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Abstract

Unknown input observer is one of the most famous strategies for robust fault diagnosis of linear systems,

but studies on nonlinear cases are not sufficient. On the other hand, the extended Kalman filter (EKF) is well-
known in nonlinear estimation, and its convergence as an observer of nonlinear deterministic system has been derived
recently. By combining the EKF and the unknown input Kalman filter, we propose a robust nonlinear estimator
called unknown input EKF (UIEKF) and prove its convergence as a nonlinear robust observer under some mild
conditions using linear matrix inequality (LMI). Simulation of a three-tank system “DTS200”, a benchmark in
process control, demonstrates the robustness and effectiveness of the UIEKF as an observer for nonlinear systems
with uncertainty, and the fault diagnosis based on the UIEKF is found successful.
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1 INTRODUCTION

With increasing demand on safety in industrial
processes, fault detection and isolation (FDI) has re-
ceived much more attention in the past three decades,
in which one important strategy is based on analyti-
cal models. The FDI approaches based on analytical
models include observers, parity space, Kalman fil-
ter, parameter estimation, and so onlll. Due to the
universal existence of nonlinearity and model uncer-
tainty in practice, robust FDI of nonlinear systems is
of great significance. Since model uncertainties are
unexpected dynamics of the system as well as faults,
they constitute a source of false alarms which corrupt
the performance of the FDI system.

The robustness of FDI systems is an important
research topic, in which the unknown input observer
(UIO) scheme is very famous!?l. The basic idea is to
design a fault diagnosis observer decoupled from the
unknown disturbances. However, UIQ for nonlinear
systems has not been studied sufficiently. In the sur-
veys of Frank et al., they summarized some results
of linear and nonlinear UIO®4. Yu and Shields ex-
tended the classical linear UIO to bilinear systems and
polynomial systems, respectively!®:6].

For nonlinear systems the extended Kalman filter
(EKF) is very famous and has been widely used as
an estimator(”l, The convergence of the EKF used
as an observer for nonlinear deterministic discrete-
time systems was discussed by Boutayeb et al. and
Guo et al.B~19 In these papers, proper selection
of Q, and Ry, based on the convergence analysis
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are also discussed, which would improve the conver-
gence capability of the EKF. On the other hand, un-
biased minimum-variance linear state estimator for
linear stochastic systems with unknown inputs was
firstly investigated by Kitanidis'}), which was called
unknown input Kalman filter (UIKF). It was also an-
alyzed by Darouach et al.l'? and Keller et al.[!3 later.

Combining the results of the UIKF with the EKF,
we propose a new nonlinear robust estimator for a
class of nonlinear systems with structural uncertainty
in this paper, which is called unknown input EKF
(UIEKF). The convergence of the UIEKF as an ob-
server for deterministic systems is analyzed theoreti-
cally using Lyapunov method. Simulation results il-
lustrate that the UIEKF is robust to unknown distur-
bances and is exponentially convergent as a nonlinear
observer. The UIEKF is also applied to the fault di-
agnosis of three-tank system “DTS200”, a benchmark
in process control, and the results are satisfactory.

2 BRIEF REVIEW OF THE UIKF

The UIKF was first proposed by Kitanidis!'!].
Consider the linear discrete-time stochastic system
with unknown disturbance as follows:

{wk-{-l = Frxp + Bruy + Erdy, + wy, (1)

Y1 = Hrer1@r41 + vy

where x;, € R" is the state vector; y, € R™ is the ob-
servation vector; ur € R" is the known input vector;
dy € R7is the unknown input vector which represents
unknown disturbances or model uncertainties; the sys-
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tem and measurement noises (wy and vg,,) are zero
mean uncorrelated random Gaussian sequences with
variance matrix @ and Ry, respectively. Fy, By,
E; and Hy; are known matrices with proper di-
mensions. The present aim is to design a minimum
variance filter as (2):

Tpprpes1 = Fr@pp+Brug+Lis 1 (W) —His 1844111

(2)

In the UIKF, the gain matrix Ly, should satisfy

the decoupling condition which is the same as that in
general unknown input observer(?l:

Ly H  EL = E, (3)

It has been proved?! that Eq. (3) has a solution if and
only if

rank(H 1 Ey) = rank(Ey) = ¢ (4)

Condition (4) means that the disturbances can be de-
coupled only if the dimension of disturbances is no
larger than that of measurements. Based on the dis-
turbance decoupling condition Eq. (3), the optimal fil-
ter gain Ly, is obtained by solving an optimization
problem with constraints using Lagrange method in
Ref. [11].

Keller et al.!'®l derived a brief formulation of Ki-
tanidis’s result, which demonstrated the relation be-
tween the UIKF and the classical Kalman filter that
only the filter gain and the filtered state estimation
variance are modified from the original Kalman fil-
ter. Via the results of the optimal state estimation of
singular systems, Darouach et al. proposed another
equivalent form of the UIKF{!2l,

3 UIEKF AND ITS CONVERGENCE
3.1 Algorithm of UIEKF

In this section we will extend the UIKF to nonlin-
ear case as the EKF does. Our algorithm is based on
Keller et al.’s result'!®]. Consider the following nonlin-
ear discrete-time system with unknown disturbance,

{ p+1 = flaw, ur) + E(zi)dy (5)
Ypp1 = h(®giy, i)

where f, h and E are assumed to be smooth and are
known. For simplicity we only investigate determin-
istic cases in this paper. Notice that the disturbance
distribution matrix R(z) in system (5) is assumed to
be related to current state @y, which is a more general
case and is different from that in system (1),

Then like the EKF, we extend the UIKF to system
(5) as follows,

Epprjk = F@rp, ur) (6)
Py = Fy Py Fr + Qg (7)

December, 2005

Tii1jk+1 = Bhaapk + L1 [Urgr =~ P(@krrjpo iy 1)]
(8)

Priair1 =1 = Ky 1 Higr) Prgy e+
Moo M Vi I it (9)

with
Lisr = Kipr + I (10)
Ky = ProgpHp VL (11)
Njor = (I ~ Ky Hyyy ) Ey, (12)
My =[(Hk-HEk)TV;:411(Hk+1Ek)]_]'

(Hi BTV (13)
Vit =Hy P Hiy + Ry (14)

where
Fi. = 0f/0x|s,,, w0 (15)
HkH:ah/‘amhikﬂw-"krl) (16)
E,{; = E(ik'k) {.lT}

Compared to the linear case, the UIEKF algorithm
is mainly different from the UIKF in the calculation of
the matrices Fy, Hy4, as that in EKF, and E(zy) is
substituted by its estimation Ej. Only deterministic
cases are considered in this paper, then the matrices
Q. = 0 and Ry4; > 0 can be arbitrarily chosen. The
choice of @}, and Ry, will be discussed in the end of
next subsection.

3.2 Convergence of UIEKF

The convergence of the nonlinear estimator is a dif-
ficult and important problem, such as that of the EKF
which is analyzed recently in Refs. [8—10], though the
EKF has been proposed and applied successfully in
practice for about 40 years. For briefness. only the
convergence conditions of UIEKF and some discus-
sion is given in this subsection, and the detailed proof
is in the Appendix.

First we define the state error vectors of Ty ks 1.
T 41k, and the residual ~y,,,, respectively, by

Thotlki1 = Thil = Thojks1 (18)
Trpifk = Tl ~ Ersifp (19)
Vi1 = Yierr — P(Trg1jp Upi) (20)

and a candidate Lyapunov function Vi, as follows,
Vigr = Ty Pl % (21)
k41 = Tppgjk+ 18 g pee1 The1jk+1 21

Similar to the technology used by Boutayeb et al.
in Refs. [8, 9], B, = diag{Bxi - Bnr} and apy; =
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diag{a} k+1 """ @m,k+1}, two unknown diagonal ma-
trices, are introduced to compensate the errors due to
nonlinearity and unknown disturbances such that,

Fri1k = BieFaZu + Exdy = Thoyyp + Exdr (22)

Yis1 = k1 Hp ) FiTppp + Hyp1 Erdy

= Y1 + Hip1Erdi (23)

where
Efk+1ik = !Bkagka (24)
Vi = Ckr1 Hi 1 Frpgx (25)

It is obvious that 3 and a4 are both equal to the
identity matrix in linear cases. The dccog‘pling condi-
tion (3) is satisfied as Ly Hyy1 Er = Ey, Then we
can obtain following relations:

Thplk+1 =Cht1 — Thilk+1
=®p1 — (@rs1)k + Lk1Viet1)
=5k+1|k = Li41Vk41
=Ty 1k — Lkt1 Vo1 +
(Ex — Ly Hir By )dy,

:E’;cﬂrk = k1Y (26)

Some lemmas are needed for the convergence anal-
ysis.

Lemma 1. The inverse of P} x4 and the re-
lation of Ly41 with Py, in the UIEKF (6)—(17)

are given below!12I[13],

-1 -1 T -1
Ppn =P + Hi R Hiep —
-1 = - T —1 - -1z T -1
Pk--llkEk(EkPk.'.lkak) EA: Pk+1|k
(27)
Liyy = Pk+1|k+1HTR;11_1 (28)

Lemma 2. Given any symmetric positive defi-
nite matrix P € R™™" and any full column rank ma-
trix E € R"*(q < n). Let § € R™ VX" is any full

row rank matrix which satisfies SE = 0. Then,

M := P-PE(E"PE)'ETP =5T(sp~'s")"'s

(29)

Lemma 3. In the algorithm of the UIEKF, we
have the following equivalent relations,

PP:-Il-l|k+l = SE(S-‘CPk+l|kSE)_lSk+Hg‘+1R;ilIéB*}'l
Vit =R (I - Hep Kip) (31)

_ - -1
Chri1 :=Rki1Hl‘c+1Pk+1|k+1HE+1Rk11—I -R,
=—Th o (Te1Vis1Ths) ' T (32)

where S, € R™ 9*" and Tiy1 € R -DX™ are
both arbitrary full row rank matrix which satisfies
Skf'Jk =0 and Tk+1Hk+1Ek = 0, respectively.

Definition 1. Let f, () := f(-,ux) and
hy,(-) := h(-,ux). Then the nonlinear system (5)
is N-locally uniformly rank observable, if there exists
an integer N > 1 such that,

hy, (z)

Rauiiy © Fup (@)
rank — . =n
I M

huw.’\'-; ° quN_z 00 fuk(m) T=a)
(33)
for all ®y € K and N-tuple of controls
(ug, -, ukeN—1) € U(K and U are two compact
subsets of R" and (R")V, respectively).
Assumption 1. The nonlinear system (5) is N-
locally uniformly rank observable. Thus Py, is uni-
formly bounded(®1% je. WYk > 0, there exists con-
stants 0 < py, g2 < oo such that ||[Pyl| < g1 and
Py ll < p2, which also ensure the Lyapunov candi-
date function (21) to be positive.
The next theorem is the main result in the conver-
gence analysis.
Theorem 1. Under Assumption 1, a sufficient
condition to ensure the exponential convergence of the
UIEKF is that 8 and a4 satisfy the following LMI:

(1-¢)Pg; FlB,S} (aks1His1 Fi — Hiyr B, Fy)T
SxBFi Sk(FrPycFL + Q,)SE 0 >0 (34)
a1 Hi1 Fr — Hy 1B F 0 R4y

where S, € R"™9*" is any full row rank matrix
which satisfies Sy E; = 0, and ¢ is a constant which
satisfies 0 < ¢ < 1.

Remark 1. Introduce

6k+] = di&g{al‘_k+1 . 'Jm,k+l} such that,
(ki1 His1 FieH k1B F )&y = Ox 11 Hy 1 iy,

(35)
Then LMI (34) can be rewritten as,
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(1= 0Py, F{B,S} F{HY, 8y
SiBiFr  Sk(FyPyF} 4+ Q,)ST 0 >0 (36)
5k+1Hﬁ-+1Fk 0 Ryt
which is more explicit. where

Remark 2. The LMI (34)/(36) give the suf-
ficient conditions of exponential convergence of the
UIEKF, but B, and a4y (or B;, and 8. ;) that are
introduced to prove convergence cannot be known in
practice. However, @, and Ry, are free parame-
ters that can be arbitrarily chosen, which would help
enlarging feasible domain of the LMIs. It is obvious
that larger Q. and Ry, make LMI (34)/(36) easier
to be satisfied, i.e. the UIEKF is more likely to be
convergent. Moreover, large Q, and Ry, will make
'nyCk.*. 1Vk+1 (see Appendix) to be more negative,
which also makes the UIEKF easier to be convergent.
However, Boutayeb et al. and Guo et al. both pointed
out that if Q, and Ry, is too large, it leads to a very
slow convergence rate of EKF, which will also appear
in the UIEKF. Summarily, we could choose a proper
larger Q; and Ry to ensure the convergence of the
UIKEF, or similar to the adaptive choice of Q, and
R;.. in Refs. [8-—10].

4 APPLICATIONS IN NONLINEAR FAULT
DIAGNOSIS

Now we apply the UIEKF to the fault detection
and isolation (FDI) of DTS200 three-tank system pro-
duced by Amira company in German, which is a
benchmark problem in process control engineering!!
(see Fig.1).

Pump i Pump?2
| _&_’QI _ QM

Tank 1 =-—

ITank b= Tank 2
\s " 3-\ i 7[

AN \b a J as ay . Q;u
L "#ﬂ"b ‘I;T'd"xﬁ"
_\"IOTCSEW{!II'

Figure 1 The layout of DTS200 three-tank system

The mathematical model of DTS200 are described
as follows:
A-dhyfdt = =Q13 + @,
A-dhy/dt = Q13 — Qaz
A-dhy/dt = Q32 — Q20 + Q2

(37a)
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Qs = a1 S,ysign(hy — hs)\/2glhy — ha|
Qyo = a;;S,,sign(h_; — h.g)\fzg[fl.;j — f.lg[
Q20 = a5,/ 2gh

The state is the level of tanks: = = (h1 k2 h3)Y; the
input is the controlled pump flow u = (Q1,Q2]T: and
the output is y = [h;, hy]T. The actual parameters
are g = 9.81ms~%, af = 0.5, a} = 0.45, a) = 0.6.
A=00154m? S, =5%x107°m?, Ay = (62+1) cm,
Qimax = Qamax = 100ml-s~!. The levels of T1 and
T2 are both controlled by PI (proportional integral)
controllers. respectively, with parameters K, = 0.001
(gain constant) and Ty = 5s (integral time constant).
It is discretized by the Euler method with sampling
time T = 1s.

Robust FDI strategy of nonlinear systems using
UIEKF here is the classical dedicated strategy just like
what is generally used in the unknown input observer
as before!?. In fact, both unknown disturbances and
faults can be described by E(x;)dy, where d),. is the
magnitude of unknown disturbances or the parameters
of faults, and E(-) represents the distribution matrix
of unknown disturbances. Assume that all unknown
disturbances in the system are E(z;)dy, and the
fault is described by F(@) )85, where E(x;) € R" P,
F(zy) = [F'(zi) - F*(23)] € R"™ are assumed to
be known, and di € R” .6y := [0 ---6;]" € R".

To detect fault we need to design an UIEKF (called
UIEKF 0, with state estimation :EEI ) which decouples
all disturbance E(zy)dr. The residual signal used
for detection are € | = Y,y — A(ZY 4y p0pp Wiir)-
Faults will be detected by comparing [ef, || with a
threshold ¢". For fault isolation, a group of UIEKF
is needed to design “structured residuals”. The most
commonly used scheme in designing the residual set
is to make each residual sensitive to all but one fault.
Design s UIEKFs (called UIEKF_i, with state esti-
mation :i:i.lk,-i = 1,---,s) each of which is robust to

(37b)

the #*" fault, respectively, besides disturbances. Then
UIEKF ¢ is designed as
_ (B2 F ()] d;

Tpsy = flar, ug) + [E(xy) F'(x) ol | (38)

Y1 = h(@rtr, uper)
The isolation task can be performed using simple
threshold testing according to the following logic:

lejll < <

-th
., = ¢ fault vecurs (39)
et ll > 2 V5 # o }



Unknown Input Extended Kalman Filter and Applications in Nonlinear Fault Diagnosis

where €}, = Yry1 — ME)y1 ks> Ukt1) and €' are
corresponding thresholds (i = 1,---,s).

We consider four types of faults in this simulation.

(1) Leakage in T1: Qlleak = al?rr%\/nghT.

(2) Leakage in T2: Q2,, = aznr/2gh;.

(3) Clogging between T1 and T3: a; = (1 —4;)al.

(4) Clogging between T3 and T2: a3 = (1 — d3)aj.
i.e. fault functions and the corresponding fault pa-
rameters are

F'(z) = [-aym\/2gh; /A 0 0F,0* =r}  (40)
F2(z) = [0 —agm\/2ghy/A 0]7,6% =v2  (41)
Fiz)=[Q} 0 -Q%".6°=6  (42)
Fiz)=[0 -Q3 Q%]".0"=d8  (43)

where 71,72 > 0; 0 < §;,483 < 1; Q%5 and QJ, are the
values calculated in (37b) by substituting o} and a$
into it.

For simplicity we don’t consider any other un-
known disturbance here. Then we can design a general
EKF for fault detection, four UIEKFs for fault isola-
tion are designed, each of which is robust to one spe-
cific type of faults, respectively. Fault isolation logic
is according to Eq. (39).

In the following simulation, actual initial liquid
levels are h° = [0.51 0.21 0.36]T (unit: m), and
the initial states of all five observers are taken to be
Zojp = [0.5 0.2 0.35]T (unit: m). And we take con-
stant @ and Ry for simplicity with Q; = 107% and
Ry 1 = 1077, respectively. Assume that fault (1) oc-
curs at 100s with r; = 5mm. Residuals of these five
observers are illustrated in Fig. 2, and the FDI results
are shown in Fig. 3.

3
errory X 10°
(=
1
[

[

=]

error, % 10°

=
=,
3

150 0

——

error, X 10*
[=]

\
error, x| 0}
=

;J

=1

time 150 time 150
(d) (e}

Figure 2 Residuals
(a) Residual of UIEKF_0 (EKF); (b)—(e) Residual of
UIEKF _i respectively (i = 1,2,3,4)
The solid and dash lines denote the first and second elements
of the residual, respectively

fault

0 time 150
(a)
| |
— (o]
3 50
8 3
Time 50 o time 150
(b) (c)
1 I
- -+
20 20
& 2
1 Time 50 o time 150

(d) (e)

Figure 3 Fault detection and isolation results
(a) Fault detection result; (b)—(e) Fault isolation results of
each type of faults, respectively

From Fig. 2(a} it is obvious that after the fault oc-
curs, the residual of EKF increases immediately, then
fault is detected as is shown in Fig.3(a). Fig.2(b)
demonstrates clearly the effectiveness of the distur-
bance (fault) decoupling by the UIEKF, whose E(x})
matches the real one. On the other hand, the residu-
als of other UIEKFs will depart from zero as well as
the EKF does, which are illustrated in Figs. 2(c)—(e).
From Figs. 3(b)—(e), it can be seen that the fault iso-
lation result is accurate, though there is some time
delay to fault detection. Notice that the residuals in
Fig. 2 are large in the beginning due to the initial er-
ror, which is easy to be excluded from faults. For
briefness, simulations of other faults are omitted.

Remark 3. Actually in this example, the distri-
bution matrices can be treated as constant matrices
just like below,

F@ =01 0 0F § =-am/2ghi/A r* (44)

FQ(:{:) =[0 1 U]T‘ 9 = —azmy/ 29h2/A'r§ (45)
F@=010 -1T, =6 Q%

7 (46)
Flloy=[0 -1 1T, 8'=6-0Y

(47)

And this situation is usual for practical problems.
However, it has no effect on the results of the UIEKFs.
From Lemma 3 it can be drawn that the numerical val-
ues of UIEKF are only dependent on S, not E(xy)
itself. And it is easy to check that the left-null space of
F'(zx) and F (zx) (i = 1,2,3,4) are identical, which
means the results of the UIEKFs using F"(x;) and
‘f_‘l(xk) are the same. It demonstrates that the struc-
ture of E(x;) is the key issue, not the formulation of
itself. It means that in this situation there is no er-
ror in the estimation of distribution matrix E(z)) in

Chinese J. Ch. E. 13 (8) 783 (2005)
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fact. Moreover, with linear measurements just as in
DTS200 model which is also a general case in practice,
the unknown disturbances are accurately decoupled
from beginning, like that in linear cases.

5 CONCLUSIONS

Robust fault diagnosis of nonlinear systems is an
important research area of FDI. However, there are
few results in the past. One of the difficulties is to de-
sign a proper nonlinear observer. Inspired by unknown
input Kalman filter and based on the convergence re-
sult of EKF as a nonlinear observer, we propose an
algorithm of the UIEKF and analyze its convergence
as a nonlinear robust observer theoretically in this pa-
per. Simulation results show the good estimation per-
formance of the UIEKF for nonlinear systems with
unknown disturbance, and the nonlinear robust FDI
of “DTS200” three-tank system based on the UIEKF

15 effective.

NOMENCLATURE

A section of cylinder

a; outflow coefficients

By, the input matrix

dg the unknown input vector

E; the distribution matrix of the unknown input

Fy the system matrix

g earth gravity acceleration

Hi the measurement matrix

h; liquid levels

Ly the gain matrix

Q, supplying flow rates

Qi; flow rates

Q. the variance matrix of wy

Rt real linear vector space of dimension 1

R real matrix space of dimension 7 x j

Ri.1 the variance matrix of vy 4

rank(Z) rank of matrix Z

Sn section of connection pipe

sign(z) sign of argument z

U the known input vector

Vi the measurement noises

Wi the system noises

Ty the state vector

By a posteriori estimate of @,

Ty ik a priori estimate of &4,

Y the observation vector
APPENDIX

Amin(Z)  the minimum eigenvalue of matrix Z
Superscripts

T transpose operation of a matrix

-1 inverse operation of a matrix
Subscripts

k current time
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Proof of Lemma 2. E has a singular decomposition as follows:
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Eu Py,

= _ T _
Let P =UPU [le Py

] (P, € R7*), then

M =P - PUT [ﬁ] v(viz oP {ﬂ v)y"viiz oup
—P-PUT ﬁ] =Pl2 s oUuP

-1

=UT(?~?{P51 OJ?JU
0 0

=yUT - = ——1— | U A2
[0 Pzz‘PnPulPlz] (A2)

On the other hand, any full row rank matrix § € R 0X™ satisfying SE = 0 can be expressed by
S=X[0 I, ,JU (A3)

where X € R("~9*("=9) j5 any full rank square matrix. Then

- -1
sTsp-tsh)-ls=U" ‘I’ x" (X{o I]UP-‘UTMXT) X0 U
r[0] 5rm-1pT [0])
=uT (]| (0 nuw Pv)eT|]l) 0 nu
- -1
=U" ? ({0 np! [?D o nu (A4)
Since
Fdl _ [-P-u Fm]dl _ [ (-ﬁu ‘ﬁlz_ﬁ;glj’-u)_l ) '(_1511 -ﬁlzﬁ;ﬁ?)_lﬁlzﬁ;]
= |1 = = _\WmZiiei:ba) LT el S 21
Py Py =(Pa2 = P31 Pyy Pi2) ' PPy (Pyy — Py Py Pra)™! (A5)
T ep-lat-1c /T (0] (B _B. B P -1\ " _gT|9 o
ST(SPTST)\S =U [I] (P~ PoPLPr)?) [0 IU=U" | o —PoP | ¥

(A6)

It is obvious that M = P — PE(ETPE)'ETP = ST(sP~'s")-1s.
Proof of Lemma 3. Eq.(30) can be simply obtained by combining the results of Lemma 1 and Lemma

According to Egs. (11) and (14), it is given by

R (I - Hi Kiypy) =R (T = Hi Proa Hi (VL) = Ry = (Vi = Ris) VD)
ZR;L(I — Vi lVifil - Ry, IV;::I) = V;-:l (AT)
Then Eq.(31) holds. Based on Eq.(31) we can get

Civ1 =Ry} (Hea Py Hi Ryl — I) = Ry} (Hiy Ly — I)
=Ry HiorMie ey + Rl (Hi Ky — 1)
=R Hin (I - Kpp He ) E[(Hi BR) V) (Hy Ei)) ™ (Hin B VEL, - ViDL
=(Ry} Hy By — Ry Hooo Kot Hi E[(Hin B0V (Hin B (Hen B)TVEL - ViEL
=R} (I - Hii Ko )(Hi i EL)[(His  E) TV (H, 1-1Ek)]_l(Hk+1Ek)TVZ.,I.1 -Vi
=VJ:1]:1(HL‘+1Ek)[(Hk+1-AEk)TV;:ll[Hk+1Ek)]—1(Hk+lEk)TV;:1 -V
(A8)
Since condition (4) is satisfied, H 4 LE; is full column rank as well as Ej. Then according to Lemma 2, we
have Eq. (32).
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Proof of Theorem 1. The candidate Lyapunov function is defined in Eq. (21). Then,

Vir 1 =(@rajk = Lks1Vio) Prt ey @xen — LisiYesn)
=@ = it ) P
:(_5:;_,,1!;‘. - LL—-+-1’YL—1]
=(.5LP.I;1IR'PJ:-;1.'A-+15’L+1IA- - Ei"[;'l.!—‘ipfzillk.—lL"'H‘Y;H-l_
A-'g—lL:I+1Pi-ili£~1-1£;-¢1|k + ‘Yg1LE+1P;:1|;.-+1LR‘+17:'-+1
257? 1“.,SE(S;\-P;‘,.H!#S:)_JSL.EL L1k + EE-!.[RH:;-LRE1H&'-+-1§3k+l]k - fc"::l;_”,‘,HE; 1 ;\_11’71 17
711; IR;-I+11H&+1‘FE;.-+1|L- + 'T;.TIZ-JR;@I-IHM lPk+1|k+1H1‘+1R;:1'¥;\,+|
=y, 1|:\:S;.F(Skpk+1|A-SE)‘ISk-'EL.+1|J\- + (Vhs1 — Hk-'—Lﬁ’;.-Hm)T Ry (Vi — Hi @, )T
7111(R;:i1Hk+lPk--—1|k+1HE__.1R;i1 = R;,_-.'l_l)'}';.--t—l
:51T+1|1-SE(S£-P&-+1]A~SE)’1Skﬁa}k + (Ve = Hien® ) "R (Vo — Hin @ )+
Y1 Crat Vi (A9)
From Lemma 3 it is known that Cj4 is semi-negative definite, then,

Vit S‘EEk[FEﬁkSJ{(Sk(Frcpkag +Q)S:) T SkB Fit
(aki1Hisr Fi — Hi1 B F ) R (o Hin Fio — Hia B F )@ (A10)
If the following inequality holds:
Vier = (1= OVi S@43[—(1 = OPt + Fi B SE(Sk(Fr PPy + Q)SE) ' SiBy Fi+

(GL.+1H;‘.+1FJ\. - H;\-_'_],@&.F;..)TR;_:I(CIA-+.1HA-+1F1‘- - H_;‘-JI.“@L,_FA-”:%L“. <0
(ALL)

where the constant 0 < ¢ < 1, then {Vi}x=1... is an exponential decreasing sequence, i.e.
Vigr = Vi < —(Vi (A12)
According to Schur complement Lemmall3), (A11) is equivalent to LMI (34). Then by Assumption 1,

1.7 ~ . N _ . i
0< —&@ie < Vi < (1= Qo = 0 < lim (F3Zipie) < pa Jim Vi <y Vp lim (1-()F =0
k—roc k= ko

5} (A13)

e lim @] = 0.
ke
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