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Abstract

The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removal

crystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitation

is considered in which secondary nucleation occurs simultaneously with primary nucleation.

The determinant

equations for the existence of multiple steady states are developed and the multiplicity boundaries dependent on the
physical and kinetic properties and operational parameters of the process are obtained by resolving these determinant
equations. The number of steady states in the precipitator for various multiplicity regions is determined and the
linear stability of these steady states is analyzed by using the Routh criterion.
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bility

1 INTRODUCTION

The possible appearance of multiple steady states
for continuous crystallization and reactive precipita-
tion has been paid considerable attention in litera-
ture. Tavare et al.'=3] applied the theories of multi-
plicity and stability to continuous mixed suspension-
mixed product removal (CMSMPR} crystallizers and
reactive precipitators, and derived implicit criteria
for uniqueness and multiplicity of steady states of
the systems. In allusion to these systems, Yin et
al.*~8] developed stricter explicit criteria for unique-
ness and multiplicity based on rigorous moment equa-
tion models. Furthermore, Lakatos™® studied the
influence of nucleation mechanisms on the multiplic-
ity behavior in an isothermal CMSMPR crystallizer.
These investigations have dealt with systems in which
only either primary or secondary nucleation occurs,
but less attention was paid to the case of simultane-
ous occurrence of primary and secondary nucleation.
In light of these situations, Yin et al®!° investigated
the multiplicity and transient behavior of an isother-
mal CMSMPR crystallizer with both primary and sec-
ondary nucleations. On the other hand, in all of these
works, it is assumed that the particle size is controlled
by molecular growth. However, it has been recognized
that for many precipitation processes particle agglom-
eration plays an important even a dominant role in
establishing the product size distribution'!l. There-
fore, in Padia and Bhatia’s work(!? the possibility
of multiplicity for agglomeration controlled precipita-
tion with primary or secondary nucleation was studied
separately. They found that primary nucleation might
lead to three steady states while secondary nucleation
lead to as many as four steady states.

The present study is aimed at investigating the

Received 2001-02-27, accepted 2001-07-16.
* To whom correspondence should be addressed.

multiplicity behavior of agglomeration controlled pre-
cipitation process with both primary and secondary
nucleations in an isothermal CMSPMR crystallizer,
The specific objective of this work is to determine the
parameter regions over which multiple steady states
occur and to analyze the stability of these steady
states.

2 MODEL DEVELOPMENT
2.1 Population and solute balances

In the present analysis, an isothermal CMSMPR
precipitator with clear and solid-free feed stream is
considered. We assume agglomeration dominant pre-
cipitation with negligible molecular growth and break-
age. Furthermore, it is assumed that precipitated par-
ticles are nucleated in a finite volume v,. Under these
conditions it is quite convenient to use the particle
volume as the internal coordinate to phrase the pop-
ulation balance as following(*!]

On(v,t) _ n(v,1) B 3
T - + By, — Do+ Bé(v—w,) (1)

in which the agglomeration-related terms B, and D,
can be formulated analogously to the formulation of
coalescence of aerosols!!1].

The solute balance based on the mass of solvent
leads to

detMn) Lo oy @

in which the magma density, My, is related to n, v
and p by

My = k‘,p[ vn(v,t)dv (3)
0
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2.2 Nucleation kinetics

The nucleation of crystals is a complex process by
itself, behind which different mechanisms may be ex-
pressed by significantly differing rate equations!'). If
a crystallizer is operated with high supersaturation
and low magma density, new particles are born domi-
nantly by primary nucleation. While in the case of low
supersaturation and high magma density, secondary
nucleation appears to be the dominating process pro-
ducing new crystals. These two kinds of nucleation
mechanisms provide two extremes of the process be-
havior. Knowledge of the process behavior may also
be of importance in situations where both nucleation
phenomena proceed at comparable rates. In the pre-
cipitator under consideration, primary and secondary
nucleation processes take place simultaneously, and
the overall nucleation rate is described by

B = kpexp {-— @(,_;K—_IT?-] + k}, (C — ce)bM:[" (4)
where the first term is the Volmer model for primary
homogeneous nucleation and the second one is the
magma dependent power law model for secondary nu-
cleation. According to Garsidel'3], the Volmer model
is also satisfactory for primary heterogeneous nucle-
ation but with a lower value of K due to the reduction
in surface energy at heterogeneous nucleation sites.

From energy considerations!*¥, the nucleus volume
vy, is obtained as

2k 2K
" pNa[In(c/ce))? ~ pNu(c/ce — 1)?

at which size the gain in free energy due to formation
of solid becomes large enough to overcome the loss in
free energy associated with the creation of a new in-
terface.
2.3 Model equations

Because of the appearance of the first moment of
n(v,t) in Egs.(2) and (3) , it is more convenient to
transform Eqgs. (1) and (2) in the moment form by
defining

(5)

U

my = f vn(v, t)dv (6)
0
Thus, we obtain (see Appendix for details)
dm1 _ my
—d-t— - -'T + B'U'}, (?)
de 1
EE— = "T‘[C[ ~¢) — kypBuy (8)

An interesting outcome of the transformation is
that since agglomeration conserves particle volume,
and Eq.(7) is merely a solid phase volume balance,
the agglomeration terms are no longer in the picture.
Thus the dynamics of the first moment is indepen-
dent of the agglomeration-related terms B, and D,.

For ease of analysis we introduce the following set of
dimensionless variables and parameters

a =2k, kyT(cr — o)’ T 2c. N3}t
8 :kp/[kb(cf - cﬂ)b+j}

F =Kc?/(cs ~ ce)?

x =kyp(cs — co) " tmy

y =(c —ce)/(er — ce)
6=t/

Notice that the dimensionless parameters a and j3
represent the relative importance of primary and sec-
ondary nucleation in the precipitation process. We
estimate that the value of o can range widely from
0 to 10 and 8 from 0 to infinity. If @ = 0, § — oo,
primary nucleation would be the dominating process
for producing new crystals, while in the case of 3 =0
new particles are born dominantly by secondary nu-
cleation. Otherwise, both nucleation processes would
simultaneously occur at comparable rates. F can be
interpreted as a measure of the nonlinearity of the pri-
mary nucleation rate and is also a prime determinant
in the gross level of primary nucleation. According to
Jerauld et all*®)) F can range from 0.002 to 10 indus-
trially and experimentally.

Recasting Eqgs. (7) and (8) in dimensionless form
and combining with Egs. (4) and (5) yield

% =~z +a [fexp (—F/y*) +y"’] (F/y*)  (9)

W1y a e () + 2] () (10

The combined effect of physical properties and op-
eration parameters on the dynamics of the state vari-
ables can be determined by simultaneously solving the
model Egs. (9) and (10) with appropriate initial con-
ditions. At steady state, these equations yield

fl(zsvymP) =
— 2, + a[Bexp (—F/y2) + ytzl|(F/y2) = 0

(11)
f2($sfys,P)=1—ya—$s=0 (12)

which, along with the given physical properties, nu-
cleation kinetic and operational parameters, can be
solved simultaneously to yield steady state solutions.
Here P is the parameter vector comprised of o, 3, F, b
and j.

3 MULTIPLICITY AND STABILITY ANAL-
YSIS
3.1 Steady state multiplicity

The nonlinearity of the nucleation kinetics and the
model equations discussed above, as well as the in-
teractions between the kinetics and the particle size
distribution, may give rise to possibility of multiple
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steady states in the continuous precipitation system.
To obtain the multiplicity boundaries, conventional
bifurcation analysis('®17) can be used to classify the
parameter space into regions with different number of
steady state solutions. The “bifurcation set” of pa-

rameter P can be determined by setting
detJ (zs,ys, P) =0 (13)

where J is the Jacobian matrix of Egs. (11) and (12),
namely

3f1/0zs OfL/0ys ]
J= 14
[ ofyiom, oo 9
On simplification, Eq. (13) reduces to
4+ 2Fz,y° - 3/y,+
O'Fyg._smg_l(byszms - jyg —2Fz,) =0
(15)

Thus, the multiplicity boundaries, which would de-
marcate the parameter space into regions with differ-
ent number of steady states, can be obtained by si-
multaneously solving the determinant Eqgs. (11), (12)
and (15).
3.2 Linearized stability analysis

To assess the stability of the steady state solutions,
the model equations [Egs. (9) and (10)] are linearized
around the steady state and the sign of the eigenvalues
of the Jacobian matrix is examined. The characteris-
tic polynomial of the Jacobian determinant is

P(A) =det(J = AI) = X2 +a;A+az  (16)
where _
a1 =2 —aFjyd3zi™! (17)
az =4 + 2Fz.y; % — 3ys+
aFyt %zl (abyiz, — jui — 2Fzs)
(18)

According to the stability theory 117, to keep the
system stable, real parts of the eigenvalues of the char-
acteristic Eq.(16) must be negative. Applying the
classical Routh criterial’”l it is found that for sta-
bility all the coefficients of the characteristic equation
must be of the same sign, i.e., a; and ap should be
positive. For the present case this is the necessary as
well as the sufficient condition for stability.

4 RESULTS AND DISCUSSION
4.1 Steady state multiplicity

The various dimensionless parameters of the pro-
cess model based on simultaneous occurrence of pri-
mary and secondary nucleations and agglomeration
controlled growth mechanism are «, 8, F, b and j.
Among these, @, # and F are operational parameters
which can be varied by changing the inlet concentra-
tion and residence time, respectively. Of course, they
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are also functions of the kinetic parameters of the pre-
cipitation process. Parameters b and j correspond re-
spectively to the extent of the dependence of the sec-
ond nucleation rate on supersaturation and magma.
The typical range of b and j can be taken as 1—4
and 0—2 respectively based on the data found in the
literaturel!1,

Types of possible multiplicity behavior and the re-
gions with multiple steady states are determined based
on the values of these parameters. As discussed in
the previous section, the multiplicity boundaries can
be obtained by simultaneously solving the multiplic-
ity criterion [Eq. (15)] and the steady state equations
[Egs. (11) and (12)]. For various values of 8 and F,
Figs. 1(a) and (b) illustrate the multiplicity bound-
aries and the “boundary set”!!$) as plots of a versus
b for the cases of j < 1 and j > 1, respectively. It
is shown that the multiplicity boundaries (solid line
in Fig. 1) along with the “boundary set” (dashed line
in Fig. 1) separate the parameter space into different
regions of multiplicity. We categorized them into four
types based on the range of the parameters considered
and the nature of the multiplicity boundary. It is im-
portant to note that the “boundary set” which exists
at b = 3 in the parameter space plots is independent of
a, B, F and j and that the nature of the multiplicity
boundaries is mainly dependent on the values of j and
b. For magma power exponent less than unity, a mul-
tiplicity boundary exists only for b < 3 and this mul-
tiplicity boundary along with the “boundary set” at
b = 3 divides the parameter space into three types of
multiplicity regions [Fig.1(a)]. However, the instance
for the case of j > 1 is far more complicated. From
Fig. 1(b), besides the multiplicity boundary existing
for b < 3 and the “boundary set” at b = 3 similar
to the previous case, there exist other two multiplic-
ity boundaries for b > 3 and these two multiplicity
boundaries intersect at a critical point with b = ber.
Thus, for magma order greater than one the parame-
ter space is classified into four regions. That is to say,
if b < 3, the instance of regions demarcation for the
case of j < 1 is similar to that for the case of j > 1,
while if b > 3, the multiplicity boundary exists only
for the case of j > 1, as can be seen from Figs. 1(a)
and (b).

4.2 Bifurcation behavior

To show the bifurcation behavior of the sys-
tem, nonlinear algebraic equations (11) and (12) are
solved by using the continuation technique improved
by Kubicek and Marek!!”). Following Kubicek and
Marek’s procedure, we can obtain the whole relation-
ship between the steady state solutions of the model
equations and the variable parameters in the param-
eter space of interest. As examples, the schematic bi-
furcation diagrams for dimensionless magma density
z, versus the operational parameter « for four typical
sets of dimensionless parameters are shown in Fig. 2.
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The stability of the steady states was examined by the
above stability condition, and it is indicated by solid
lines for stable and dashed lines for unstable in Fig. 2.
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Figure 1 Multiplicity boundary as the plot of
versus b for different kinetic and operational

parameters
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From Figs. 2(a) and (b), it is seen that for the case
of b < 3 the system exhibits the similar bifurcation
behavior in spite of the value of j used. The bifurca-
tion diagram is consisted of a stable and an unstable
branches and these two branches meet at a limit point.
This means when a is less than its value at the limit
point, a*, there are a stable and an unstable steady
states; otherwise there is none.

When b > 3, however, the bifurcation behavior is
comparatively complicated. If j < 1, the system has
only one stable steady state over the whole range of «
and with increase in operating parameter « the prod-
uct rate increases steadily and continuously [Fig. 2(c)].
If j > 1 and b > b, [the critical value of b in region IV
of Fig. 1(b)], the system would exhibit only one stable
steady state over the whole range of o and the bifur-
cation diagram is similar to Fig.2(c). Otherwise, if
7 >1and 3 < b < b, the bifurcation diagram is con-
sisted of three branches and the middle unstable one
intersects with other two stable ones at two different
limit points, as shown in Fig.2(d). This means if a
lies
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between these two limit points, namely o] < a < o3,
there exist two stable and an unstable steady states;
otherwise there is only a stable one.
4.3 Discussion

According to the demarcation of multiplicity re-
gions and bifurcation behaviors of the system in the
different parameter regions, the number of steady
states as well as their nature in the different regions of
multiplicity indicated in Fig. 1 is outlined in Table 1.
It is obvious that this result is completely consis-
tent with the bifurcation theory(l”). Namely, when
the parameter vector passes through the “boundary
set” from one multiplicity region to another, the num-
ber of steady states would increase or decrease by
“1”, whereas when it passes through the multiplic-
ity boundary, an increase or decrease by “2” would be
expected.

Table 1 Number of stable and unstable steady states
for various multiplicity regions as indicated in Fig.1

Region I I m I\
stable 0 1 1 2
unstable 0 1 0 1

Region I in Fig.1 enclosed by the multiplicity
boundary, the “boundary set” at b = 3 and the coordi-
nate axes exhibits two steady states, of which only the
one corresponding to the lower production is stable
[see Figs.2(a) and (b)]. With increase in operating
parameter « for the case of b < 3 transition from re-
gion II to region I occurs, then the system does not
have any steady state. Region II in Fig.1 is a more
realistic area for precipitation studies. Here only one
unique stable steady state is possible. However region
IV of Fig. 1(b) for j > 1, trapped between the multi-
plicity boundaries and the “boundary set” at b = 3,
exhibits three steady states of which the middle one is
always unstable [Fig.2(d)]. In this region, the bifur-
cation plots obtained for steady state variation with
respect to operating parameter o reveal a hysteresis
nature and the production ratc between the two stable
steady states varies with a several-fold difference. As
can be seen from Fig.2(d), for a start-up condition
corresponding to a low value of operating parameter a,
the system is likely to attain a low production steady
state. For the start-up condition with high value of a,
the system will attain a high production steady state.
However, for medial value of operating parameter a,
namely af < a < «j , the system can dramatically
shift from low production to high production and vice
versa depending on the magnitude of disturbance and
the start up condition.

From Fig. 1(b) with decrease in 3 or increase in F,
region IV expands, leading to multiplicity over a larger
range of a. According to Eq.(4), decrease in § or in-
crease in F' means that secondary nucleation becomes
more important than primary nucleation. That is to
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say, the lager the relative rate of secondary nucleation,
the more possibility for multiplicity situations in ag-
glomeration controlled precipitation. Similar conclu-
sion was previously obtained by Yin et al.[®! for molec-
ular growth controlled crystallization in which sec-
ondary nucleation occurs simultaneously with primary
nucleation.

Here it is necessary to remark the relationship of
this present study with Padia and Bhatia’s work('2,
Padia and Bhatial'?! provided two extreme situations
of our present study. If our analysis is extended
to these extreme situations, the similar conclusions
would be reached. It is noticeable that our analysis is
based on the mass of solvent while Padia and Bhatia
developed their model based on the volume of slurry.

Finally, it is important to assess the practical im-
plications of the present work. The analysis indicates
that an isothermal CMSMPR crystallizer involving
agglomeration controlled precipitation with both pri-
mary and secondary nucleations may exhibit a wide
variety of steady-state behavior. Although the param-
eter ranges within which the multiplicity might occur
are narrow and the phenomenon of the multiplicity is
limited to some special cases or to localized situations,
a prior knowledge of the multiplicity regions is useful
in the design, start-up and control of a precipitation
process. Designers should be aware of these regions in
order to avoid some false choices of operation param-
eters whereby the precipitator might be operated at
conditions quite different from those intended.

5 CONCLUSIONS

A model for the investigation of multiplicity and
stability patterns of agglomeration controlled precip-
itation with both primary and secondary nucleations
in an isothermal CMSMPR crystallizer is developed.
The analysis solely based on steady state balances
indicates that there may be multiple steady states.
Among the kinetic and operating parameters, a, b
and j appear to be the crucial parameters with sig-
nificant influence on the multiplicity and bifurcation
behaviors. The parameter space can be classified into
four multiplicity regions in which the number of steady
states ranges from 0 to 3. The results of linear sta-
bility analysis show that in the case of two steady
states system, the state with high production would
be unstable, and for the three steady states system,
the middle one would be unstable,

NOMENCLATURE

ay, az  coefficients in the characteristic Eq. (16)

B overall nucleation rate based on the mass of solvent,
no.s~l.g=!

Ba birth rate of particles due to agglomeration,
no.,.s l.g~1

b kinetic order in nucleation rate

ber critical value of b in region IV of Fig. 1(b)
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c concentration based on the mass of solvent, g.g !

Dy death rate of particles due to agglomeration,
no.s l.g=1

F dimensionless parameter [F = Kc2 /(cp — ce)?]

J1, f2  dimensionless function

I identity matrix

J Jacobian matrix

J magma order in nucleation rate

K constant in Volmer’s nucleation law

ky, secondary nucleation rate constant, no..s~!.g~!

kp primary nucleation rate constant, no.-s‘“]'vg"l

ke volume shape factor

My magma density based on the mass of solvent, g-g !

my firth moment of n(v, t)

Nay Avogadro’s number

n(v,t) particle density distribution function based on
the mass of solvent, no..g™*

P parameter vector

t time, s

v particle volume, m*

vy nucleus volume, m?

T dimensionless magma density

y dimensionless concentration

I operational parameter

a”® a value at the limit point

3 dimensionless parameter {[8 = ky /[ky(cf — co)?77]}

) Dirac delta function

2] dimensionless time

A eigenvalue of the characteristic matrix

p particle density, g-m—3

T mean residence time, s
Subscripts

f feed

e saturation

s steady state value
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APPENDIX
Derivation of Eqs. (7) and (8)

Multiply Eq. (1) by v and integrate each term with
respect to v between the limits leads to

f v3n(v,t)dv _ _f vn(v’t)dv—f—
0 ot o T

/ (Ba — Da)vdu + B/ vé(v — v, )dv
0 0

(A1)
In Eq. (A1)
= on(v,t)  dmy
fu vy = S (A2)
/ 0 g, (A3)
0 T T

f " (Ba — Da)vdv = 0 (Ad)

]

since agglomeration conserves particle volume.

/Um vé(v — w,)dv = /Om(v — vp)8(v — vy )dv+

U / v —wv,)dv =0+, (A5)
0

Therefore, Eq. (A1) leads to Eq. (7).
Recasting Eq. (2) in terms of the moment of n(v,t)
leads to

de 1 dmy; my
_— — _ kv - P
T{c; c) p( + - )

dt — dt (A6)

Substituting Eq. (7) in Eq. (A6) leads to Eq. (8).
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