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ABSTRACT

Vertically propagating coastal internal Kelvin waves (IKWs) forced by the alongshore component of the
wind at the coast are studied, utilizing an f-plane model of a continuously stratified ocean with a vertical
eastern boundary. With an infinitely deep ocean, several initial value problems that illustrate the basic
properties of the forced flow are presented. For a wind stress at the surface that is localized in time and
space, changes in amplitude and frequency with depth are predicted. Far from the forcing region, the response
represents a non-uniform wavetrain of free IKWs characterized by local frequencies and wavenumbers. The
group velocity vector is directed downward and poleward while the phase propagation is upward and pole-
ward. For forcing by a traveling wind with fixed frequency o and horizontal wavenumber / and with step
functions at an alongshore location y = 0 and at ¢ = 0, the response near and far from y = 0 has a different
qualitative behavior. Near y = 0 a maximum in alongshore velocity v propagates downward until it intersects
the ray path that passes through y = 0 at the surface for a free IKW with frequency ¢. Subsequently the
maximum remains on the ray path. Far from y = 0, a traveling wave wind stress forces a component that
decays with depth from the surface and that is trapped within a Rossby radius of the coast. For a poleward
traveling wind, an additional component is forced, which represents a coastally trapped IKW with negative
vertical group velocity and upward phase propagation. The two limits |/y| < 1 and |ly| > | approximately
model forcing near and far from the equator. The model with an infinitely deep ocean applies for initial
value problems before disturbances generated at the surface reach the bottom. For longer time, the model
applies for frequencies and wavenumbers where motions are damped by internal dissipation before they
reach the bottom. A solution obtained with a bottom at z = —H shows that, for forcing with a step function
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at y = 0, the results obtained with an infinitely deep ocean apply for |z| < H and [/)] < 1.

1. Introduction

Vertically propagating internal waves in the ocean
are generally constrained such that f < w < N, where
w is the radian frequency, f the Coriolis parameter,
and N is the Brunt-Viisild frequency. For w < f,
vertical propagation is possible when one of the hor-
izontal wavenumbers is imaginary, a condition that
is satisfied for equatorially trapped waves with me-
ridional modal structure or for coastally trapped
waves that propagate along a boundary and that de-
cay exponentially with distance from the coast (in-
ternal Kelvin waves). Such low-frequency vertically
propagating waves have been observed near the equa-
tor, e.g., by Weisberg et al. (1978) who find that
equatorially trapped motions in the Gulf of Guinea
are downward propagating, not vertically standing
modes. Also, from observations on the continental
slope in the Gulf of Guinea, Picaut (1981) reports an
upward phase propagation of temperature associated
with the seasonal upwelling cycle, which he interprets
as the signature of a coastal Kelvin wave that prop-
agates westward and vertically.

! Present affiliation: Department of Oceanography, Florida State
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Recent observations on the Peru continental shelf
and slope during ESACAN (Estudio del Sistema de
Afloramiento Costero en el Area Norte), the joint
German-Peruvian experiment at 5°S latitude, and
during the CUEA (Coastal Upwelling Ecosystems
Analysis) JOINT-2 experiment at 15°S latitude in-
dicate that vertically propagating waves exist over the
slope at low frequencies (period 7 = 2w/w > 20 days).
For example, Fig. 1 shows low-pass filtered along-
shore wind at Talara (4°34'S) and alongshore current
velocity and temperature from the ESACAN C2
mooring which is on the continental slope in 1360
m of water. The current velocity data show a low
frequency pulse-like event that amplifies between 86
m and 560 m depth, and that appears to propagate
vertically downward between 86 and 560 m. The re-
lationship between velocity and temperature at 560
and 860 m suggests that at those depths there is a
phase propagation upward of both signals with ve-
locity and temperature 7/2 out-of-phase.

In this study we analyze the dynamics of the second
class of subinertial vertically propagating waves de-
scribed above, namely coastally-trapped internal Kel-
vin waves (hereafter referred to as IKWs). We focus
on low latitude dynamics, where the Rossby radius
scale, which is the natural offshore length scale for
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FIG. 1. Time series of low-pass filtered alongshore wind from
Talara (4°34'S) (top plot) and of northward current v (solid line)
and temperature T (dashed line) from the ESACAN C2 mooring,
which was on the continental slope in 1360 m of water at 5°S
latitude. The low-pass filter has a half power point of 8.5 days.

baroclinic motions, is much larger than the shelf-
slope width. For this case, the shelf-slope region ap-
pears like a vertical wall, and we adopt a model with
a vertical coastal boundary. We pay attention to the
low frequency behavior (7" =~ 20-40 days) but specify
that the waves are still coastally trapped (see Appen-
dix A).

Typically, oceanic problems are solved with the
bottom boundary condition w = 0. Recently it has
been suggested that the ocean might be better mod-
eled in some frequency-wavenumber regimes by ne-
glecting the effects of a bottom boundary and assum-
ing that the ocean is infinitely deep (Wunsch, 1977,
Philander, 1978). We utilize a model of this type in
Sections 2 and 3, where we consider the response of
a rotating stratified f-plane ocean with a rigid lid,
forced by an alongshore wind stress at the coast. The
- forced response for several different types of wind
stress is calculated and shows components that are
trapped near the surface and components that prop-
agate vertically.
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The assumption of infinite depth is justified if the
bottom is highly dissipative, and scatters energy
rather than reflecting it uniformly, or if internal mo-
tions generated at the surface dissipate before the en-
ergy can reflect off the bottom and travel back toward
the surface (Wunsch, 1978). In order to assess the
frequency—wavenumber regimes where frictional pro-
cesses justify the neglect of a bottom boundary, the
effect of internal dissipation is included in Section 4
and the dissipation time scale is compared to the time
required for initial disturbances to propagate verti-
cally from the surface to the bottom. The forced re-
sponse with a bottom boundary is calculated in Sec-
tion 5 and compared to the results of Sections 2 and
3 in order to assess further the space and time scales
where the analyses of Sections 2 and 3 are valid. To
generalize the f-plane resuits, the Coriolis parameter
is regarded in Appendix A as a slowly varying func-
tion on the alongshore scale of the waves. Finally the
oceanic implications of the results are discussed in
Section 6.

2. Theoretical formulation

We consider a continuously stratified ocean with
an eastern boundary that rotates on an f-plane in the
Northern hemisphere. Cartesian coordinates (x, y, z)
are utilized with x positive westward, y positive south-
ward, and z positive vertically upward. There is a
rigid lid on top (z = 0), a straight north-south coast-
line at x = 0, and the fluid is unbounded for x —
0, z — —oo. The problem is linearized by the as-
sumption that the motion results in negligible non-
linear fluid accelerations and in small departures from
an equilibrium stable density distribution p(z). The
hydrostatic approximation is utilized and we consider
interior motions away from frictional boundary lay-
ers. The long wave assumptions for coastal trapped
waves are made, i.e., we assume that w <€ f and that
the characteristic alongshore scale L is large relative
to the internal Rossby radius of deformation.

With the above assumptions, the governing equa-
tions are

—fv = —pi/po, (2.1a)
v, + fu = —p,/po, (2.1b)
0=—p.— gp, (2.1¢)
u+v,+w, =0, (2.1d)
pe+wp, =0, (2.1¢)

where subscripts denote partial differentiation. The
variables (u, v, w) are the velocity components in the
(x, y, z) directions, ¢ is time, p pressure, and g the
acceleration of gravity. The total density is given by

pT(xa Y, 2, t) = p(x7 Y, Z, t) + [-)(Z) + Po> (2'2)

where po 1S a constant.
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Egs. (2.1a-e) may be combined into a single equa-
tion for the pressure:

[Pxx + F(P/ND.), = 0, (2.3)

where
pof*u = —px — fpy, (2.4)
pow = —N7°p,, (2.5)

and where N2 = —gp,/p, is the square of the Brunt-
Vaisdld frequency.

We assume, consistent with the long wave approx-
imation, that only the alongshore component of wind
stress is important and that it is approximately con-
stant over the scale of the Rossby radius. The along-
shore wind stress acts as a driving mechanism through
suction of fluid into the surface Ekman layer at the
coast. An offshore or onshore mass flux in the upper
Ekman layer produces the equivalent of a sink or
source-like flow below the Ekman layer at the coast.
The vertical extent of the region is sufficiently small
so that the corner acts very nearly as a point sink or
source for the flow below the Ekman layer (e.g., Ped-
losky, 1969; Allen, 1973; Pedlosky, 1974). Conse-
quently, we specify a forced boundary condition at
the surface which represents an Ekman suction in the
upper coastal corner at x = 0, z = 0 and no flow
through the vertical boundary at z = 0, i.e.,

Put fpy = fr(y, D¥2), at x=0, (2.6)
where §(z) = 0, z ¥ 0, and
0
f §(2)dz = 1. 2.7
-H
The remaining boundary conditions are
px=0, at z=0, 2.8)
Dx, py9 p, <o, a8 X— 0w, Z— —0. (2.9a, b)

Condition (2.8) specifies no normal flow through the
top, while (2.9a, b) follow from (2.1a), (2.4), (2.5) and
the requirement that the energy be finite as x —
or z — —oo.

We consider initial value problems where

=0, p=0, for t<O0. (2.10)

a. Free waves

Before solving the forced problem, it is useful to
obtain the free wave solution to (2.3) for a vertically
unbounded fluid governed by a homogeneous version
of (2.6) and without condition (2.8).

We assume N? is a constant and seek a free wave
solution of the form

X, p, 2, 1)
= ¢(x) Re{exp[—iwt — Iy — mz)]}, (2.11)
where / and m are wavenumbers, and Re denotes the
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real part. Substituting (2.11) in (2.3), (2.6) (with 7
= (), and (2.9a), we obtain

¢ — (fM/NY¢ = 0, (2.12)
b — (fllw)p =0, at x=0, (2.13a)
®, < ©, as X~ oo. (2.13b)

The solution to (2.12) subject to (2.13a, b) is

¢ = exp(fix/w), (2.14)
where the dispersion relation is
w = —Nlm|. (2.15)

The condition (2.13b) imposes the familiar restric-
tion,
/o <0, (2.16)

i.e., free coastally trapped subinertial waves propagate
with the boundary on their right side (poleward to-
ward —y with our model). The dispersion relation
(2.15) gives a phase velocity with vertical component
w/m and a group velocity with vertical component
dw/dm = —w/m. The group and phase velocities are
oppositely directed, e.g., for w/m > 0, the vertical
component of the phase velocity is directed upward
while the vertical group velocity is downward.

b. Solution to the forced problem

The solution to (2.3) subject to (2.6)—(2.10) and
the radiation condition may be conveniently repre-
sented in terms of its Fourier cosine transform in z:

px, y, m, 1) = fw p(x, ¥, z, t) cosmzdz, (2.17a)
0
px, p, 2,1
= (2/7) f “ Bx, y, m, t) cosmzdm. (2.17b)
0

Multiplying (2.3), (2.6) and (2.9a) by cos(mz) and
integrating over z from 0 to oo, we obtain

Do — (MfINYp = 0, (2.182)
Put fBy=fr(»,1), at x=0, (2.18b)
Dy, Dx < 0, as Xx— oo. (2.18¢)
Eqgs. (2.18a-c) have a solution
P = Y, m, 1) exp(—fmx/N), (2.19)
where ) )
—(m/N)Y, + Y, = 7(y, I). (2.20)

Eq. (2.20) is a forced first-order wave equation for
the (y, t) structure of the response and may be easily
solved for various 7(y, t). In particular, we may obtain
a formal solution for general + = E(3)7(f) by first
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considering the solution to (2.20) for a wind stress of

the form .
(¥, ) = F(»)3(2), (2.21)

where 6(¢) is the Dirac-delta function and where the
initial condition corresponding to (2.10) is

Y(0)=0 (2.22)
With (2.21) and (2.22), the solution to (2.20) is
= —(N/m)F(y + Nt/m), (2.23)

which, together with (2.17b) and (2.19), gives
p=pp=~(2N/m) f F(y + Ni/m)
0

X exp(—fmx/Nym™! (2.24)

The subscript D identifies (2.24) as the response to
forcing by a wind stress whose time dependence is
. given by a delta function. The term p, represents a
Green’s function for a wind stress concentrated in
time. Now if a wind stress with general time depen-
dence 7(y, t) = F(y)I{(t) is applied, the pressure is
given by

cos(mz)dm.

l ~
p= f polx, ¥, z, t — a)T(e)dax. (2.25)
)

Altemately, for simple 7 is may be easier to solve
(2.20) for Y directly and utilize (2.19) and (2. 17b) to
obtain p.

3. Examples

To gain an appreciation for some of the features
of the solutions, we examine three idealized situations
for the y and ¢ variation of 7.
a. Example A

We first choose a wind stress of the form

(0, 1) = 8()d()7.4. (3.1

The solution, which may be obtamed directly from '

(2.24), is
p = (2/7)(Nt 4/y) cos(Ntz/y) exp(fxt/y),

y<0. (3.2)

The disturbance at y = 0 acts like a source that
emits waves of all frequencies and wavelengths. The
pressure exhibits an exponential decay in x for fixed
y and decays like |y|™! in the alongshore direction. In
Fig. 2, v obtained from (3.2) is plotted as a function

of t for various values of z in terms of scaled variables .

defined in the figure caption. We show v rather than
p because velocity may be directly compared with
current observations. Frequency variations with depth
are evident. The envelope ¢ exp(fxt/|y), which is the
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FIG. 2. Scaled alongshore velocity v’ = [(2/m)N14(polyfx)~']™"
X v as a function of ¢’ = fxt/|y| and z’' = Nz(fx)"' for Example A
{r(y, t) = 8(»)o(t)7 4.

response at z = 0, governs the initial growth of v at
all depths to some maximum value and its subse-
quent decay with time.

For |Ntz/y| > 1, the waves behave locally like sim-
ple harmonic waves of a certain local frequency and
wavelength which move in accordance with the re-
lation
3.3)

where 6 is the phase and both z, y < 0. The local
frequency and wavenumbers are given by (Whitham,
1974, p. 375)

0 = Ntz/y = constant,

wo = —(00/3t) = —Nz/y, 3.4)
my = 36/9z = Nt/y, 3.5)
lo = 80/8y = —Ntz/y?, (3.6)

when variations in wavenumber /, are small over a
wavenumber interval, i.e., /g'Al <€ 1, which implies
|Ntz/y| > 1. Thus the frequency varies as a function
of position while the wavenumbers change with both
position and time. For fixed time, waves farther in
y from the source have longer wavelengths.

The alongshore and vertical components of the lo-
cal phase velocity may also be computed. These are

cB = —(860/01)/(36/3z) = wo/my = —z/t, (3.7a)
€38 = —(86/31)/(36/3y) = wollo = y/t, (3.7b)
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and the phase velocity is directed upward and pole-
ward. For fixed y or z, the phase moves more slowly
as time increases, but for fixed ¢ more rapidly as ||
or |z| increase.

We may express the local frequency in terms of the
local wavenumbers, which gives

wo = Nlo/my. (3.8)

Local group velocity components are
¢B = dwo/dmy = —Nlp/my? = z/t, (3.9)
cR = dwo/dly = Nimy = y/t. (3.10)

The local group velocity vector associated with waves
of fixed wavenumbers /, and m, at time ¢ is directed
downward and poleward. Comparison of (3.8), (3.9),
and (3.10) with the corresponding expressions ob-
tained from (2.15) for the free wave example in Sec-
tion 2 shows, as expected, that for [Ntz/y| > 1, the
response behaves like a nonuniform wavetrain of free
waves with local frequencies and wavenumbers. With
y/t = N/mq from (3.5), the condition |Ntz/y| > 1 also
corresponds to |mpz| > 1, which specifies that the
disturbance must be much more than a local wave-
length away from the surface.

b. Example B
We next consider
7y, 1) = SVH(OT(O)7 5, (3.11)

where H(t) is the Heaviside function H(f) = 0, t < 0;
H(t) = 1, t > 0. This example represents forcing by
a wind stress that is localized in space and that has
a general time behavior initiated at £ = Q. Substitution
of (3.11) in (2.25) gives

p = —(2/xX(sN/I¥|) exp(—fxt/|¥])
X J; t cos[Nz(t — a)/|¥] exp(fxe/lY)T{a)de. (3.12)

The special case 7(f) = &(¢) corresponds to Example
A and yields the same answer.
If we assume

1(¢) = Re[exp(—iat)}, (3.13a)
and scale the variables as
x'=x(aY), 2= W/o)z/Y),
t'=ot, o =dlf,
p' = p/l2/m)(N/a)7 ),
v' = v[(2/m)(N/o)75(pocl) 17", (3.13b)

the evaluation of (3.12) gives, with (3.13a),
P’ = Re{y (B* + 2% '[B exp(—it") — (B cos(t'z’)

— z'sin(t'z")) exp(—x't)]}, y <0, (3.14a)
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where
B=Xx"—1 (3.14b)

The first term in the brackets represents a response
at the forcing frequency o. The remaining two terms
are transients which, for fixed y and x > 0, decay
exponentially with ¢ and are coastally trapped.

The initial response for ¢’ < 12 where the transients
are still important is illustrated in Fig. 3. The phase
propagation is upward, consistent with a downward
propagation of energy from the surface, while a max-
imum in v propagates from the surface downward.
Examination of (3.14) for x't’ > 1, when the transient
terms have decayed, shows a subsurface maximum
of v at z/ = —1. From (2.15), this is the ray path dz/
dy = (0w/dm)/(dw/d]) that passes through y = O,
z = 0 for a freely propagating IKW of frequency
w = ¢. Fig. 3 shows the maximum in v propagating

downward from the surface to z' = —1, where it in-
tersects the IKW free wave ray path. Subsequently,
the maximum in v remains at z’ = —1.

¢.. Example C

Finally, we examine a more general wind stress,
(y, ) = HOH(=»)F»)T(tyrc, (3.15)

where the wind has a general y structure for y < 0.
The substitution of (3.15) in (2.24) and (2.25) gives

p = —Q2/m)N7¢ J: Na)da

M
X J; F(B — |yl) exp[—fx(t — )/B]

X cos[N(t — a)z/B187'dB, y<0. (3.16)
A special case of interest is
FO)T(0) = Re{exp[—i(ot — )]}. (3.17)

The substitution of (3.17) in (3.16) and the subse-
quent evaluation of the integral over « yields p.

An alternate representation for p may be obtained
by substituting (3.15) and (3.17) in (2.20) and solving
(2.20) directly for Y by the method of characteristics.

o
[3,]
T T T T 17T

-1.0!

FIG. 3. Scaled alongshore velocity v’ = [(2/x)N75(poa?y) ']}
X v as a function of ' = of and 2’ = (N/o)Xz/l})) with x" = x/
(¢'lyl) = 0.04, for Example B [r(y, £) = 5()H(t)7 5 exp(—iat)).
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This solution is

Y = K, exp(—ist)[exp(ily) — exp(—iocmy/N)],

Nt/m = —y, (3.18a)
Y = K, exp(ily)lexp(—iat) — exp(iNlt/m)],
Nt/m < —y, (3.18b)
where
K, = —irc(mo/N + I)~\. (3.18c)

With (2.19) and (2.17b), p is given by
p= Re{ f ” K, exp(—iot + ily)dm
0

Nt/ly
- K, exp(—imoy/N — iot)dm
0

- f ” K, exp(iNit/m + ily)a’m} , (3.19a)
NIyl

where

K, = 2/%)K, exp(—fmx/N) cos(mz). (3.19b)

The second integral in (3.19a) represents the effect
of the step function at y = 0 and vanishes for
Nt/lyl — 0 while the third integral represents the effect
of the step function at ¢ = O (i.e., the wavefront) and
vanishes for Nt/[y| — .

We first examine (3.19) for small y, i.e., |}y < 1,
‘or equivalently |y| < \,/(2x), where A\, = |27//| is the
alongshore wavelength of the wind. Evaluation of
(3.19) with |ly| < 1 gives

v’ = —Re((x” + )7 '(B2 + 2" {exp(~it)E
+ exp(—x't)[—E cos(z't") — z'(B + x') sin(z't')]}),

y<O0, (3.20a)

where
E=—-Bx' + z7, (3.20b)

and where B is given by (3.14b). This result is also
obtained with (3.16), (3.17), and |ly| < 1.

Fig. 4 shows v’ from (3.20) as a function of z’' and
t’. A subsurface maximum of v’ travels downward to
z' = —1 where it remains. In Example B this behavior
was found for F(y) = &(y), while here a similar be-
havior is observed which is evidently associated with
the step function at y = 0.

For large time (x't’ > 1) when the transient terms
have decayed, (3.20) is asymptotically equal to

o' ~ Wsin(t)'Q/I — = — I7Y) ,
(3.21)

+ cos(tWur/ly ~ u-/1)], y <O,
where
I=x?+2z7 (3.22a)
I.=x7+ 42, (3.22b)
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FG. 4. Scaled alongshore velocity v' = [(2/7)Nrc(pociy) ']
X v as a function of ¢ = of and z' = (N/o)(z/ly|) with x’ = x/
(¢’ly]) = 0.04, from Example C [7(y, ) = H(—y)H(t)rc exp{—i(ot
— ly)}] for the limiting case |/y{ < 1. Dark lines: contours of v’
= 0; light lines: v’ > 0; dashed lines v’ < 0; contour interval: 1.

pe =2z 1. (3.22¢)
Note that (3.21) corresponds to the solution that may
be obtained directly by solving (2.20) and (2.22) with
7(y, f) = H(—y) exp(—ist) and with a radiation con-
dition that restricts the solution to have energy prop-
agating away from the source at x = 0, z = 0. For x’
< 1, a maximum in v’ occurs at the surface and near
the line u, = 0, that is the ray path passing through
y =0, z = 0 for a free IKW of frequency ¢. The
maximum at the surface is associated with the forcing
at the surface while the maximum near g, = 0 is
associated with the step function at y = 0. This be-
havior is illustrated in Figs. 5a-d, which show the
magnitude and phase of V, where v’ = V exp(—it’)
(from (3.20) with x't' > 1) as a function of y and z’
and as a function of x’ and z'. The subsurface max-
imum along the free IKW ray path is evident in Fig.
5a. Fig. 5c shows that the subsurface maximum is
strongest near the coast and weakens with increasing
x'. The maximum of v’ near the surface is also evident
on Figs. 5a, c. The phase plots shown on Figs. 5b, d
indicate that there is a 180° phase difference from the
surface to below the subsurface maximum, with an
upward phase propagation. The phase plot shown in
Fig. 5d indicates relatively small offshore phase dif-
ferences for |z/| < 1 and shows nearshore motions
leading for |z'] > 1. :

For large |y| and large ¢, i.e., for |ly| > 1 and fxt/
|yl > 1, the last two integrals in (3.19a) vanish and
only the first integral remains. This limit gives p far
from the region influenced by the step function in y
and after transient components have decayed. The
remaining first integral in (3.19a) corresponds to the
solution that may be obtained directly by solving
(2.20) with 7(y, £) = exp[—i(at — ).

In Appendix B we derive a solution (B20) for forc-
ing by a traveling plane wave wind stress with a gen-
eralized integral transform in x, in a manner similar
to that utilized by Huppert and Stern (1974). Using
standard analysis in the complex plane, and invoking
Cauchy’s integral theorem, (3.19a, b), with |ly] > 1
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FIG. 5. Magnitude (q, ¢) and phase 68(b, d) of V for Example C as a function of y' = y/y,
and z'(a, b) (with x' = 0.04) and as a function of x’ and z(c, d) (with y’ = 1) where v’ = V
X exp(—it’). Limiting case lly} < 1, x't' > 1. The scale y; is the alongshore location where the
subsurface maximum intersects z' = ~1. Scaling the same as in Fig. 4. 8, > 6, implies 2

leads 1.

and [fxt/yl > 1 may be shown to be asymptotically
equal to (B20).

Evaluation of the first integral in (3.19a), or, alter-
nately, the integral in (B20), yields

p ~ Re{(wa) ' N7 exp[—i(at — I¥)] exp(fix/c)
X {ilexp(iNlz/o)Ei(—fIx/o — iNlz/o)
+ exp(—iNlz/o)E{—flx/o + iNiz/o)]
—2(o/le)H(—l/ o) exp(—iNIz/|a])}), ¥y <0, (3.23)

where Ei is the exponential integral function (Grad-
shteyn and Ryshik, 1980, p. 925) and where H(~[/
o) =1 for //6 < 0 and O for //o > O.

The response is composed of two parts, one of
which (the last term in braces) is forced only for /o
< 0 and represents a coastal IKW with vertical wave-
number m = —Nl/|o| and negative vertical group ve-
locity ¢ = —o/m. The offshore trapping scale
(Rossby radius scale) is —¢/fl. The remaining two
terms in (3.23) represent a forced response which
decays as |z|™? for |z| large and which exhibits the
proper behavior at x = 0, z = 0 to satisfy (2.6).

The magnitude of the alongshore velocity asso-
ciated with the surface trapped response (calculated
numerically from the integral in (B21)) is plotted for
several depths as a function of f|//s]x in Fig. 6 for
both poleward (//o < 0) and equatorward (/o > 0)
traveling wind. For //¢ < 0, the magnitude of the
downward propagating IKW is also plotted for com-
parison, and the propagating component may be seen
to be the dominant contribution to the forced re-

sponse for N|l/a|z < —0.5. The offshore structure of
the surface trapped response is depth dependent and
also differs for /o = 0. In both cases, near the surface
the magnitude of the response grows as a function of
X to some maximum near f|//e|x = 0.2 and decays
with a Rossby radius scale for fli/olx > 0.2.

Fig. 7 shows v at x = 0 for various z as a function
of 6 = ot — Iy with //o < 0. The outstanding feature
is the reversal of phase with depth, where the signal
at N|l/a|z = —0.2 lags the signal above and leads the
signal below. The phase behavior near the surface
reflects the superposition in time of the vertically
propagating and the surface trapped components,
while for N|//s|z < —0.5, the vertically propagating
component dominates the response and the phase lag
is consistent with a downward propagating IKW (the
dashed line in Fig. 7 represents the phase lag expected
for a free downward propagating IKW).

4. Internal dissipation

The theory presented in Sections 2 and 3 is limited
by the neglect of bottom topography. For forcing at
the surface, an initial disturbance must propagate
from the surface to the bottom and back to a sub-
surface point z before the effect of the bottom is felt
at z. The time T, = Ho/c{ it takes for an internal
Kelvin wave with frequency w and horizontal wave-
number / to propagate at its group velocity from the
surface to the bottom z = —H,, as a function of «'
= w/f and /' = Ll is, in dimensionless form, r*
= f2LT,/(NHy) = ['/w?, where L is a characteristic
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(o/8) >0

(0/0)<0

FIG. 6. Scaled alongshore velocity ¥* = V/[(2/x)Ntclpos?)™']
for Example C, obtained for the limiting case fxt/|y| » 1 and ||
> 1, as a function of x* = fix/o for various z* = Nzl|l/a|, where
v = V exp[—i(ct — Iy)]. The response is plotted for /¢ > 0 and
lfo < 0. The scale for V'* at z* = —0.2 applies to V* at all depths.
The solid line represents the vertically trapped response while the
dotted line represents the magnitude of the vertically propagating
IKW. The two components are #/2 out of phase in time and are
plotted on the same figure in order to compare magnitudes. The
offshore distance x* = 1 corresponds to the Rossby radius scale.

alongshore length scale. Waves with lower frequency
or larger wavenumber / travel more slowly. As an
example, with Hy = 2 km, and with a stratification
approximated by N = 4 X 1073 s7', a wave with A,
= 1000 km, T = 2« /s = 5.7 days takes approximately
3.5 days to reach the bottom while a wave with T
= 25 days takes about 69 days.

Internal dissipation, which causes an energy decay
with time, may prevent the energy that is reflected
at the bottom from affecting the response near the
surface. For such cases, the response obtained with
an infinitely deep ocean may be valid near the surface
for much longer times than indicated by the above

_travel time calculation. We next examine this point,
using a model which allows the vertical mixing of
heat and momentum in the deep ocean.

The linearized equations are (2.1a), (2.1c), (2.1d)
and

(4.1a)

(4.1b)

U+ fu = —pypo + vv,

Pt + [_)ZW = KPgzz,
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where v and « are coefficients of vertical eddy viscosity
and diffusivity, respectively, assumed constant.

Egs. (2.1a, ¢, d) and (4.1a, b) may be combined to
form a single equation for p, given by

[pxx + (f/N)szZ]I
— V[P + (FINY¥ Pr'p,,).. = O,

where Pr = v/« is the Prandtl number and where for
simplicity we assume that N = constant. Regularity
conditions as x — co and z — —oo are given by (2.9a,
b) and the remaining boundary conditions are

Dxt + fpy — VDzx = fT(y, t)6(z),

4.2)

(4.3a)
(4.3b)

at x=0,
Pu = KDy at z=0.

Eq. (4.2) and conditions (4.3a, b) are analogous to
(2.3), (2.6) and (2.8) for the inviscid case.

*=00 /

o

FIG. 7. Scaled alongshore velocity v* = v/[2Nrclpoc?)™'] at x
= 0 for Example C obtained with the limits fxz/|y| > 1 and |
> 1 as a function of ¢ = ¢t — ly for various z* = Nz|//s|, with
l/e < 0. The straight lines connect the local maxima of v* and
indicate the vertical phase structure while the dashed line represents
the vertical phase lag predicted for a free IKW with positive vertical
phase velocity.
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a. Free wave solution

Before solving the forced problem, we obtain the
free wave solution to (4.2) for a vertically unbounded
ocean subject to a homogeneous version of (4.3a) with
condition (4.3b) dropped. The assumed form of the
free wave is given by (2.11). The x-structure and the
dispersion relation are derived in a manner similar
to that in Section 2a and are given by

¢ = exp[(fm/N)(1 + im?c/w)'?
X (1 + im*vjw) \Px], (4.4a)
w = (Nl/m)(1 + imPc/w) V31 + imPvjw)™ 72, (4.4b)

These reduce to (2.14) and (2.15) when v = x = 0.
For the general case Pr # 1, there is an offshore phase
shift induced by internal dissipation, as well as a cor-
rection to the offshore structure. The frequency and
hence the phase speed is modified and w has a neg-
ative imaginary part which corresponds to a decay
with time.
The special case Pr = 1 yields

¢ = exp(fmx/N),
w = Nlifm — im?y,

(4.5a)
(4.5b)

i.e., the phase speed and offshore structure are un-
affected by dissipation (see (2.14) and (2.15)), but a
decay with time is still present.

We may estimate a dissipation decay time,

T, = (mP)y' = (W*/v)(NI)?, (4.6a)

from (4.5b) for the free vertically propagating waves.
The ratio,

(To/ TYvHoN?*f*L7%) = w*/I? (4.6b)
gives a measure of the effectiveness of dissipation in
damping the wave before a reflection occurs at the
bottom. The waves are damped more effectively for
shorter wavelength or lower frequency. For T,4T,
> 1, the wave reflects many times at the surface and
the bottom before it decays, while for T,/T;, < 1 dis-
sipation damps the wave before a single reflection
takes place. For the parameters given above and with
v = 10 cm?s™!, T/T, < 1 for T < 30 days, i.e., free

waves are damped considerably before they reach the
bottom.

b. Forced problem

As in Section 2b, we represent the solution to (4.2)
subject to (4.3a, b), (2.8) and (2.9) in terms of its
Fourier cosine transform in z, given by (2.17a, b). In
doing this, we assume that each side of (4.3b) is zero
independently, i.e., that both w = 0 and the pertur-
bation density p = O at the ocean surface. This re-
quirement on p implies that the basic state density
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or temperature at the surface is fixed. A more appro-
priate condition would specify a relationship between
heat flux and other parameters. However, we are con-
cerned mainly with the velocity structure of the forced
response and the condition on p invoked above has
been commonly utilized (Pedlosky, 1974; Allen,
1973; McCreary, 1981).

With Pr = 1, the transformed equation and bound-
ary conditions have a solution given by (2.19) where

—(m/NYY, + Y, — e’ /N)Y = 7(»,1). (4.7)

Eq. (4.7) is a forced first-order wave equation similar
to (2.20) for the inviscid case but it contains an ad-
ditional term due to internal friction. With the wind
stress 7 given by (3.2a) (Example A from Section 3),

P = (2/m)(N7,4/y) cos(Niz/y)
X exp(fxt/y — vN?t3/y?), (4.8)

This response is similar to the inviscid response (3.1b)
except that there is a decay in time due to the effect
of dissipation. At a fixed location, the damping be-
haves liké exp(—»t3), which with (3.5) may also be
expressed as exp(—vmg’t), where my is the local ver-
tical wavenumber. Thus, locally the forced response
decays on the same time scale as the free waves of
Section 4a.

y<O0.

5. Effect of a bottom boundary .
a. Inviscid case

In order to examine the effects of a bottom bound-
ary at z = —H,, the radiation and regularity condi-
tions that apply to the unbounded ocean are replaced
by the boundary condition w = 0 at z = —Hp. In
terms of pressure, Eq. (2.5) implies that (2.8) holds
also at z = —H,. The remaining equations are (2.3),
(2.6) and (2.9a), where again N is assumed constant
for simplicity.

In this section it is useful to define variables X and
Z, where we scale x with the internal Rossby radius
scale and z with the depth, i.e.,

X = fa(NHy) 'x, Z=z/H,. (5.1a)
In addition, for later use we define
¥ = on(NH) )|, = ot (5.1b)

The solution is conveniently represented by ex-
panding the pressure in terms of vertical modes. This
gives

M s

D= ox(x, ¥, t) cos(nm?). (5.2)

0

n

Substitutiop of (5.2) in (2.3) and utilization of the
orthogonality of the vertical eigenfunctions gives

b — (Fnm)A(NHo) *¢, = 0. (5.3)
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Solving (5.3) subject to (2.9a) yields

¢n = exp(—nX)Y,(y, 1), n=12--.. (5.4)
Substitution of (5.4) and (5.2) in (2.6) yields
—nm(NHo) 'Y, + Y,y = 2/Ho)r(, 7). (5.5)

The n = 0 term is ¢ = Y(y, f) and it corresponds
to the representation, within x < O[NHy(fr) '], of
the barotropic response that varies on the larger scale
L.> NHy(fn)™.

For

(9, 1) = H(—y)H(t) Re[exp(—iot)}rc,
we obtain
v = plpof)" = Re{2irc(poHoo) ™!

(5.6)

X [exp(—if) 2 L, — exp(—it)
n=1
J

X 2 Lyexp(inf) — 2 L.}, y<0, (57a)

n=1 n=J+1
L, = exp(—nX) cos nnZ, (5.7b)
where
J < [¢/79] (5.7¢)

is the largest integer less than or equal to #/. The
three sums in (5.7a) are analogous to the three in-
tegrals in (3.19a). The first sum represents the par-
ticular solution, the second satisfies the boundary
condition at y = 0, and the third satisfies the initial
condition at ¢ = 0. :

The series in (5.7a) may be summed to yield

v = Re Q2irc(poHoo) ' {[1 — 2g, coswZ + g,*]"
X [exp(—it)(1 — g, cosw2) — g+ cos(J + 1)xZ
+ ¢1*? cosJrZ] — exp(—iH)[1 — 2¢,
X coswZ + ¢,°]' X [1 — g, coswZ — g3

X cos(J + 1)wZ + g3 cosJnZl}), (5.8a)

where

q, = exp(—X), g» = exp(—X + iy). (5.8b,¢)

For

21, £<1, p<l, (5.9

Eq. (5.8) reduces to
v = Re (=27cp(poHo0) (CD) ™' {exp(—if)
X (—BX + 7%2%) + (ip)~! exp(—JX)
X [D — C exp(—i(f — JP))]
X [—X cosJnwZ + w2 sinJwZ] + exp(—JX)
X exp[—i(t — JP)] cosJxZ}), (5.10a)
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where

(5.10b, ¢, d)

The expression for v in (5.10) may be compared to
that in (3.20) which was obtained in Section 3¢ for
an infinitely deep ocean with (3.15), (3.17) and |}y|
< 1. Eq. (5.10) is similar to (3.20) but differs from
it because of the integer nature of J which results
from'the expansion in vertical normal modes (5.2)
[If J = t/¥ is assumed to be a continuous variable,
(5.10) reduces to (3.20) exactly.] Therefore, the initial
behavior of v from (5.8), under conditions (5.9), will
be qualitatively similar to that given in (3.20) and
shown in Fig. 4.

The limiting solution for v as J — oo, which cor-
responds to long time after transients have dispersed
may be obtained from (5.7a) and is given by

v = Yarc(po Hyo) ™' {sint sinh £[2(coshX — coswZ)~!
— (coshX — cosii_)™! — (coshX — cosfi,)™!]
+ cost [singi:(coshX — cosfi,) ™"

— sinfi_(coshX — cosii-)"']}, ¥y <0, (5.11a)

where
wZE Y.

e = (5.11b)

_ The long time response (5.9) is periodic in y and
¢t with a maximum in v for z = 0 and near a. = 2kn,
k=0,1,2....Figs. 8a, b show the magnitude and
phase of V, where v = 2irc(poHoo) ™'V exp(—it), from
(5.8a) with J > 1, as a function of y and Z. The sub-
surface maximum along i, = 0 (Fig. 8a) is associated
with the ray path for a free vertically propagating
IKW with frequency w = ¢ that passes through y
= (0, Z = 0 and travels to the bottom, while the max-
imum along i_ = 2 is associated with the ray path
of the reflected wave that propagates from the bottom
to the surface. Subsequent reflections at £ = 0 and
Z = —1 occur periodically in y. In regions where the
ray path implies downward (upward) propagation of
energy, the phase velocity is directed upward (down-
ward). This is illustrated in Fig. 8b, which shows the
phase of V.

The asymptotic limit under conditions (5.9) of the
long-time solution for v in (5.11) may be shown to
be exactly equal to (3.21), which was obtained for an
infinitely deep ocean. Hence, for forcing given by
(5.6), Eq. (5.9) establishes limits on the validity of the
analysis in Sections 2 and 3. For example, with the
parameters chosen in Section 4, the effect of a bottom
may be neglected for |z| < 0.64 km, x < 196 km, and
|yl < 875 km (T = 25 days).
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FIG. 8. Magnitude (a) and phase ¢ (b) of scaled alongshore ve-
locity ¥ as a function of § and Z, with £ = 0.02 and 7/9 > 1, where
iV exp(—it) = vA2r¢/(poHoo) ']. Flat bottom at 7 = —1. 8, > 6,
implies 2 leads 1.
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b. Internal friction

The inviscid analysis of the previous section pre-
dicts an infinite number of reflections at Z = 0 and
Z = —1, periodic in y. The effect of internal dissipation
modifies this behavior. Equations and boundary con-
ditions for this problem with friction are (4.2), (4.3a)
and (4.3b), where (4.3b) also holds at Z = —1.

The solution for p is given by (5.2) and (5.4) where
here Y, satisfies

—(nw)(NHo) 'Yy + Y, — rn*(nm)(NHp) 'Y,

= (2/Ho)r(y, 1), (5.12a)

r = v(n/H,).
In the case with forcing given by (5.6),
v = Re{2irc(poHo) '[exp(—it)

(5.12b)

[+ J
X 2 M, — exp(—it) 2 M, exp[n(i — rn*c™")j]
n=1

n=1

— 2 M,exp(-m?* 1]}, y<0, (5.13a)

n=J+1

M, = (1 + irn®¢™")"! exp(—nX) cosnzz, (5.13b)

where the three sums in (5.13a) are analogous to those
in (5.7a) and where J is given by (5.7¢).

The long-time behavior, which may be obtained
from (5.13a) by letting J — oo is no longer periodic
in y. The effect of the step function decays rapidly
with y for high mode number, and only the effect due
to the lowest several modes remains. The beam pat-
tern which results from the inviscid analysis only ex-
ists near y = 0.

6. Discussion

Utilizing an f-plane model with constant stratifi-
cation and with a vertical boundary, we have shown
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that under certain conditions vertically propagating
subinertial motions may be forced by the alongshore
component of the wind at the coast. This simple
model illustrates the essential properties of the forced
flow, in particular the sensitivity of the coastal re-
sponse to the exact nature of the wind forcing (i.e.,
the response to an initial disturbance is very different
from the flow due to a steady forcing) as well as to
the wind’s frequency-wavenumber structure.

Based on the examples of Section 3, together with
the analysis of Sections 4 and 5, we may make some

- general statements about the conditions for which

vertically propagating coastally trapped waves might
be observed in the ocean. For an initial disturbance
at the surface, with a general frequency-wavenumber
spectrum and large alongshore scale, downward prop-
agating energy would be observed for those fre-
quency-wavenumber components of the forced re-
sponse that have not reflected from the bottom. Those
components that have reflected from the bottom will
exhibit a more complicated vertical phase depen-
dence due to the superposition of downward and up-
ward propagating energy. Waves with higher fre-
quencies and longer wavelengths travel faster.

The energy of the disturbance may dissipate before
a round-trip from the surface to the bottom to the
surface is completed and hence internal dissipation
may prevent the interference of reflected energy with
downward propagating energy, even for longer time.
With these conditions, one would expect to see ver-
tically propagating waves near the surface for those
frequencies and wavenumbers where they are damped
effectively by internal dissipation. Internal dissipation
damps the waves more effectively for shorter wave-
length or lower frequency. For the parameters in Sec-
tion 4, free waves are damped considerably before the
wave reaches the bottom.

These simple calculations may explain why verti-
cally standing coastally trapped waves are observed
along the Peru coast in the 5-10 day band (Smith,
1978; Brink et al, 1978, Romea and Smith, 1982)
while relatively large phase lags are observed in the
vertical for perturbations in velocity for 7 > 25 days
(Fig. 1).

For cases where dissipation or long travel times
may not be invoked in order to neglect the effects of
reflection from the ocean bottom, an example where
the wind stress is modeled by a traveling wave with
a step function in y shows that the effect of a bottom
may be ignored for |z| <« Ho/x and |y| < (NHp/oT).
The step function in y is an approximate model for
low latitudes, where the presence of the equator in-
troduces an effective step-function behavior to the
forcing, since a wind stress applied at a location is felt
only poleward of that location. With T ~ 25 days
and with H, =~ 2 km, the effect of a bottom may be
ignored for |z| < 0.64 km and || < 875 km (i.e.,
latitude < 8°). With these conditions satisfied, solu-
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tions obtained to an initial value problem for sinu-
soidal forcing at the surface show that an upward
propagation of phase would be expected associated
with the propagation of a subsurface maximum in
v downward. For longer time, the response to steady
forcing at a frequency o has a maximum along a line
z = oy/N which is associated with the IKW ray path,
with an upward propagation of phase in the vicinity
of the ray path. Since.the ray path is a function of
o, the response to a wind with a general frequency
spectrum and a step function at y = 0 will consist of
many rays emanating from y = 0, z = 0, and an
upward propagation of phase will be observed near
y = 0 over much of the depth.

We may also examine the conditions for which the
effects of a surface are not felt. For impulsive forcing
at a point on the surface the disturbance takes the
form of a nonuniform wavetrain of free vertically
propagating coastal Kelvin waves with local frequen-
cies and wavenumbers, when the local vertical wave-
length is much less than the distance to the surface.
Typical parameters for the Peru coast (N = 4 X 1073
s™', A\, = 1000 km) give a vertical wavelength X,
~ 0.7 km and ¢, = 30 m day~! for T = 25 days. This
estimate for A, indicates that it is unlikely that the
low frequency signal in Fig. 1, which is measured at
depths |z| < 0.8 km, i.e., |z| < )., may be explained
in terms of a free wave with a single frequency or
wavenumber.

For forcing by a traveling wind, a standing com-
ponent that decays with depth from the surface and
that is trapped within a Rossby radius of the coast
is forced for ¢/ < 0 (poleward traveling wind) and
o/l > 0 (equatorward traveling wind). For o/ < 0,
an additional propagating component is forced, which
represents a coastally trapped IKW with negative ver-
tical group velocity and upward phase propagation.
The response to forcing by a wind stress that is stand-
ing in the alongshore direction may be obtained by
summing the effects of traveling waves with ¢// > 0
and ¢/l < 0. For this case, downward propagating
waves will be generated by the poleward propagating
component of the wind while a surface trapped re-
sponse will be generated by both poleward and equa-
torward traveling components of the wind. For |z
> |a/NI|, the surface trapped component is small
compared to the vertically propagating component.
With the parameters chosen above, the vertically
propagating IKW is the dominant response for z
< —115 m, i.e., below 115 m one would expect to
see an upward propagation of phase associated with
downward propagating IKWs, while above 115 m the
surface trapped component of the forced response
will be important and a more complicated phase de-
pendence with depth would be expected.

The observations shown in Fig. 1 are in qualitative
agreement with predictions for forcing near the equa-
tor by a traveling wind of large spatial extent. At 5°S
latitude, with |y| =~ 550 km (the approximate distance
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from the equator to the ESACAN array), T ~ 25
daysand N =~ 4 X 1073 s™!, the subsurface maximum
propagates downward at about 40 m day™' and in-
tersects the IKW ray path at about 400 m depth.
Additional measurements for longer times are needed,
however, to obtain a more accurate description of low
frequency phenomena along the Peru coast at low
latitudes.

Finally, we point out several interesting questions:
1) do low frequency waves that are forced along the
equator and that propagate vertically turn at the in-
tersection of the equator with the South American
coast and travel north and south as vertically prop-
agating IKWs? 2) can vertically propagating IKWs
transfer momentum downward and generate a mean
flow? These questions suggest avenues for further
theoretical studies.
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APPENDIX A
Solutions for Slowly Varying f

In this section we treat f as a slowly varying func-
tion of y, so that f = f(n), n = By, and 8 < 1. The
equations that describe the problem and that may be
derived from (2.1) with the above definition for f are

(2.6), (2.8), (2.9) and

[Dxx + (f/IN)YD:,): + fypx = 0. (A1)

In a manner similar to the method used in Section

2, we seek a solution to (A1) in terms of the Fourier
cosine transform. The transformed problem is (2.18b,

¢) and
[ﬁxx - (fWI/N)Zﬁ], + fyﬁx =0. (AZ)
where the transform is defined by (2.17).
. The solution to (A2) may be written
P = Do+ b, (A3)

where p, is assumed to be a small perturbation
(P < Po), and where

Do = Yo exp(—fmx/N).
The problem for p; is
[Dixx — FM/NYpi]
= f,Yo(fm/N) exp(—fmx/N). (A5)
The solution to (A5) subject to (2.18c¢) is

(A4)

Py = Y, exp(—fmx/N) — 2 Y ,x
X exp(—fmx/N), (A6)

where

)}lpt = YOfy- (A7)
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Therefore the total solution for 7 is (absorbing Y; in
Yo
b= (Yo —

12Y,,x) exp(—fmx/N). (A8)

We now use (A7) and (A8) in the remaining boundary
condition (2.18b) to obtain

—(m/N)Yo, + Yo, — BYo(f,/f) = 7(, ). (A9)

Eq. (A9)is a forced first-order wave equation which
includes a slowly varying Coriolis parameter. The
transformation Y, = f12Y} yields

~(m/N)Yo, + Yo, = f2(m)r(, 1).  (A10)

Eq. (A10) for the scaled variable Y, is similar to
(2.20), the forced wave equation obtained for con-
stant f, but with a factor of f~!/%() multiplying the
forcing function. For r = 0, the free wave behavior
is recovered, implying an f"2 growth in amplitude of
an internal Kelvin wave as it propagates poleward
and vertically. This amplification is a consequence
of the conservation of wave energy flux and agrees
with results obtained by Miles (1972) for external
Kelvin waves and by Allen and Romea (1980).

With an initial condition given by (2.22), the so-
lution for a general wind stress 7 = F(3)7(¢) is (2.25),
where

pp = —(2N/x) fow {/(BW/f1B(y + Ne/m)]}'

X F(y + Nt/m) exp(—fmx/N)m™

X cosmzdm. (All)

For forcing given by (3.1) (Example A) or (3.11)
(Example B), the f-plane results are similar to the
solutions obtained with (A11) with the rescaling: p
(slowly varying f) = f'2p (f-plane).

The formulation w1th a B-plane also provides an
approximate condition for coastal trapping. Substi-
tution of (2.11) in (A1) gives

¢(x) = exp{{~"2i(B/w)
—= [(fm/NY* — Ya(B/w)]'?}x) (A12)

Substitution for m from (2.15) gives the trapping con-
dition (fI)®> > '»82. This requirement is the same as
the baroclinic trapping condition given in Allen and
Romea (1980, Eq. (4.2)) for a two-layer ocean. For
the limit m — O, the more restrictive barotropic trap-
ping condition (w/)* > Y482 applies.

APPENDIX B
Generalized Integral Transform in x

The solution to (2.3) is derived here in an alternate
manner with a generalized integral transform in x.
In this case, boundary conditions (2.6) and (2.8) are
replaced by the equivalent conditions

pzt = _(N2/f)7(y’ t)a(x)s at z= O’ (Bl)
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P«t fp,=0, at x=0, (B2)

where here the Ekman suction in the upper coastal
corner is represented by a delta function at x
= O(B1).

We express p and 7 as Fourier integrals in time and

in y, i.e.,

[7(, @), Kx, L, z, »)]
-[" [ vo.0.px v 200

X exp(—iwt) exp(—ily)dtdy, (B3)
[r(v, 0), px, ¥, 2, D))
e [* [T pe o stz
X expliwt) exp(ily)dwdl. (B4)

Utilization of (B3) in (2.3), (2.9), (B1) and (B2) gives

Pex + (fINYP.. = 0, (BS)

Dy Px, P <00, as x— o0, z— —oo, (B6)
7, = iN*(fw) '78(x), at z=0, (B7)
D+ flo)p =0, at x=0, (B8)

plus appropriate radiation conditions for x — oo,
zZ— —0.
Eq. (B8) is satisfied by the transform

o L, z, @) = fw ®a, I, z, w)
o

X [sinax — w(fl)"'a cosax]da
+ Wz, [, w)H(w/l) exp(—flx{w), (B9)

where the last term is present only for (//w) > 0. The
inverse transform variables & and W are given by

(e, I, z, ) = 2/m)[1 + (wa’(f))~]
>< f “ Msinax — wa(f)" cosax]dx, (B10)
0

Wz, 1, @) = 2f(/w) fo‘” 5 expl—flxfw)dx,

(w/l) > 0. (B11)

We obtain the transformed problem for @ by mul-
tiplying (B5) by sinax — wa(fl)™! cosax, integrating
over x from 0 to oo, and integrating by parts where
appropriate. The result is

— (Na/fy*® =0, (B12)

P, <0, as z— ~o0, (B13) .

with solution

& = A(a, I, w) exp(Naz/f). (B14) -
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For l/w > 0, W(z) is obtained by multiplying (BS) by
exp(—fIx/w) and integrating over x from 0 to co. This
yields

W = Wy, w) exp(—iNlz/|w]), ([/w)>0, (B15)
where the negative root is chosen in (B15) to satisfy
the radiation condition, giving a downward flux of
wave energy. We find 4 and W, by taking the trans-

form of (B7) and applying that as a boundary con-
dition at z = 0 on (B14) and (B15). This gives

W, = —(2N/|wl)7, (w/]) > 0,
‘A = —i2/m)NFD1 + ()’ (f1)™27'7.
The total solution is
ﬁx’ l’ z’ w)

= fw A(a, I, w)[sinax — wa(fl)™! cosax]
0

X exp(Nza/f)da + H(w/)Wy(l, w) exp(—flx/w)

X exp(—iNlz/|w|). (B18)

With a particular forcing 7 the pressure may now be
calculated from (B4), (B16), (B17) and (B18) and the
velocities computed using (2.1a) and (2.4a,b).

As a simple example, consider a traveling plane
wave coastal wind stress where

(y, 1) = 7c exp(—iot + ilyy).
The solution for p is
p = 2Nr¢ exp[—i(at — L)l{—i(xflo)™"

(B16)
(B17)

(B19)

X fm [sinax + ca(flp)™" cosax]
0

X [1 + (ca)(flo) ]! exp(Naz/f)da
— H(—o/l)lo|™" exp(flox/o)

X exp(—iNkz/|a])}. (B20)
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Evaluation of the integral in (B20) yields (3.23), where
[/ in (3.23) is equal to [, in (B20).
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