are prime. ut
4 Since the curve order n(x) is a large prime, there is no point of form (0, y), which

would necessarily have order 3.
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In summary, we have the following parametrisation, where x may take either
positive or negative values:

t = 6x2 + 1,
n = 36x4 + 36x3 + 18x2 + 6x+ 1,
p = 36x4 + 36x3 + 24x2 + 6x+ 1,

DV 2 = 108x4 + 144x3 + 84x2 + 24x+ 3 = 3(6x2 + 4x+ 1)2.

The choice u(x) = 2x2 as indicated in [9] is not considered, since in this case
DV 2 factors as a square free product of irreducible polynomials which in general
leads to an enormous CM discriminant D and therefore is not practical. This
would also be the case if one took u(x) to be a linear polynomial.

Algorithm 1 shows how the CM method simplifies in our setting. The al-
gorithm takes as input value the desired bitlength of the primes p and n, and
returns instances of these primes computed as indicated in the proof of theo-
rem 1, plus a parameter b ∈ Fp such that the curve E(Fp) : y2 = x3 + b has
order n over the field Fp, and the coordinate y of a sample generator G = (1, y).
Appendix A gives a few examples of cryptographic interest. Algorithm 1 tends
to produce the smallest p and n of the desired bitlength, but it is straightfor-
ward to modify it so that the output parameters meet other simple criteria (for
instance, the examples in appendix A were selected to maximize p and n while
keeping b = 3).

The parametrisation given above may also be deduced in terms of [7]. Choos-
ing a polynomial u(x) such that Φk(u(x)) splits may then be interpreted as
choosing a suitable number field in the following way. Let l(x) be an irreducible
factor of Φk(u(x)) and consider the number field

K = Q[x]/(l(x)).

As u(x) is a root of Φk over K it is a primitive k-th root of unity modulo l. If
D is chosen such that −D is a square in K we set t(x) = u(x)i + 1 mod l(x)
and V (x) := (u(x)i − 1)

√
−D−1

mod l(x) where i ∈ {1, . . . , k − 1}. If p(x) =
(t(x)2 −DV (x)2)/4 is irreducible, one sets n = p + 1 − t. We are able to check
for the ratio deg(p)/deg(l) to be less than a certain given bound. Choosing
u(x) = 6x2 and D = 3 yields the above parametrisation as well.

Contrary to the case k = 12, finding parametrisations when ϕ(k) > 4 (but
keeping k reasonably small) seems a rather difficult problem. The method sug-
gested in [9] to find quadratic polynomials u(x) such that Φk(u(x)) splits, implies
finding integer or rational points on an elliptic curve. Increasing ϕ(k) leads to
a higher number of indeterminates and also increases the number of equations
to deal with. To combine them into a single equation of an elliptic curve may
in this case be impossible. The computation of a resultant as suggested in [9]
only reduces the number of indeterminates by one and thus in general will not
help. One may try to find polynomials u(x) of degree greater than two such that
Φk(u(x)) splits, but this results in higher degree equations to be solved. We leave
it as an open problem the task of buidling curves of prime order and ϕ(k) > 4.
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Algorithm 1 Constructing a curve of prime order with k = 12
Input: the approximate desired size m of the curve order (in bits).
Output: parameters p, n, b, y such that the curve y2 = x3 + b has order n over Fp and

the point G = (1, y) is a generator of the curve.
1: Let P (x) ≡ 36x4 + 36x3 + 24x2 + 6x + 1
2: Compute the smallest x ≈ 2m/4 such that dlog2 P (−x)e = m.
3: loop
4: t← 6x2 + 1
5: p← P (−x), n← p + 1− t
6: if p and n are prime then
7: exit loop
8: end if
9: p← P (x), n← p + 1− t

10: if p and n are prime then
11: exit loop
12: end if
13: x← x + 1.
14: end loop
15: b← 0
16: repeat
17: repeat
18: b← b + 1
19: until b + 1 is a quadratic residue mod p
20: Compute y such that y2 = b + 1 mod p
21: G← (1, y) on the curve E : y2 = x3 + b
22: until nG =∞
23: return p, n, b, y.
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Furthermore, for efficiency reasons in the pairing computation it is desirable
to generate curves of prime order n such that n has a low Hamming weight.
Constructing such curves for k = 12 or ϕ(k) > 4 is still a research problem.

3 Six-to-one point and pairing compression

A fascinating possibility suggested by the proposed curves is to enable cryp-
tosystems more efficient than what was attainable with most previously known
curves. We now consider two such improvements, namely, point compression
and pairing compression, both to about one sixth of the requirements one would
expect in naive implementations.

The basic idea for point compression is not only to restrict the first pairing
argument to E(Fp), but also to take the second argument Q ∈ E(Fp12) as the im-
age ψ(Q′) of a point on a sextic twist E′(Fp2), where ψ : E′(Fp2) → E(Fp12) is an
injective group homomorphism. This way one would work only with E(Fp) and
E′(Fp2) for non-pairing operations like key generation, and map from E′(Fp2)
to E(Fp12) only when actually computing pairing values. As it turns out, it is
possible to do better than this, namely, one can work with smaller fields, as we
show next.

Lemma 1. There exists ξ ∈ F∗
p2 such that X6 − ξ is irreducible over Fp2 [X]

whenever p ≡ 1 (mod 6).

Proof. Since p2 ≡ 1 (mod 6), the order of Fp2 = p2 − 1 is a multiple of 6.
Thus for any primitive root a ∈ Fp2 , the cube roots of unity are {1, ζ, ζ2} where
ζ ≡ a(p2−1)/3. Hence every cube u3 ∈ F∗

p2 has three distinct cube roots, namely,
{u, ζu, ζ2u}, which means that only one third of the elements of F∗

p2 are cubes.
Analogously, only one half of the elements of F∗

p2 are squares. Therefore, there
must be some element ξ ∈ F∗

p2 that is neither a square nor a cube, and hence
X6 − ξ is irreducible over Fp2 [X]. ut

Any ξ ∈ F∗
p2 provided by lemma 1 may be used to represent Fp12 as

Fp2 [X]/(X6− ξ) and to define a sextic twist E′(Fp2) : y′2 = x′3 + b/ξ. A sensible
strategy to obtain ξ without resorting to full Fp12 arithmetic is to set 1/ξ = λ2µ3

where λ ∈ Fp is a noncube and µ ∈ Fp2 is a nonsquare.
Let z ∈ Fp12 be a root of X6 − ξ. The corresponding map ψ : E′(Fp2) →

E(Fp12) is (x′, y′) 7→ (z2x′, z3y′). Notice that x = z2x′ ∈ Fp6 and y = z3y′ ∈ Fp4 .
Also, since any element of Fp12 has the form a5z

5 +a4z
4 +a3z

3 +a2z
2 +a1z+a0

the computation of ψ(Q′) does not incur any multiplication overhead, and its
rather sparse structure favours efficient implementation of the pairing algorithm.

Alternatively, one may use ξ5 instead of ξ if the first choice produces a twist
E′ of wrong order (ξ2, ξ3, and ξ4 give quadratic and cubic twists).

These considerations open the way to compressing pairing values to one sixth
of their length in a way that is compatible with point reduction (that is, the
technique of keeping only one point coordinate and entirely discarding the other
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one). Notice that the map (x′, y′) 7→ (z2x′, z3y′) produces a point on E(Fp12)
whose x-coordinate is in Fp6 and whose y-coordinate is in Fp4 .

Now suppose that we keep only the y-coordinate of the point Q′ = (x′, y′)
on the twist E′(Fp2) : y′2 = x′3 + b/ξ (this is contrary to the conventional
choice of keeping only the x-coordinate). There are three points associated to
this y-coordinate corresponding to the three cube roots of y′2 − b/ξ. One of the
points is Q′. Upon mapping onto E(Fp12), it turns out that those points map to
conjugates over Fp4 (i.e. their images are of form Q, [p4]Q and [p8]Q) provided Q′

is an n-torsion point. This can be seen from the following arguments. Notice that
the order of the twist is #E′(Fp2) = (p+1− t)(p− 1+ t) = n(2p−n) and hence
there exist n-torsion points. Let φ be the p-th power Frobenius endomorphism
and trFp6 : E(Fp12) → E(Fp6), R 7→ R + φ6(R) the trace map over Fp6 . An
explicit computation leads to the following lemma.

Lemma 2. Let Q′ = (x′, y′) ∈ E′(Fp2) and Q = ψ(Q′). Then trFp6 (Q) = Q +
φ6(Q) = O.

The Frobenius endomorphism has two eigenspaces in E(Fp12)[n] for the eigenval-
ues 1, p. The 1-eigenspace consists of all points in E(Fp) while the p-Eigenspace
is the set of points of trace zero. Therefore we obtain the following lemma which
shows that for an n-torsion point whose Fp6-trace is O computing the p-multiple
is the same as computing the Frobenius endomorphism.

Lemma 3. Let Q ∈ E(Fp12)[n]. Then trFp6 (Q) = O iff φ(Q) = [p]Q.

Let Q = ψ(Q′) for an n-torsion point Q′ on the sextic twist. From lemma 2 we
see that we may apply lemma 3 and compute [p4]Q = φ4(Q) = ((z2)p4

x′, z3y′)
as well as [p8]Q = φ8(Q) = ((z2)p2

x′, z3y′). The points Q, [p4]Q and [p8]Q share
the same y-coordinate and therefore have to be the images under ψ of the above
mentioned three points corresponding to the given y-coordinate on the twist.

The above shows that the pairing values computed from the three points are
also conjugates over Fp4 (i.e. they are of the form e, ep4

and ep8
). Thus, the

Fp4-trace of these pairing values is the same for any of the three points. In other
words, the choice of the cube root is irrelevant to compute the compressed pair-
ing ε(P,Q′) ≡ trFp4 (e(P,ψ(Q′))) = e(P,ψ(Q′)) + e(P,ψ(Q′))p4

+ e(P,ψ(Q′))p8
,

whose length is one third of the length of e(P,ψ(Q′)).
One even may go one step further and not only discard the x-coordinate of

Q′ but also discard one bit of its y-coordinate. This means we do not distinguish
between Q′ and −Q′. With help of the following lemma we can show that pairing
compression up to one sixth of the actual pairing length is possible.

Lemma 4. Let ζ be an n-th root of unity in Fp12 and trFp2 : Fp12 → Fp2 the
finite field trace over Fp2 . Then trFp2 (ζ−1) = trFp2 (ζ).

Proof. Since n divides Φ12(t−1) it divides Φ12(p) = p4−p2+1. So n also divides
p6 +1 = (p2 +1)(p4− p2 +1). Therefore since ζ is an n-th root of unity we have
ζ−1 = ζp6

. We now see that trFp2 (ζ−1) = ζ−1+ζ−p2
+ζ−p4

+ζ−p6
+ζ−p8

+ζ−p10
=

ζp6
+ ζp8

+ ζp10
+ ζ + ζp2

+ ζp4
= trFp2 (ζ). ut
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Note that all pairing values are n-th roots of unity in Fp12 and hence
trFp2 (e(P,ψ(Q′))) = trFp2 (e(P,ψ(Q′))−1) = trFp2 (e(P,ψ(−Q′))). Together with
the transitivity of traces using the above condition on Fp4- traces, this yields that
the Fp2-traces of the pairing values are equal for all points (x′,±y′), (ζ3x′,±y′)
and (ζ2

3x
′,±y′) where ζ3

3 = 1 in Fp2 .

The advantage of this approach is that one can not only work exclusively on
Fp and Fp2 for non-pairing operations, but also represent points on E′(Fp2) by
the positive or negative of their y-coordinates alone in most protocols, yet obtain
a unique compressed pairing value over Fp2 . We point out that the compression
ratio of 1/6 is better than what is attainable on any practical supersingular
Abelian variety, namely, 8/30, as shown by Rubin and Silverberg [15].

Laddering techniques as those described in [16] to compute pairings may even
make it unnecessary to implement full arithmetic over any field higher than Fp2 .
Similar effects may be achieved in a torus-based setting as suggested in [10]. If
the x-coordinate corresponding to a point in E′(Fp2) with given y-coordinate y′

is needed, one may obtain it by simply computing a cube root of y′2 − b/ξ. In
appendix B we discuss the computation of cube roots in F∗

p2 .

4 Considerations on composite order

Under some circumstances, a reasonably small cofactor may be quite acceptable.
For instance, if 256-bit prime fields do not have a substantial impact on band-
width occupation, the Brezing-Weng family of curves for k = 8 and ρ ∼ 5/4
could provide roughly 200-bit group orders and map the discrete logarithm on
the curve to a 2048-bit finite field. Besides, as we already pointed out even val-
ues of k are advantageous from the point of view of efficient implementation of
the pairing algorithm. It is thus interesting to investigate ways to produce more
curves that meet the conditions that k be even and ρ > 1 be as small as possible
(say, ρ 6 5/4).

A naive approach to solving the norm equation DV 2 = 4hΦk(t−1)−(t−2)2,
namely, by choosing t and hoping to be able to handle the resulting D, is in
general bound to failure since D ∼ tϕ(k), where ϕ(k) is Euler’s totient function.
For instance, for k = 2q where q is an odd prime we expect to find D ∼ tq−1.

However, it would be quite simple to obtain curves with k = 2q if we could
handle a CM discriminant D as large as tq−3, attaining ρ ≡ log(p)/ log(r) ∼
q/(q− 1) as the following reasoning reveals. Let the trace of Frobenius have the
form t = −4u2 + 2 for some u (notice that t is negative), and let x = t − 1.
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Assume that Φk(x) takes a prime value. Then set:

h = −(x− 1)/4,
r = Φk(x)

= xq−1 − xq−2 + xq−3 − xq−4 + xq−5 − · · · − x+ 1
= xq−1 − xq−3(x− 1)− xq−5(x− 1)− · · · − x2(x− 1)− (x− 1),

p = hr + t− 1,
DV 2 = 4hr − (t− 2)2

= −(x− 1)xq−1 + xq−3(x− 1)2 + xq−5(x− 1)2 + · · ·+ (x− 1)2 − (x− 1)2

= −(x− 1)x2[xq−3 − (x− 1)(xq−5 + xq−7 + · · ·+ 1)].

By construction, the −(x − 1)x2 factor is a square, so D is the square-free
part of z = xq−3 − (x − 1)(xq−5 + xq−7 + · · · + 1). Since p = hr + t − 1, it
is also clear that ρ ∼ q/(q − 1). For instance, if k = 10 (i.e. ρ ∼ 5/4) we get
z = x2 − x+ 1, and a simple search produces parameters like these:

t = −931556989582: 40 bits

r = 753074106157227719531468778253698105623799226081: 160 bits

p = 175382861816372173247473133505975362972517516867279787545493: 197 bits

ρ ∼ 1.237425

D = 867798424841873127503473: 80 bits

Another example, now for k = 14 (i.e. ρ ∼ 7/6) where z = x4−x3+x2−x+1:

t = −82011134: 27 bits

r = 304254450525046050085067914513460261078757135361: 158 bits

p = 6238063280153705754947329076599940825481364534683333889: 183 bits

ρ ∼ 1.153987

D = 45236739484946456935793243535361: 106 bits

Unfortunately, with currently available CM technology the only case where
this construction is tractable occurs for k = 6, where we get D = 1 but also
ρ ∼ 3/2, much worse than plain MNT curves that attain ρ ∼ 1.

4.1 Curves over extension fields

Another interesting observation is that, while none of the currently known
methods to construct pairing-friendly curves for arbitrary k is able to produce
curves over an extension field Fpm , it may be possible to fill this gap if suffi-
ciently large D can be handled. As Galbraith et al. point out [9], parametris-
ing t = 5x2 + 1 causes Φ5(t − 1) to split as Φ5(t − 1) = r(x)r(−x), where
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r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1. We observe that with cofactor h = 4, this
gives hr + t − 1 = (10x2 + 5x + 2)2, a perfect square. This means that finding
an odd value x ∈ Z such that r and p = 10x2 + 5x + 2 are both prime enables
constructing an elliptic curve over a finite field Fp2 with near-prime order n = 4r.

The CM equation here has the form DV 2 = 5(5x2± 2x+1)(15x2± 10x+3).
Solving a Pell-like equation can make one but not both of the factors 5x2±2x+1
or 15x2±10x+3 to assume the form dy2 for small d and some y. One might hope
that techniques like Hensel lifting could reduce the square-free part of the other
factor to O(x), but it is not clear how to harmonise such techniques to solutions
of the Pell-like equation. As a consequence, we expect that D ∼ p ∼ r1/2;
practical values of p would need D ∼ 2100 at least.

Nevertheless, such a parametrisation hints that algebraic methods to build
ordinary pairing-friendly curves over extension fields might exist for other em-
bedding degrees, and deserved further research.

5 Conclusion

We have presented a very simple algorithm to construct pairing-friendly curves
of prime order and embedding degree k = 12. This closes (and actually exceeds)
the open problem proposed by Boneh et al. [5, section 3.5] and enhances the se-
curity level of most pairing-based cryptosystems, while also reducing bandwidth
occupation (by either points or pairing values) down to 1/6 of the expected
requirements; such levels of security and compression are better than what is
attainable with any supersingular Abelian variety up to at least genus 6. We
leave it as an open problem the task of extending the method for higher values
of k.

We have also discussed ways to produce curves of composite order and rea-
sonably small cofactor as long as large discriminants fall within reach of CM
methods, and pointed out the possibility of closing yet another problem, namely,
building pairing-friendly curves of nearly-prime order over extension fields. Fur-
ther exploration of such possibilities is left for future research.
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A Some curves of prime order and k = 12

All of the following curves satisfy the equation E(Fp) : y2 = x3 + 3, with prime
order n and trace of the Frobenius t. A sample generator for any of them is
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G = (1, 2). In all cases p ≡ 3 (mod 4) and p ≡ 4 (mod 9) (to simplify the
computation of square and cube roots), and the bitlengths of p and n are equal.
The field Fp2 is represented as Fp[X]/(X2 + 1), and i is a root of X2 + 1. The
sextic twist for all examples has the form E′(Fp2) : y′2 = x′3 + 3/ξ, where
1/ξ = λ2µ3 = −8 + 8i, λ = 2, and µ = 1 + i.

160 bits:

p = 1461501624496790265145448589920785493717258890819

n = 1461501624496790265145447380994971188499300027613

t = 1208925814305217958863207

192 bits:

p = 6277101719531269400517043710060892862318604713139674509723

n = 6277101719531269400517043709981664699904401744160036556389

t = 79228162414202968979637953335

224 bits:

p = 26959946667149205758383469736921695435015736735261155141423417423923

n = 26959946667149205758383469736921690242718878200571531029749235996909

t = 5192296858534689624111674181427015

256 bits:

p = 115792089237314936872688561244471742058375878355761205198700409522629\
664518163

n = 115792089237314936872688561244471742058035595988840268584488757999429\
535617037

t = 340282366920936614211651523200128901127

B Computing cube roots

Each prime number of form p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 is congruent to
6x2 + 6x + 1 (mod 9) and hence for all values of x ∈ Z it holds that p(x) ≡ 1
(mod 9) or p(x) ≡ 4 (mod 9). In the second case where we get a prime p ≡ 4
(mod 9) computing cube roots modulo p only takes one exponentiation which
may be seen from the following.

Let α be a primitive element of F∗
p. The set of all cubes in F∗

p is exactly
{α3l | l ∈ Z}. Now let a be a cube in F∗

p. Then a(p−1)/3 ≡ 1 (mod p). Therefore
we get a simple possibility to compute a cube root r of a by one exponentiation

r ≡ a(2p+1)/9 (mod p).
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Since (2p + 1)/9 is the inverse to 3 modulo (p − 1)/3, this clearly gives a cube
root of a.

The examples given in appendix A all have p ≡ 4 (mod 9). For recovering
the x-coordinate of points on E′(Fp2) given only their y-coordinate as it was
indicated in section 3 one needs to compute a cube root in F∗

p2 . We consider
the case p ≡ 4 (mod 9). Then p2 ≡ 7 (mod 9). For a cube a ∈ F∗

p2 it holds

a(p2−1)/3 = 1 for the same reasons as in the Fp case. Again the computation of
a cube root only takes one exponentiation r = a(p2+2)/9.
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