松辽盆地北部徐家围子断陷现今地温特征及其 与天然气生成关系研究

周庆华¹⁰^{2*} 冯子辉³ 门广田³

(①中国石油勘探开发研究院,北京 100083; ②大庆油田有限责任公司地质录井分公司,大庆 163411;③大庆油田有限责任公司勘探开发研究院,大庆 163712)

摘要 通过对徐家围子断陷现今1000,2000,3000,4000 m 深度的地温分布研究,徐家围子断陷 区整体处于高地温区,且坳陷层地温梯度高于断陷层地温梯度.地温梯度随深度增加而降低.岩 石热导率是影响地温梯度变化的主要原因.影响现今地温主控因素为地壳深部热结构、深大断裂 和放射性元素分布与含量.高地温有利于深层天然气生成.

关键词 徐家围子断陷 地温 地温梯度 岩石热导率 深层 天然气

1 地质背景

松辽盆地是一个中新生代大型陆相沉积盆地, 具有断、坳双重结构¹¹¹(图 1),为华北板块与西伯利 亚板块之间的晚古生代-早中生代褶皱,且西部较陡 东部平缓不对称的北北东向盆状结构^[2],中、新生代 属于环滨西太平洋构造域.松辽盆地经历了断陷、坳 陷(断陷后)和反转3个演化阶段.相应地沉积了3套 地层层序,即下部断陷层序:下白垩统火石岭组、沙 河子组、营城组;中部坳陷层序:下白垩统登娄库 组一嫩江组;上部反转层序:上白垩统四方台组、明 水组一新生界^[3].

盆地深层是指泉二段以下地层^[4-6],自上至下由 泉头组、登娄库组、营城组、沙河子组和火石岭组组 成(图 2). 古中央隆起将深层断陷分隔成西部和东部 两个断陷带,徐家围子断陷位于古中央隆起带东部, 面积约 5350 km²,断陷在晚侏罗世到早白垩世早期 形成,其上坳陷层为三肇凹陷.徐家围子断陷是松辽 盆地深层一个具代表性的含气断陷,在徐家围子断 徐家围子断陷是由徐西和宋西两条低角度控陷 断裂控制^[8],走向为NNW和近SN向.沙河子组末期、 营一段末期及登娄库-泉头组沉积时期 3 次构造运动 形成了三纵两横 5 个构造带格局:自西向东 3 个纵向 构造带:徐西断坡带、徐中火山岩隆起带和徐东斜坡 带;自北向南两个横向低凸起:宋站低凸起和丰乐低 凸起.与两个低凸起相间为安达洼陷、杏山洼陷和薄 荷台洼陷(图 3).

地温、地温场是地热的重要参数之一.油气勘探 研究和实践表明,地温是控制油气生成和聚集的重要 因素之一.沉积盆地中干酪根转化油气温度起了关键 作用^[9,10].温度在油气生成、运移、聚集及成藏后的保 存等环节中都起到了重要的作用.研究盆地的地温、 地温场,对探索油气资源分布规律、潜力评价及勘探 开发都具有重要的理论意义和实用价值^[11-13].

陷及周边陆续发现了汪家屯、宋芳屯、昌德、农安 村、庆深等气田(图 3). 其中庆深气田位于徐家围 子断陷中部, 2005 年底, 提交探明天然气储量超过 1×10¹¹ m^{3[7]}.

收稿日期: 2007-04-04; 接受日期: 2007-09-07

中国石油科技项目(编号: 07-01C-01-07)资助

^{*} E-mail: zhqh2008@sohu.com

图 1 松辽盆地双重结构剖面示意图

2 徐家围子断陷现今地温分布基本特征

试油试气温度数据是研究地温场的重要依据. 徐家围子断陷现今地温分布研究是在全区试油试气 温度数据(包括徐家围子断陷、三肇凹陷和滨北部分 数据)基础上进行的.通过统计回归分析温度数据与 深度有一定的相关性(图 4).现今温度和地温梯度在 断坳过渡带有拐点,断陷层和坳陷层具有不同的地 温分布特征.为了阐明不同深度现今地温分布的规 律,编制了断陷层和坳陷层两层现今地温分布的规 律,编制了断陷层和坳陷层两层现今地温梯度图(图 5),根据地温梯度图绘制了徐家围子断陷 1000,2000, 3000 和 4000 m 深度现今地温分布图(图 6).这些地温 分布图和地温梯度图,基本上反映了徐家围子断陷 区现今地温分布的规律.

2.1 1000 m 深度地温分布

徐家围子断陷区 1000 m 深度地温等值线呈环状 分布, 一般在 39~60℃之间, 平均 48℃左右(图 6(a)). 北部和中部地温低, 低地温分布在安达洼陷和杏山 洼陷处, 温度在 39~44℃之间. 西部、东部和南部地 温高, 高地温在徐西断坡带、宋站低凸起、徐东斜坡 带及丰乐低凸起处, 温度在 52~60℃之间.

2.2 2000 m 深度地温分布

徐家围子断陷区 2000 m 深度地温,一般在 75~140℃之间,平均96℃左右,呈环状分布(图 6(b)). 最低地温在安达洼陷处,达深1井为75℃.地温在徐 西断裂和宋西断裂为高值,温度在90~110℃之间,沿 断裂带由北向南地温逐步升高.最高地温在三站地 区处,超过110℃.

2.3 3000 m 深度地温分布

徐家围子断陷区 3000 m深度地温分布图表明(图 6(c)), 3000 m 深度地温一般在 108~136℃之间, 平均 121℃. 地温在徐西断裂以西和宋西断裂以东及三站 为地温高值区, 最高值在三站地区, 为 136℃. 地温 在安达洼陷和杏山洼陷为地温低值区.

2.4 4000 m 深度地温分布

徐家围子断陷区 4000 m 深度地温平均为 162℃ 左右,一般在144~180℃之间(图 6(d)).地温在徐西断 裂以西和宋西断裂以东及三站为地温高值区,为 170~180℃.地温在安达洼陷和杏山洼陷为地温低值 区,为 144~162℃.

由上可知,徐家围子断陷整体处于高地温区,由 徐深井区向外呈环带分布.地温随深度增加而增大; 地温分布受断裂带和地形影响,反映该区地质构造 特征.另外,该区火山岩十分发育,对地温分布也有 一定的影响.

2.5 地温梯度的分布

松辽盆地现今平均地温梯度为 3.7℃/100 m^[14], 是中国大型盆地中地温梯度较高分布区之一. 徐家围 子断陷坳陷层现今地温梯度一般为 3.9~6.5℃/100 m, 呈环带分布,平均为4.8℃/100 m,高于松辽盆地全盆 地现今平均地温梯度. 徐家围子断陷断陷层现今地温 梯度一般为 3.7~4.7℃/100 m,平均为 4.0℃/100 m,也 高于松辽盆地全盆地现今平均地温梯度. 地温梯度 随深度变化的特征是浅处高,深处低,坳陷层地温梯 度高于断陷层地温梯度,即地温梯度随深度增加有 降低的趋势.

77	/÷	10			岩桦	地层厚度			层	序单元	划分		
杀	统	组	段	地层代号	柱状图	/m	地质年龄	反射层	一级	二级	三级	油层	构造层
	更新- 全新统					0~143							
新近系	上新统	泰康组		N ₁₋₂ t		0~165	- 1.8Ma± -	-1_{01}			Ⅲ3-t		反
	中新统	大安组		N ₁ d		0~123		tk		Ш3	III3-d		构
古近系	渐新统	依安组		E ₃ y		0~250	- 23Ma± -		Ш	III2	III2-y	1	造层
		08-1/48	明一段	K_2m^1		0~381	- 65Ma± -	- T ₀₂ -			III1-m2		
		明小组	明二段	K_2m^2		0~243				Ш1	III1-m1		
		四方台组	*******	K.,s		0~413	-73Ma± -	-T ₀₃ -			III 3-n5		
	F		嗽凹-五段:	K ₂ n ⁴⁺⁵		0~645		L _T		II 4	II 3-n4	黑帝庙	
	_	嫩	嫩三段	$K_2 n^3$		50~117	-77 4Ma+ -				II 3-n3	700/25	
		江 组	嫩二段	$K_2 n^2$	-	80~253	//.41via±				II 3-n2		
								* 07				萨萨零、	
	白		嫩一段	$K_2 n^1$	E.	27~222					II 3-n1	图油层	
							843.64	т		II 3		层	1
		郊	#K =_= FA	K v ²⁺³		50-150	$- 641 \text{via} \pm -$					萨二、	Į
		家组	X90FX	K ₂ <i>y</i>	•••	50~150					II 3-y	"—————————————————————————————————————	
	STE		姚一段	$K_2 y^1$		10~80	-88.5Ma± -	_т				葡萄花	
白	-							1-1				油层	
			青三段	K_2qn^3					II		II 2-		坳
				-		53-552					qn3	高	陷
		青山				55~552				11.2		子	造层
垩	统									11 2	11.2	油层	-
		211	青二段	K_2qn^2							qn2	-	
						<u> </u>	- 97Ma± -				11.2		{
			青一段	K_2qn^1		25~164		- T			11 2- qn1		
			emra.	$K a^4$		0.128	-99.6Ma±-	- 1 ₂ -			Ш1 а4		1
系		泉	汞四段	R ₁ q		0~128					11 1 - q4	扶杨油层	
		り り り り り し う し う し う し う	泉三段	K_1q^3		0~692		$-T_{2}^{1}-$		11.1	II 1-q3		
			泉一段	K_1q^2 K_1q^1		0~479		-			II 1-q2 II 1-q1		
			登四段	14		0~170	-112Ma± -	-T ₃ -			I 3-d4		
	-	登娄	登三段	Кd		0~560		1		13	I 3-d3		
	r	库	登二段	TC ₁ C		0~700		$-T_{3}^{1}-$		10	I 3-d2	1	
		20	登一段			0~100	- 124Ma± -	Lт. —			I 3-d1		
	白		营四段		• • • • •	10~400		4			I 2-y4	深	
	375	营	营三段	K.vc		0~780				1.2	12.23	层王	
	坐	组	营二段	12	<u> </u>	0~300				12	I 2-y2	然	
			营一段		$\circ \circ \circ$	0~1600	- 130Ma± -	$-T_{i}^{1}$	т		I 2-y1	一一层	Ni⊊
	统	2/1\	L EA			0-745		4	1		I 1-e2		陷
		河	FQ	K sh		0~745					1 1-52		构 造
		子组	下段	R ₁ 511		0~615				11	T 1 -1		层
						0 015	– 145Ma± -	$-T^2-$			1 1-51		
		火石	火二段			0~1000		4			I 0-h2		
		岭	///E0	K ₁ h		0.500				ΙO	10-112		
F		纽	火一段		~ ~ ~ ~	0~500	– 156Ma± -	— т. —			1 0 - h1		
炭						0.1000							
 严				C-P	1111	0~1000							
系													

图 2 徐家围子断陷综合柱状图

图 3 徐家围子断陷断裂分布与构造格架

一个地区的地温梯度随其所测岩层的性质而不同,地温梯度随所钻穿的岩石的导热性而变化的^[15]. 造成徐家围子断陷地温、地温梯度在纵向上分段变化 的重要因素是岩石的热物理性质,即岩石热导率.岩 石热导率表示岩石传热的特性,是表征物质导热能 力的物理量,是岩石热物性质中最主要的参数之一,可以用来研究地壳和上地幔热结构、地球深部热状态^[16].王钧、吴乾蕃、栾锡武、熊亮萍、邱楠生、王社教、刘耀光等对国内各大盆地内岩样进行了岩石热导率的测定^[17-23],不同的岩石热导率差异较大:在沉

图 5 徐家围子断陷现今地温梯度图 (a)徐家围子断陷中坳陷层现今地温梯度图;(b)徐家围子断陷中断陷层现今地温梯度图

积岩中,煤的热导率最低,页岩、泥岩次之,砂岩和 砾岩的热导率较大且热导率值变化大,石英岩、盐岩 和石膏的热导率最大;岩浆岩和变质岩热导率一般 要高于沉积岩.通过徐家围子断陷 11 块岩石样品热 导率的测定(表 1),符合上述的规律.所有岩类岩石 热导率随深度增加略有增大的趋势.泥岩和砾岩的热 导率随深度增加其值变化不大;砂岩类随深度增加 热导率也随之增加;火山岩类的热导率随深度增加 也有增大的趋势.表明以粒间孔为主要储集空间的 砂岩类和以裂缝为主要储集空间的火山岩类,随深 度增加,压实作用增强,孔隙度逐渐降低,所以热导 率有所增大.温度、压力、岩石特性及成岩演化程度

图 6 徐家围子断陷 1000~4000 m 深度现今地温分布图

(a) 徐家围子断陷 1000 m 深度现今地温分布图; (b) 徐家围子断陷 2000 m 深度现今地温分布图; (c) 徐家围子断陷 3000 m 深度现今地温分布图;
(d) 徐家围子断陷 4000 m 深度现今地温分布图

土早	取样深度/m	巨位	生性	热	导率/W・(m・K	北切居州	送日 忆 亩/		
51.2	·坎什孙友/III	云世	石圧	平均值	最小值	最大值	非构质压	件吅以皮/11111	
徐深1	4231.8	K_1sh	泥岩	2.476	2.417	2.579	0.065	42.8	
徐深 6	3850.7	K_1yc	流纹岩	3.103	2.987	3.212	0.073	31.2	
徐深 21	3657.5	K_1yc	粗砂岩	2.766	2.662	2.869	0.075	57.1	
徐深 21	3659.7	K_1yc	凝灰岩	2.782	2.491	2.921	0.154	46.3	
升深7	3730.8	K_1yc	凝灰岩	2.829	2.563	3.305	0.262	54.4	
宋深 3	3290.5	K_1yc	致密砂岩	2.393	2.261	2.557	0.124	42.8	
宋深 3	3712.7	K_1sh	粉砂质泥岩	2.4	2.249	2.572	0.135	54.4	
肇深1	1755.9	K_1qn	粉砂岩	1.3	1.186	1.429	0.187	39.3	
古深1	4489.9	K_1yc	凝灰岩	3.353	3.183	3.511	0.098	41	
汪 904	2968.9	K_1yc	火山岩	2.769	2.504	3.117	0.221	59.8	
宋 16	938.6	K_1qn	细砂岩	1.694	1.618	1.798	0.106	59.7	

表1 徐家围子断陷岩石热导率

是影响岩石热导率的因素^[24].热导率越低,岩石阻 热的能力越大,热导率越高,岩石传热的能力越大. 另外,岩石在沉积盆地内一般处于饱水状态,对岩石 热导率有影响.沈显杰等^[25]、李国桦^[26]、王钧等^[27] 对饱水岩石热导率进行了些研究,认为对坚硬、致密 的灰岩、白云岩等可以不考虑饱水对岩石热导率的影 响,而对砂岩、粉砂质泥岩及泥岩可根据其深度对热 导率给予校正.饱水岩石热导率测试表明,绝大多数 岩样饱水后热导率都有不同程度的增大.地层越新, 热导率增长的幅度越大;地层越老,热导率增长的幅 度越小.随深度的增加饱水的影响越来越小.

由徐家围子断陷综合柱状图可以看出(图 2),徐 家围子断陷下部断陷层序火石岭组、沙河子组和营城 组岩性以火山岩为主,夹砂砾岩、砂岩和煤线.中部 坳陷层序登娄库组-嫩江组,登娄库组、泉头组和嫩江 组及上部反转层岩性主要为砂岩和泥岩、页岩互层. 徐家围子断陷地层岩性纵向变化为:断陷层以火山 岩和致密砂砾岩为主,它们的岩石热导率高;坳陷层 以砂岩、泥岩及页岩为主,它们的岩石热导率低.

深部热源的热量由岩石热导率高的岩石传热给 热导率低的岩石.上部岩石由于热导率低,导热性差, 构成相对的隔温盖层,下部来的热量不易散失.这就 造成下部高导热岩层具有较低的地温梯度,上部导 热低的岩层具有较高的地温梯度,即地温梯度的增 高与其岩石的热阻增大是一致的.从而形成地温梯 度随深度变小的趋势.

3 徐家围子断陷高地温主控因素

松辽盆地的热源来自地球内部, 主要有3个部分:

幔源热、地壳放射性元素(U, Th, K)衰变产生的热量 和岩浆热及岩浆体的残余热.这些热源对地温场分 布起着重要作用.

3.1 深部地壳结构对地温分布的控制作用

从地壳分层结构看,松辽盆地地壳可分为 3 层, 即上地壳、中地壳和下地壳.上地壳平均密度为 2.6 g/cm³,中地壳平均密度为 2.75 g/cm³,下地壳平 均密度为 3.1 g/cm³,且在上中地壳之间存在一厚度 约为 3 km,密度为 2.45 g/cm³ 的低密度层段^[28].地壳 厚度与区域地温分布有密切关系,地壳薄地温高,地 壳厚地温低.莫霍面是一个重要物理界面,它的分布 与埋深位置对地下温度场分布有重要作用,研究表 明,莫霍面埋深越浅,地温梯度相对越大^[17].松辽盆 地的地壳厚度是我国已知陆内盆地中最薄的盆地之 一,莫霍面埋深 29~34 km.根据钻井资料、深部地球 物理探测结果及满州里-绥芬河综合解释剖面(图 7), 建立了松辽盆地地壳热结构模型^[29].

徐家围子断陷的高地温梯度的分布与松辽盆地中 的深部地壳结构密切相关.由于裂谷盆地形成经历了 地幔上拱、拉张、裂陷、复合沉陷及萎缩平衡等阶 段^[30],在不同阶段地幔物质上涌、侵入,使盆地处于 高地温状态,这种传导热一直影响现今盆地的地温场.

3.2 深部断裂对地温分布的控制作用

中国区域大地构造受全球构造的制约,是全球 大陆地壳中唯一的四面受挤的大陆地壳.在这种地 球动力环境下,大陆岩石圈呈现下拱上张的应力场, 使中国陆壳发育了断穿岩石圈或地壳的深大断裂及

图 7 满洲里-绥芬河地壳结构剖面 据文献 [29]修改

壳内滑脱断裂^[31]. 松辽盆地是天山-祁连-大兴安岭断 褶系中的松辽断褶带^[32], 盆地的西界是嫩江壳深断 裂, 东部为依兰-伊通壳深断裂, 北界为勃利-德都壳 深断裂, 南界为开源-赤峰壳深断裂. 这些壳深断裂 构成了盆地与周围丘陵山区的分界线. 重磁及地震 资料显示, 盆地内部存在北东及北北东向的孙吴-双 辽壳深断裂带、泰康-北镇壳深断裂带和北西方向的 3 条壳深断裂带(图 8)^[30]. 徐家围子高地温分布区与深

部断裂有密切关系. 深大断裂会引起莫霍面的相对 升高,使上地幔岩浆侵入地壳,形成地壳中的岩浆房, 使沉积盆地的整体或区域出现高地温场. 放射性物 质存在于上地幔,深大断裂成为幔源物质上涌通道 和放射性物质衰变供热的中心区域. 深大断裂控制 了盆地内高地温场的展布.

徐家围子断陷徐西断裂和宋西断裂断穿基底, 构造活动伴随岩浆活动,使徐家围子地区出现高地 温场.

3.3 放射性元素(U, Th, K)分布和含量对地温分布的控制作用

地壳中所含放射性元素(U, Th, K)衰变产生的热量积聚在地壳中,不断向地表散失,是传导热的重要组成部分.放射性元素(U, Th, K)的分布与含量影响着徐家围子的地温场.李志安^[29]测定了徐家围子断陷5口井不同层段的平均放射性生热率(表 2).

另外,火山活动与岩浆作用产生的残余热对地 温分布有辅助控制作用:火山活动是大地构造运动 将地球深部物质涌溢到地球表层^[33].火山活动形成 的岩浆带来了 1020~1200℃的热能,火山活动形成的 热液流体带来了 300~400℃的热能^[34,35].这两种热能 为沉积盆地提供了除地幔热源之外独特的火山活动 热源.由于徐家围子断陷火山岩主要发育于火石岭 组和营城组,其作用产生的残余热对徐家围子断陷 现今地温场分布仅起到次要作用.

	衣之 际豕回了则四	百百石压成剂住主然	※里(1泊又町 <u>[29]</u>)		
井号 生热量/mW・m ⁻² 岩层	芳深 6	朝深 3	昌 101	肇深 3	肇深 4
嫩江组	/	/	/	1.0333	/
姚家组	0.185	/	0.094	0.1817	/
青山口组	/	/	/	/	/
泉头组	1.0615	1.1283	1.0373	1.1974	0.9434
登娄库组	0.5047	1.1177	0.4845	0.3021	0.4931
侏罗系	0.3514	/	/	/	/
上地壳	26.539	26.874	26.372	/	26.874
中地壳	2.7628	2.7628	2.7628	/	2.7628
下地壳	0.7535	0.7535	0.7535	/	0.7535

表 2 徐家围子断陷各岩层放射性生热量(据文献 [29])

4 地温与深层天然气生成的关系

国外学者很早就发现大量的油气田区会出现地 温异常,美国石油学会(API)在 1930 年发表了研究地 温异常的专著^[36]. Levorsen通过对 57 个背斜构造研 究发现含油气背斜构造地温梯度要高于空背斜^[15]. 前苏联地质学家对含油气区研究也发现油气区具有 地温异常现象^[37]. 美国Meyer和Mcgee等学者对洛基 山脉含油气区研究表明, 岩性地层圈闭油气藏(非构造油气藏)和构造油气藏一样具有地温异常现象^[38]. 大量事实表明, 地温异常可以作为发现油气藏重要辅助手段.

通过对中国大气田分布图与地温梯度图叠合(图 9),可以发现,不管热盆还是冷盆,大气田发育在盆 地高地温梯度区域内,说明高地温与天然气生成有 良好的关系.

图 9 中国大气田分布与地温梯度叠合图

研究表明松辽盆地古地温高于现今地温^[1.39],徐 家围子断陷亦是如此.徐家围子断陷 3000 m深度地 温在 108~136℃之间,平均 121℃,超过蒂索油气生 成理论石油形成的极限温度^[9],接近石油破坏的温度 118~121℃^[23].而中国天然气的指导理论从"一元论" 发展为"多元论^{"[40,41]}.因此,徐家围子断陷具有良好 的天然气资源前景.

中国戴金星等^[42-50,58]、徐永昌^[51]、沈平等^[52]、 张义纲等^[53]、张士亚等^[54]、朱家蔚等^[55]、涂修元等 ^[56]、张厚福等^[57]地质学家对天然气成因及判别进行了 大量研究和探索^[42-58].目前发现,徐家围子断陷深层 既有有机成因气,也有无机成因气(表 3).有机成因气 以烷烃气为主,无机成因气以二氧化碳气为主,也有 烷烃气^[59-67].高地温对各种成因天然气均有作用.

4.1 高地温促进深层有机质高成熟、过成熟,有利于有机烷烃气生成

徐家围子断陷深层存在多套烃源岩,主力烃源

岩为断陷内的灰黑色泥岩和煤层^[68,69]. 徐家围子深 层烃源岩主要生成煤成气.火山岩和侵入岩携带高 温热能,对含有有机质沉积层进行烘烤. 其烃源岩在 高地温作用下处于高成熟、过成熟阶段(表 4), 生成 和排出大量天然气.

另外,由于在徐深 1-2 井岩芯营城组泥灰岩孔洞 发现充填沥青,说明徐家围子断陷部分烃源岩(暗色 泥岩)有成油过程,由于高地温,使早期生成的原油 随演化程度增加裂解生气,并最终变成沥青.裂解的 油型气与煤成气发生混合.

4.2 高地温促进无机成因气发育

一个盆地或地区的热状态是深部物质对浅部侵入状态的直接反映,是度量无机成因气是否发育的一个标志^[60].高地温区一般与深大断裂或火山发育 区相对应.松辽盆地前中生代岩浆活动频繁,深断裂 发育密集,以地壳断裂为主^[70].徐家围子断陷基底 发育NW-NNW向和NNE-NE向两组断层^[9],断穿整个

表 3	徐家围子深层气体数据表	〔(部分数据来源于文献 <u>[59],</u>]	[61]~[65])
-----	-------------	----------------------------	------------

井巳	井段/m	巨位		l=	气体组分				(δ^{13} C/PDB,	‰	
7 7	/1 PQ/III) <u>A</u> [<u>L</u>	CH4/%	$C_2H_6/\%$	$C_3H_8/\%$	<i>i</i> -C ₄ /%	CO ₂ /%	$\delta^{13}C_1$	$\delta^{13}C_2$	$\delta^{13}C_3$	$\delta^{13}iC_4$	$\delta^{13}C_{CO_2}$
芳深 1	2926.8~2946.2	K_1d	92.87	1.36	0.1	0.02	0.07	-18.70	-22.40	-24.1	-28.2	
芳深 6	2755.4~3409.1	K_1d_2	81.79	1.19	0.22	0.02	15.32	-23.60	-29.32			-6.61
芳深 9	3602~3620	K_1yc	15.11	0.23 ^{a)}			84.20	-27.11	-30.05	-30.5	-32.98	-4.06
汪 902	2651.8~2670.8	K_1d_3	95.29	1.67	0.23	0.06	0.51	-28.60	-24.30	-25.87	-22.26	
汪 903	2962.4~3007.0	K_1yc	79.89	1.22	0.08	0.02	15.82	-26.96	-29.72	-31.2	-30.01	-14.37
宋深 1	3550.1~3558.1	K_1sh	96.41	0.73	0.04		2.30	-26.44	-23.44	-32.82	-25.02	
肇深1	2490.2~2580.0	J	95.47	0.38	0.19	0.07		-24.00	-28.80	-30.1	-31.3	
肇深 8	3152~3159	K_1yc	88.60	1.06			7.50	-22.90	-24.90	-25.4	-26.9	-16
昌 103	3194.4~3256.0	K_1d	89.66	1.80	0.35	0.066	0.62	-21.48	-30.97	-37.8	-39.72	
昌 201	2996~3021	K_1d	92.52	0.93 ^{a)}			0.29	-25.96	-25.28	-28.79	-31.27	
升深 1	2645.2~2737.4	K_1d_3	94.99	1.65	0.26	0.08	0.29	-27.82	-24.92	-24.7	-23.59	
升深 201	2997~3003	K_1yc	89.07	0.93 ^{a)}			6.89	-26.70	-27.62	-30.94		-13.61
升深 4	3054.4~3073.4	K_1d_1	89.06	1.34	0.78	0.28	3.08	-28.86	-36.50	-36.67	-38.51	
升深 6	3082.0~3095.2	K_1sh	90.64	4.71	1.3	0.4	0.28	-29.50	-29.71	-23.8	-22	
徐深1	3364~3379	K_1yc	93.17	3.18	0.51	0.11	1.81	-29.65	-32.88	-34.29	-34.97	-5.85
徐深1	3364~3379	K_1yc	93.30	2.26	0.37	0.08	1.92	-29.60	-33.00	-34.60	-34.90	
徐深 5	3611~3629	K_1yc	92.27	2.39	0.44	0.09	3.20	-25.08	-28.93	-29.64	-31.25	-5.94

a) 表示 C₂₊

表 4	徐家围子断陷烃源岩有	肓机质丰度与成熟度数据表(据文献 <u>[7], [68], [69</u>]	1)
-----	------------	--	----

烃源岩层	有机碳/%	氯仿"A"/%	生烃潜量/mg·g ⁻¹	成熟度 R _o /%
登娄库组	0.6	$0.01 \sim 0.04 / 0.026^{a}$	0.05	1.67~2.37/1.96 ^{a)}
营城组	1.25	$0.002 \sim 0.059 / 0.02^{a}$	0.29	1.36~2.80/2.08 ^{a)}
沙河子组	1.59	$0.003 \sim 0.082 / 0.022^{a}$	0.51	1.27~3.56/2.38 ^{a)}
火石岭组	0.41~4.27/1.5 ^{a)}	0.7~0.72/0.24 ^{a)}	0.09~1.46/1.12 ^{a)}	2.05~3.47/3.17 ^{a)}

a) 最小值~最大值/平均值

断陷层序.沿断裂带发育火山岩和火山碎屑岩.高地 温是生成无机成因天然气的有利条件.高温高压条 件下,Fischer-Tropsch反应^[71-74]、石墨与含水矿物反 应^[75]、石墨和菱铁矿与超临界水反应^[76]均可以生成 甲烷为主的烷烃气体;岩浆岩高温化学作用、碳酸盐 岩变质作用可以生成CO₂ 气体^[60].徐家围子断陷具 高地温场,结合地质条件,可以存在无机成因天然气. 目前,徐家围子断陷已发现农安村无机CO₂气藏和昌 德无机烷烃气藏^[77,78].

5 结论

(1) 徐家围子断陷现今为高地温和高地温梯度.断陷层和坳陷层为不同的地温场.

(2) 徐家围子断陷高地温受地壳深部热结构、深 大断裂和放射性元素分布与含量作用影响.

(3) 高地温促进徐家围子断陷深层天然气生成.

致谢 本文在写作过程中得到戴金星院士和刘全 有博士的精心指导与帮助,谨此致谢.

参 考 文 献

- 杨继良.松辽盆地北部油气藏形成与分布规律的探讨.见:中 国油气藏研究.北京:石油工业出版社,1990.62-75
- 2 杨万里.松辽盆地油气分布规律及勘探远景预测.见:杨万里, 主编.松辽陆相盆地石油地质.北京:石油工业出版社,1995. 1—14
- 3 大庆油田石油地质志编写组.中国石油地质志(卷二,上).大庆 油田.北京:石油工业出版社,1993.79—114
- 4 谯汉生,方朝亮,牛嘉玉,等.中国东部深层石油地质(第一卷). 北京:石油工业出版社,2002.254-258
- 5 萧德銘,迟元林,蒙启安,等.松辽盆地北部深层天然气地质特 征研究.见: 谯汉生,罗汉斌,李先奇,主编.中国东部深层石 油勘探论文集.北京:石油工业出版社,2001.1-27
- 6 李景坤, 孔庆云, 刘伟. 松辽盆地北部深层气源对比. 大庆石油 地质与开发, 1999, 21(1): 7—9
- 7 冯志强. 松辽盆地庆深大型气田的勘探前景. 天然气工业, 2006, 26(6):1-5
- 8 殷进垠,刘和甫,迟海江.松辽盆地徐家围子断陷构造演化.石 油学报,2002,23(2):26-29
- 9 Tissot B P, Welte D. Petroleum formation and occurrence: a new approach to oil and gas exploration. New York, Tokyo: Springer-Verlag Berlin Heidelberg, 1978
- 10 Tissot B P, Pelet R, Ungerer P H. Thermal history of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 1987, 71(12):1445—1466
- 11 Cao S, Lerche I. Geohistory, thermalhistory and hydrocarbon generation history of Navar in Basin Cost No. 1 Well, Bering Sea, Alaska. J Petrol Geol, 1989, 12(3): 325–352[DOI]
- 12 Feinstein S, Kohm B P, Steckler M S, et al. Thermal history of the

eastern margin of the Gulf of Seas, I . Reconstruction from bore hole temperature and organic maturity measurements. Tectono-physics, 1996, 266: 203-220[DOI]

- 13 王良书,施央申.油气盆地地热研究.南京:南京大学出版社, 1989.96—113
- 14 任战利. 中国北方沉积盆地构造热演化史研究. 北京:石油工 业出版社, 1999. 31-35
- 15 Levosen A I. Geology of petroleum. San Francisco, W. H. Freeman, 1967
- 16 邱楠生, 胡圣标, 何丽娟. 沉积盆地地热体制研究的理论与应用. 北京: 石油工业出版社, 2004. 15-22
- 17 王钧,黄尚瑶,黄歌山,等.中国地温分布的基本特征.北京: 地震出版社,1990.67-71
- 18 吴乾蕃,谢毅真. 松辽盆地大地热流. 地震地质, 1985, 7(2): 59-64
- 19 栾锡武,高德章,喻普之,等.我国东海陆架地区新生代地层的 热导率.海洋与湖沼,2002,33(2):151—158
- 20 熊亮萍,胡圣标,汪缉安.中国东南地区岩石热导率分析.岩石 学报,1994,36(6):323-329
- 21 邱楠生.中国西北地区沉积盆地岩石热导率和生热率特征.地 质科学,2002,37(2):196-206
- 22 王社教,胡圣标,汪集旸. 准噶尔盆地热流及地温场特征. 地球 物理学报,2000,43(6):771-779
- 23 刘耀光. 松辽盆地地热场特征与油气勘探的关系. 石油勘探与 开发, 1982, 9(3): 26—31
- 24 徐振章. 试论影响岩石热物理性质的因素及机制. 石油勘探与 开发, 1992, 19(6): 84-89
- 25 沈显杰,杨淑贞,张文仁.岩石热物理性质及其测试.北京:科 学出版社,1988
- 26 李国桦. 柴达木盆地大地热流特征及地壳热结构分析. 硕士学 位论文. 北京: 中国科学院地质研究所, 1992. 1-59
- 27 王钧, 汪缉安, 沈继英, 等. 塔里木盆地的大地热流. 地球科学, 1995, 20(4): 399—404
- 28 郭占谦, 王先彬, 刘文龙. 松辽盆地非生物成因气的成藏特征. 中国科学 D 辑: 地球科学, 1997, 27(2): 143-148
- 29 李志安. 松辽盆地地幔热流的演化特征. 大地构造与成矿学, 1995, 19(2): 104—112
- 30 程学儒. 松辽早期裂谷盆地特征. 见: 大陆裂谷及深部过程国际学术讨论会论文, 1985. 1-10
- 31 郭占谦.中国含油气盆地的变革.新疆石油地质,2003,24(1): 8-12
- 32 张文佑,张抗,杨树康.中国东部及相邻海域中、新生代地壳演 化与盆地类型.海洋地质与第四纪地质,1982,(1):1-15
- 33 郭占谦.火山活动与沉积盆地的形成和演化.地球科学——中 国地质大学学报,1998,23(1):59—64
- 34 王剑峰.浙西北中生代火山岩的微量元素地球化学特征成因探 讨.地球化学,1992,(1):41-48
- 35 Simoneit B R T, Lonsdate P F. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature, 1982, 295(5846):198-202[DOI]
- 36 API. Earth temperatures in oil field. AAPG Bull, 205, 1930
- 37 Fedortsov I M, Yagnyshchak I V, Geotemperature as a possible means of locating oil and gas reservoirs. Geologiya Nefti i Gaza. 1971, 6: 38–42

- 38 Meyer H J, Mcgee H W. Oil and gas Fields Accompanied by Geothermal Anomalies in Rocy Mountain Region. AAPG Bull, 1985, 69(6): 933-945
- 39 任战利, 萧德铭, 迟元林. 松辽盆地古地温恢复. 大庆石油地质 与开发, 2001, 20(1): 13—14
- 40 戴金星,秦胜飞,陶士振,等.中国天然气工业发展趋势和天然 气地学理论重要进展.天然气地球科学,2005,16(2):127-142
- 41 戴金星,胡安平,杨春,等.中国天然气勘探及其地学理论的主 要新进展.天然气工业,2006,26(12):1-5
- 42 戴金星, 裴锡古, 戚厚发. 中国天然气地质学(卷一). 北京: 石 油工业出版社, 1992. 65—88
- 43 戴金星. 各类烷烃气的鉴别. 中国科学 B 辑, 1992, 22(2): 187-193
- 44 戴金星. 鉴别煤成气的指标. 见:煤成气地质研究编委会主编. 煤成气地质研究. 北京:石油工业出版社, 1987. 156—170
- 45 戴金星. 天然气碳氢同位素特征和各类天然气鉴别. 天然气地 球科学, 1993, (2-3): 1-40
- 46 戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因.石油与天然气地质,2003,24(1):3-6
- 47 戴金星, 宋岩, 程坤芳, 等. 中国含油气盆地有机烷烃气碳同位 素特征. 石油学报, 1993, 14(2): 23-31
- 48 戴金星.利用轻烃鉴别煤成气和型气.石油勘探与开发,1993, 20(5):16-23
- 49 戴金星,陈英.中国生物气中烷烃组分的碳同位素特征及其鉴别标志.中国科学B辑,1993,23(3):303-310
- 50 戴金星. 各类天然气的成因鉴别. 中国海上油气(地质), 1992, 6(1):11-19
- 51 徐永昌. 天然气成因理论及应用. 北京: 科学出版社, 1994. 92-211
- 52 沈平,申歧祥,王先彬,等. 气态烃同位素组成特征及煤型气判别. 中国科学, B辑, 1987, 17(6): 647-656
- 53 张义纲,章复康,郑朝阳.识别天然气的碳同位素方法.见:中国地质学会石油地质专业委员会编.有机地球化学论文集.北京:地质出版社,1987.1—14
- 54 张士亚, 部建军, 蒋泰然.利用甲、乙烷碳同位素判别天然气类型的一种新方法.见:地质矿产部石油地质研究所编.石油与 天然气地质文集(第一集).北京:地质出版社, 1988.48—58
- 55 朱家蔚, 徐永昌, 申建中, 等. 东濮凹陷天然气氩同位素特征及 煤成气判识. 科学通报, 1984, 29(1): 41—44
- 56 涂修元, 吴学明. 鉴别煤成气的辅助指标.见:中国石油学会石 油地质委员会编.天然气勘探.北京:石油工业出版社. 1986. 180—186
- 57 张厚福,吕福亮.天然气成因类型及其识别标志(以渤海湾盆地 为例).见:天然气地质论文集编委会主编.天然气地质研究论文 集.北京:石油工业出版社,1989.90—100
- 58 戴金星, 戚厚发, 郝石生. 天然气地质学概论. 北京: 石油工业 出版社, 1989. 9-29

- 59 郭占谦, 王先彬. 松辽盆地非生物成因气的探讨. 中国科学 B 辑, 1994, 24(3):303-309
- 60 戴金星, 宋岩, 戴春森. 中国东部无机成因气及其气藏形成条件. 北京: 科学出版社, 1995. 195-202
- 61 杨玉峰,张秋,黄海平.松辽盆地徐家围子断陷无机成因天然 气及其成藏模式.地学前缘,2000,7(4):523-533
- 62 庞庆山,王蕾,赵荣,等. 松辽盆地北部昌德 CO₂ 气藏成因与形成机制. 大庆石油学院学报, 2002, 26(3): 89—91
- 63 谈迎,张长木,刘德良. 松辽盆地北部昌德东气藏 CO₂ 成因的 地球化学判据. 海洋石油. 2005, 25(3): 18-23
- 64 霍秋立,杨步增,付丽.松辽盆地北部昌德东气藏天然气成因. 石油勘探与开发,1998,25(4):17—19
- 65 付晓飞, 宋岩. 松辽盆地无机成因气及气源模式. 石油学报, 2005, 26(4): 23-28
- 66 候启军,杨玉峰.松辽盆地无机成因天然气及勘探方向探讨. 天然气工业,2002,22(3):5-10
- 67 Dai J, Yang, S, Chen H, et al. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Org Geochem, 2005, 36(12): 1664–1688[DOI]
- 68 李景坤,刘伟,宋兰斌.徐家围子断陷深层烃源岩生烃条件研究.天然气工业,2006,26(6):21-24
- 69 冯子辉,刘伟. 松辽盆地北部深层天然气生成条件与资源潜力 研究.见:贾承造,主编. 松辽盆地深层天然气勘探研讨会报告 集. 北京:石油工业出版社,2004.67-73
- 70 迟元林,云金表,蒙启安,等.松辽盆地深部结构及成盆动力学 与油气聚集.北京:石油工业出版社,2002.69—109
- 71 Gold T, Scoter S. The deep-earth-gas hypothesis. Sci Amer Am, 1980, 242(6): 154—161
- 72 胡桂兴,欧阳自远,王先彬,等.原始太阳星云条件下 Fischer-Tropsch 反应中的碳同位素分馏.中国科学 D 辑:地球科学, 1997,27(5):395—400
- 73 吕功煊, 丑凌军, 张兵等. 深层及非生物成烃的催化机制. 天然 气地球科学, 2006, 17(1): 14—18
- Joanna P, Rankin A H, Treloar P J. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N. W. Russ LITHOS, 2004, 75: 311-330
- 75 肖万生,柴平霞,汪本善,等.石墨与含水矿物反应成烃的实验 研究.自然科学进展,1999,9(6):570-572
- 76 翁克难,肖万生,张惠之,等.石墨、菱铁矿与超临界水反应的 实验研究.高压物理学报,1996,10(4):241-244
- 77 戴金星,丁巍伟,侯路,等.松辽盆地深层气勘探和研究.见: 贾承造,主编.松辽盆地深层天然气勘探研讨会报告集.北京: 石油工业出版社,2004.27-43
- 78 戴金星,石昕,卫延召.无机成因油气论和无机成因的气田(藏) 概略.石油学报,2001,22(6):5-10